Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geological controls on geothermal resources for power generation

Abstract

Threats posed by the climate crisis have created an urgent need for sustainable green energy. Geothermal resources have the potential to provide up to 150 GWe of sustainable energy by 2050. However, the key challenge in successfully locating and drilling geothermal wells is to understand how the heterogeneous structure of the subsurface controls the existence of exploitable fluid reservoirs. In this Review, we discuss how key geological factors contribute to the profitable utilization of intermediate-temperature to high-temperature geothermal resources for power generation. The main driver of geothermal activity is elevated crustal heat flow, which is focused in regions of active magmatism and/or crustal thinning. Permeable structures such as faults exercise a primary control on local fluid flow patterns, with most upflow zones residing in complex fault interaction zones. Major risks in geothermal resource assessment and operation include locating sufficient permeability for fluid extraction, in addition to declining reservoir pressure and the potential of induced seismicity. Advanced computational methods permit effective integration of multiple datasets and, thus, can reduce potential risks. Future innovations involve engineered geothermal systems as well as supercritical and offshore geothermal resources, which could greatly expand the global application of geothermal energy but require detailed knowledge of the respective geological conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global distribution of geothermal resources.
Fig. 2: Typical geological settings of intermediate-temperature to high-temperature geothermal systems.
Fig. 3: Porosity–permeability relationships in geothermal reservoir formations.
Fig. 4: Favourable structural settings for geothermal exploitation.
Fig. 5: Evolution of discharge enthalpy in geothermal wells.
Fig. 6: Failure criterion for a critically stressed fault.

References

  1. 1.

    Goldstein, B. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Ch. 4 (eds Goodfellow, I., Bengio, Y. & Courville, A.) (MIT Press, 2018).

  2. 2.

    Huttrer, G. W. in Proceedings of the World Geothermal Congress 2020 (2020).

  3. 3.

    Lund, J. W. & Toth, A. N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 90, 101915 (2020).

    Article  Google Scholar 

  4. 4.

    ThinkGeoEnergy. Global Geothermal Power Plant Map – updated. ThinkGeoEnergy https://www.thinkgeoenergy.com/map/ (2020).

  5. 5.

    Axelsson, G. Sustainable geothermal utilization – case histories; definitions; research issues and modelling. Geothermics 39, 283–291 (2010).

    Article  Google Scholar 

  6. 6.

    Faulds, J. E. & Hinz, N. H. in Proceedings of the World Geothermal Congress 2015 (2015).

  7. 7.

    Coolbaugh, M. F., Kratt, C., Fallacaro, A., Calvin, W. M. & Taranik, J. V. Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sens. Environ. 106, 350–359 (2007).

    Article  Google Scholar 

  8. 8.

    Jolie, E., Klinkmueller, M., Moeck, I. & Bruhn, D. Linking gas fluxes at Earth’s surface with fracture zones in an active geothermal field. Geology 44, 187–190 (2016).

    Article  Google Scholar 

  9. 9.

    Faulds, J. E. et al. in Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering (2017).

  10. 10.

    Faulds, J. E. et al. Searching for blind geothermal systems utilizing play fairway analysis, western Nevada. Geotherm. Resour. Counc. Bull. 47, 34–42 (2018).

    Google Scholar 

  11. 11.

    White, D., Muffler, L. & Truesdell, A. Vapor-dominated hydrothermal systems compared with hot-water systems. Econ. Geol. 66, 75–97 (1971).

    Article  Google Scholar 

  12. 12.

    Hayba, D. O. & Ingebritsen, S. E. Multiphase groundwater flow near cooling plutons. J. Geophys. Res. 102, 12235–12252 (1997).

    Article  Google Scholar 

  13. 13.

    Moeck, I. S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 37, 867–882 (2014).

    Article  Google Scholar 

  14. 14.

    Axelsson, G., & Franzson, H. in Proceedings of the Short Course on Geothermal Development and Geothermal Wells (2012).

  15. 15.

    Stimac, J., Goff, F. & Goff, C. J. in The Encyclopedia of Volcanoes 2nd edn (ed. Sigurdsson, H.) 799–822 (Academic, 2015).

  16. 16.

    Hochstein, M. P. in Small Geothermal Resources: A Guide to Development and Utilization Ch. 2 (eds Dickson, M. H. & Fanelli, M.) 31–59 (UNITAR, 1990).

  17. 17.

    Muffler, L. J. P. & Cataldi, R. Methods for regional assessment of geothermal resources. Geothermics 7, 53–89 (1978).

    Article  Google Scholar 

  18. 18.

    Nicholson, K. in Geothermal Fluids 1–18 (Springer, 1993).

  19. 19.

    Sanyal, S. K. in Proceedings of the 13th Workshop on Geothermal Reservoir Engineering (2005).

  20. 20.

    DiPippo, R. Geothermal Power Plants: Principles, Applications and Case Studies 4th edn (Butterworth-Heinemann, 2016).

  21. 21.

    Orenstein, R. & Delwiche, B. The Don A. Campbell geothermal project – development of a low-temperature resource. Geotherm. Resour. Counc. Trans. 38, 91–98 (2014).

    Google Scholar 

  22. 22.

    Mines, G., in Geothermal Power Generation Ch. 13 (ed. DiPippo, R.) 353–389 (Woodhead Publishing, 2016).

  23. 23.

    Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophys. Geosyst. 20, 4001–4024 (2019).

    Article  Google Scholar 

  24. 24.

    Blackwell, D. D., Negraru, P. T. & Richards, M. C. Assessment of the enhanced geothermal system resource base of the United States. Nat. Resour. Res. 15, 283–308 (2006).

    Article  Google Scholar 

  25. 25.

    Breede, K. et al. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm. Energy 1, 4 (2013).

    Article  Google Scholar 

  26. 26.

    Olasolo, P., Juárez, M. C., Morales, M. P. & Liarte, I. A. Enhanced geothermal systems (EGS): a review. Renew. Sustain. Energy Rev. 56, 133–144 (2016).

    Article  Google Scholar 

  27. 27.

    Lu, S.-M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 81, 2902–2921 (2018).

    Article  Google Scholar 

  28. 28.

    Genter, A., Evans, K., Cuenot, N., Fritsch, D. & Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). C. R. Geosci. 342, 502–516 (2010).

    Article  Google Scholar 

  29. 29.

    Cummings, R. G., & Morris, G. E. Economic modeling of electricity production from hot dry rock geothermal reservoirs: methodology and analyses. Final report. (No. EPRI-EA-630; LA-7888-HDR). Dept. of Economics, New Mexico Univ., Albuquerque (USA) http://www.osti.gov/bridge/servlets/purl/5716131-wg4gUV/native/5716131.pdf (1979).

  30. 30.

    Fridleifsson, G. O. & Elders, W. A. The Iceland Deep Drilling Project: a search for deep unconventional geothermal resources. Geothermics 34, 269–285 (2005).

    Article  Google Scholar 

  31. 31.

    Reinsch, T. et al. Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities. Geotherm. Energy 5, 16 (2017).

    Article  Google Scholar 

  32. 32.

    Ingason, K., Kristjánsson, V. & Einarsson, K. Design and development of the discharge system of IDDP-1. Geothermics 49, 58–65 (2014).

    Article  Google Scholar 

  33. 33.

    Elders, W. A. & Moore, J. N. in Geothermal Power Generation Ch. 2 (ed. DiPippo, R.) 7–32 (Woodhead Publishing, 2016).

  34. 34.

    Blackwell, D. D. & Richards, M. Heat Flow Map of North America (American Association of Petroleum Geology, 2004).

  35. 35.

    Morgan P. in Encyclopedia of Solid Earth Geophysics (ed. Gupta, H. K.) 573–581 (Springer, 2011).

  36. 36.

    Arnórsson, S. Geothermal systems in Iceland: structure and conceptual models — I. High-temperature areas. Geothermics 24, 561–602 (1995).

    Article  Google Scholar 

  37. 37.

    Wilson, C. J. N. & Rowland, J. V. The volcanic, magmatic and tectonic setting of the Taupo Volcanic Zone, New Zealand, reviewed from a geothermal perspective. Geothermics 59, 168–187 (2016).

    Article  Google Scholar 

  38. 38.

    Flóvenz, Ó. G. & Saemundsson, K. Heat flow and geothermal processes in Iceland. Tectonophysics 225, 123–138 (1993).

    Article  Google Scholar 

  39. 39.

    Bibby, H. M., Caldwell, T. G., Davey, F. J. & Webb, T. H. Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J. Volcanol. Geotherm. Res. 68, 29–58 (1995).

    Article  Google Scholar 

  40. 40.

    Blackwell, D. D. in The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province (ed. Eaton, G.) 81–93 (Geothermal Resources Council, 1983)

  41. 41.

    Tezcan, A. K. in Terrestrial Heat Flow and Geothermal Energy in Asia (eds Gupta, M. L. & Yamano, M.) 23–42 (Oxford and IBH Publishing, 1995).

  42. 42.

    Stelling, P. et al. Geothermal systems in volcanic arcs: volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide. J. Volcanol. Geotherm. Res. 324, 57–72 (2016).

    Article  Google Scholar 

  43. 43.

    McNamara, D. D. et al. Tectonic controls on Taupo Volcanic Zone geothermal expression: insights from Te Mihi, Wairakei geothermal field. Tectonics 38, 3011–3033 (2019).

    Article  Google Scholar 

  44. 44.

    Minissale, A. The Larderello geothermal field: a review. Earth Sci. Rev. 31, 133–151 (1991).

    Article  Google Scholar 

  45. 45.

    Goldscheider, N., Szonyi, J. M., Eross, A. & Schill, E. Thermal water resources in carbonate rock aquifers. Hydrogeol. J. 18, 1303–1318 (2010).

    Article  Google Scholar 

  46. 46.

    Koçyiğit, A. An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben, SW Turkey. Geodin. Acta 27, 85–109 (2015).

    Article  Google Scholar 

  47. 47.

    Siler, D. L., Hinz, N. H., Faulds, J. E. & Queen, J. in Proceedings of the 41st Workshop on Geothermal Reservoir Engineering (2016).

  48. 48.

    Cumming, W. in Geothermal Power Generation Ch. 3 (ed. DiPippo, R.) 33–75 (Woodhead Publishing, 2016).

  49. 49.

    Harvey, C. & Beardsmore, G. (eds) Best Practices Guide for Geothermal Exploration 2nd edn (International Geothermal Association, 2014).

  50. 50.

    Björnsson, G. & Bödvarsson, G. A survey of geothermal reservoir properties. Geothermics 19, 17–27 (1990).

    Article  Google Scholar 

  51. 51.

    Lamur, A. et al. The permeability of fractured rocks in pressurized volcanic and geothermal systems. Nat. Sci. Rep. 7, 6173 (2017).

    Article  Google Scholar 

  52. 52.

    Heap, M. J. et al. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 332, 88–108 (2017).

    Article  Google Scholar 

  53. 53.

    Stimac, G., Nordquist, G., Suminar, A. & Sirad-Azwar, L. An overview of the Awibengkok geothermal system, Indonesia. Geothermics 37, 300–331 (2008).

    Article  Google Scholar 

  54. 54.

    Siratovich, P. A., Heap, M. J., Villenueve, M. C., Cole, J. W. & Reuschlé, T. Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand. Geotherm. Energy 2, 10 (2014).

    Article  Google Scholar 

  55. 55.

    McNamara, D. D., Massiot, C., Lewis, B. & Wallis, I. C. Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand. J. Geophys. Res. 120, 1243–1262 (2015).

    Article  Google Scholar 

  56. 56.

    Stimac, J. A., Powell, T. S. & Golla, G. Porosity and permeability of the Tiwi geothermal field, Philippines, based on continuous and spot core measurements. Geothermics 33, 87–107 (2004).

    Article  Google Scholar 

  57. 57.

    Browne, P. R. L. Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth Planet. Sci. 6, 229–250 (1978).

    Article  Google Scholar 

  58. 58.

    Wyering, L. D. et al. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 288, 76–93 (2014).

    Article  Google Scholar 

  59. 59.

    Henley, R. W. & Ellis, A. J. Geothermal systems ancient and modern: a geochemical review. Earth Sci. Rev. 19, 1–50 (1983).

    Article  Google Scholar 

  60. 60.

    Sanchez-Alfaro, P. et al. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation. J. Volcanol. Geotherm. Res. 324, 88–104 (2016).

    Article  Google Scholar 

  61. 61.

    Moore, J. N., Adams, M. C. & Anderson, A. J. The fluid inclusion and mineralogic record of the transition from liquid- to vapor-dominated conditions in The Geysers geothermal system, California. Econ. Geol. 95, 1719–1737 (2000).

    Google Scholar 

  62. 62.

    Glynn-Morris, T., Mclean, K. & Brockbank, K. in Proceedings of the New Zealand Geothermal Workshop (2011).

  63. 63.

    Sibson, R. H. Crustal stress, faulting and fluid flow. Geol. Soc. Lond. Spec. Publ. 78, 69–84 (1994).

    Article  Google Scholar 

  64. 64.

    Jentsch, A. et al. Magmatic volatiles to assess permeable volcano-tectonic structures in the Los Humeros geothermal field, Mexico. J. Volcanol. Geotherm. Res. 394, 106820 (2020).

    Article  Google Scholar 

  65. 65.

    Caine, J. S., Evans, J. P. & Forster, C. B. Fault zone architecture and permeability structure. Geology 24, 1025–1028 (1996).

    Article  Google Scholar 

  66. 66.

    Kissling, W. M., Villamor, P., Ellis, S. M. & Rae, A. Modelling of hydrothermal fluid flow and structural architecture in an extensional basin, Ngakuru Graben, Taupo Rift, New Zealand. J. Volcanol. Geotherm. Res. 357, 134–151 (2018).

    Article  Google Scholar 

  67. 67.

    Jolie, E., Hutchison, W., Driba, D. L., Jentsch, A. & Gizaw, B. Pinpointing deep geothermal upflow in zones of complex tectono-volcanic degassing: new insights from Aluto volcano, Main Ethiopian Rift. Geochem. Geophys. Geosyst. 20, 4146–4161 (2019).

    Article  Google Scholar 

  68. 68.

    Curewitz, D. & Karson, J. A. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. J. Volcanol. Geotherm. Res. 79, 149–168 (1997).

    Article  Google Scholar 

  69. 69.

    Larson, P. H. Relay structures in a Lower Permian basement-involved extension system, East Greenland. J. Struct. Geol. 10, 3–8 (1988).

    Article  Google Scholar 

  70. 70.

    Childs, C., Watterson, J. & Walsh, J. J. Fault overlap zones within developing normal fault systems. J. Geol. Soc. Lond. 152, 535–549 (1995).

    Article  Google Scholar 

  71. 71.

    Faulds, J. E. & Varga, R. in Accommodation Zones and Transfer Zones: The Regional Segmentation of the Basin and Range Province (eds Faulds, J. E. & Stewart, J. H.) 1–46 (Geological Society of America, 1998).

  72. 72.

    Siler, D. L., Hinz, N. H. & Faulds, J. E. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields. Geol. Soc. Am. Bull. 130, 1273–1288 (2018).

    Article  Google Scholar 

  73. 73.

    Micklethwaite, S. & Cox, S. F. Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology 32, 813–816 (2004).

    Article  Google Scholar 

  74. 74.

    Faulds, J. E. Structural controls of geothermal activity in the northern Hot Springs Mountains, western Nevada: the tale of three geothermal systems (Brady’s, Desert Peak, and Desert Queen). Geotherm. Resour. Counc. Trans. 34, 675–683 (2010).

    Google Scholar 

  75. 75.

    Faulds, J. E., Bouchot, V., Moeck, I. & Oguz, K. Structural controls on geothermal systems in Western Turkey: a preliminary report. Geotherm. Resour. Counc. Trans. 33, 375–381 (2009).

    Google Scholar 

  76. 76.

    Rowland, J. V. & Simmons, S. F. Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo Volcanic Zone, New Zealand: Implications for the formation of epithermal vein deposits. Econ. Geol. 107, 427–457 (2012).

    Article  Google Scholar 

  77. 77.

    Muraoka, H. et al. in Proceedings of the World Geothermal Congress 2010 (2010).

  78. 78.

    Hulen, J., Kaspereit, D., Norton, D. L., Osborn, W. & Pulka, F. S. Refined conceptual modeling and a new resource estimate for the Salton Sea geothermal field, Imperial Valley, California. Geotherm. Resour. Counc. Trans. 26, 29–36 (2002).

    Google Scholar 

  79. 79.

    Faulds, J. E., Hinz, N. H., Dering, G. M. & Drew, D. L. The hybrid model – the most accommodating structural setting for geothermal power generation in the Great Basin, western USA. Geotherm. Resour. Counc. Trans. 37, 3–10 (2013).

    Google Scholar 

  80. 80.

    Ayling, B. F. in Proceedings of the 45th Workshop on Geothermal Reservoir Engineering (2020).

  81. 81.

    Hinz, N. H. et al. in Proceedings of the 41st Workshop on Geothermal Reservoir Engineering (2016).

  82. 82.

    Marrett, R. & Allmendinger, R. W. Kinematic analysis of fault-slip data. J. Struct. Geol. 12, 973–986 (1990).

    Article  Google Scholar 

  83. 83.

    Zoback, M. D. et al. Determination of stress orientation and magnitude in deep wells. Int. J. Rock Mech. Min. Sci. 40, 1049–1076 (2003).

    Article  Google Scholar 

  84. 84.

    Davatzes, N. C. & Hickman, S. in Proceedings of the World Geothermal Congress 2010 (2010).

  85. 85.

    Reiter, K. & Heidbach, O. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth 5, 1123–1149 (2014).

    Article  Google Scholar 

  86. 86.

    Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M. & Scheck-Wenderoth, M. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin. Solid Earth 7, 1365–1382 (2016).

    Article  Google Scholar 

  87. 87.

    Barton, C. et al. in Proceedings of Society of Petroleum Engineers/International Society of Rock Mechanics and Mining Sciences Rock Mechanics in Petroleum Engineering Vol. 2 315–322 (Society of Petroleum Engineers, 1998)

  88. 88.

    Gaucher, E. et al. Induced seismicity in geothermal reservoirs: a review of forecasting approaches. Renew. Sustain. Energy Rev. 52, 1473–1490 (2015).

    Article  Google Scholar 

  89. 89.

    Evans, K. F., Zappone, A., Kraft, T., Deichmann, N. & Moia, F. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41, 30–54 (2012).

    Article  Google Scholar 

  90. 90.

    Poux, B., Gunnarsdóttir, S. H. & O’Brien, J. 3-D modeling of the Hellisheiði geothermal field, Iceland, using Leapfrog. Geotherm. Resour. Counc. Trans. 42, 524–542 (2018).

    Google Scholar 

  91. 91.

    Ellis, A. J. & Mahon, W. A. J. Chemistry and Geothermal Systems (Academic, 1977).

  92. 92.

    Helgeson, H. C. Geologic and thermodynamic characteristics of the Salton Sea geothermal system. Am. J. Sci. 266, 129–166 (1968).

    Article  Google Scholar 

  93. 93.

    Arnórsson, S., Stefansson, A. & Bjarnason, J. Ö. Fluid-fluid interactions in geothermal systems. Rev. Mineral. Geochem. 65, 259–312 (2007).

    Article  Google Scholar 

  94. 94.

    Craig, H. in Nuclear Geology on Geothermal Areas (ed. Tongiori, E.) 17–53 (Spoleto, 1963).

  95. 95.

    Dempsey, D. E., Simmons, S. F., Archer, R. A. & Rowland, J. V. Delineation of catchment zones of geothermal systems in large-scale rifted settings. J. Geophys. Res. Solid Earth 117, B10201 (2012).

    Article  Google Scholar 

  96. 96.

    Delvaux, D. et al. in Proceedings of the World Geothermal Congress 2010 (2010).

  97. 97.

    Lelli, M. et al. Fluid geochemistry of the Los Humeros geothermal field (LHGF - Puebla, Mexico): new constraints for the conceptual model. Geothermics 90, 101983 (2021).

    Article  Google Scholar 

  98. 98.

    Arnórsson, S. Major element chemistry of the geothermal sea-water at Reykjanes and Svartsengi, Iceland. Mineral. Mag. 42, 209–220 (1978).

    Article  Google Scholar 

  99. 99.

    Giggenbach, W. F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 113, 495–510 (1992).

    Article  Google Scholar 

  100. 100.

    Arnórsson, S., Grönvold, K. & Sigurdsson, S. Aquifer chemistry of four high-temperature geothermal systems in Iceland. Geochim. Cosmochim. Acta. 42, 523–536 (1978).

    Article  Google Scholar 

  101. 101.

    Stefánsson, A., Keller, N. S., Robin, J. G. & Ono, S. Multiple sulfur isotope systematics of Icelandic geothermal fluids and the source and reactions of sulfur in volcanic geothermal systems at divergent plate boundaries. Geochim. Cosmochim. Acta 165, 307–323 (2015).

    Article  Google Scholar 

  102. 102.

    Stefánsson, A. et al. Mantle CO2 degassing through the Icelandic crust: evidence from carbon isotopes in groundwater. Geochim. Cosmochim. Acta 191, 300–319 (2016).

    Article  Google Scholar 

  103. 103.

    Wagner, W. et al. IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J. Eng. Gas Turbine Power 122, 150–180 (2000).

    Article  Google Scholar 

  104. 104.

    Sourirajan, S. & Kennedy, G. C. The system H2O-NaCl at elevated temperatures and pressures. Am. J. Sci. 260, 115–141 (1962).

    Article  Google Scholar 

  105. 105.

    Ingebritsen, S. & Sorey, M. Vapor-dominated zones within hydrothermal systems: evolution and natural state. J. Geophys. Res. 93, 13,635–13,655 (1988).

    Article  Google Scholar 

  106. 106.

    Allis, R. in Proceedings of the World Geothermal Congress 2000 (2000).

  107. 107.

    Raharjo, I. B., Allis, R. G. & Chapman, D. S. Volcano-hosted vapor-dominated geothermal systems in permeability space. Geothermics 62, 22–32 (2016).

    Article  Google Scholar 

  108. 108.

    Pruess, K. & Narasimhan, T. N. On fluid reserves and the production of superheated steam from fractured, vapor-dominated geothermal reservoirs. J. Geophys. Res. 87, 9329–9339 (1982).

    Article  Google Scholar 

  109. 109.

    Scott, S. W. Decompression boiling and natural steam cap formation in high-enthalpy geothermal systems. J. Volcanol. Geotherm. Res. 395, 106765 (2020).

    Article  Google Scholar 

  110. 110.

    Markusson, S. H. & Stefansson, A. Geothermal surface alteration of basalts, Krýsuvík Iceland — Alteration mineralogy, water chemistry and the effects of acid supply on the alteration process. J. Volcanol. Geotherm. Res. 206, 46–59 (2011).

    Article  Google Scholar 

  111. 111.

    Schiffman, P. & Friðleifsson, G. Ó. The smectite–chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations. J. Metamorph. Geol. 9, 679–696 (1991).

    Article  Google Scholar 

  112. 112.

    Kristmannsdóttir, H. Alteration of basaltic rocks by hydrothermal activity at 100–300°C. Dev. Sedimentol. 27, 359–367 (1979).

    Article  Google Scholar 

  113. 113.

    D’Amore, F. & Truesdell, A. H. Calculation of geothermal reservoir temperatures and steam fractions from gas compositions. Geotherm. Resour. Counc. Trans. 9, 305–310 (1985).

    Google Scholar 

  114. 114.

    Arnórsson, S., Björnsson, S., Muna, Z. Z. W. & Bwire-Ojiambo, S. The use of gas chemistry to evaluate boiling processes and initial steam fractions in geothermal reservoirs with an example from the Olkaria field, Kenya. Geothermics 19, 497–514 (1990).

    Article  Google Scholar 

  115. 115.

    Scott, S., Gunnarsson, I., Arnórsson, S. & Stefánsson, A. Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland. Geochim. Cosmochim. Acta 124, 170–189 (2014).

    Article  Google Scholar 

  116. 116.

    Arnórsson, S. & D’Amore, F. in Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation (ed. Arnórsson, S.) Ch. 9 (International Atomic Energy Agency, 2000).

  117. 117.

    Grant, M. A. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements. Geothermics 13, 117–140 (1984).

    Article  Google Scholar 

  118. 118.

    Corsi, R. Scaling and corrosion in geothermal equipment: problems and preventive measures. Geothermics 15, 839–856 (1986).

    Article  Google Scholar 

  119. 119.

    Gallup, D. L. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery. Ore Geol. Rev. 12, 225–236 (1998).

    Article  Google Scholar 

  120. 120.

    Valdez, B. et al. Corrosion and scaling at Cerro Prieto geothermal field. Anti-corros. Meth. Mater. 56, 28–34 (2009).

    Article  Google Scholar 

  121. 121.

    Scott, S., Driesner, T. & Weis, P. Boiling and condensation of saline geothermal fluids above magmatic intrusions. Geophys. Res. Lett. 44, 1696–1705 (2017).

    Google Scholar 

  122. 122.

    Truesdell, A. H., Haizlip, J. R., Armannsson, H. & Amore, F. D. Origin and transport of chloride in superheated geothermal steam. Geothermics 18, 295–304 (1989).

    Article  Google Scholar 

  123. 123.

    Marini, L., Moretti, R. & Accornero, M. Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Rev. Mineral. Geochem. 73, 423–492 (2011).

    Article  Google Scholar 

  124. 124.

    Kamila, Z., Kaya, E. & Zarrouk, S. J. Reinjection in geothermal fields: an updated worldwide review 2020. Geothermics 89, 101970 (2020).

    Article  Google Scholar 

  125. 125.

    Kristmannsdóttir, H. Types of scaling occurring by geothermal utilization in Iceland. Geothermics 18, 183–190 (1989).

    Article  Google Scholar 

  126. 126.

    Mroczek, E., Graham, D., Siega, C. & Bacon, L. Silica scaling in cooled silica saturated geothermal water: comparison between Wairakei and Ohaaki geothermal fields, New Zealand. Geothermics 69, 145–152 (2017).

    Article  Google Scholar 

  127. 127.

    Ungemach, P. Reinjection of cooled geothermal brines into sandstone reservoirs. Geothermics 32, 743–761 (2003).

    Article  Google Scholar 

  128. 128.

    Capuano, L. E. in Geothermal Power Generation Ch. 5 (ed. DiPippo, R.) 107–139 (Woodhead Publishing, 2016).

  129. 129.

    Grant, M. A. & Bixley, P. F. Geothermal Reservoir Engineering 2nd edn. (Academic, 2011).

  130. 130.

    Axelsson G., Björnsson, G. & Montalvo, F. in Proceedings of the World Geothermal Congress 2005 (2005).

  131. 131.

    Axelsson, G. in Comprehensive Renewable Energy (ed. Sayigh A.) 3–50 (Elsevier, 2012)

  132. 132.

    Zarrouk, S. J. & Moon, H. Efficiency of geothermal power plants: A worldwide review. Geothermics 51, 142–153 (2014).

    Article  Google Scholar 

  133. 133.

    Sanyal, S. K. & Morrow, J. W. in Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering (2012).

  134. 134.

    Allen, M. et al. Success of Geothermal Wells: a Global Study (International Finance Corporation, 2013).

  135. 135.

    Dobson, P. et al. Analysis of curtailment at The Geysers geothermal Field, California. Geothermics 87, 101871 (2020).

    Article  Google Scholar 

  136. 136.

    Tester, J. W. et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century (MIT Press, 2006).

  137. 137.

    Axelsson, G. & Thórhallsson, S. Review of well stimulation operations in Iceland. Geotherm. Resour. Counc. Trans. 33, 795–800 (2009).

    Google Scholar 

  138. 138.

    Hofmann, H., Zimmermann, G., Zang, A. & Min, K. B. Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments. Geotherm. Energy 6, 27 (2018).

    Article  Google Scholar 

  139. 139.

    Eggertsson, G. H., Lavallee, Y., Kendrick, J. E. & Markusson, S. H. Improving fluid flow in geothermal reservoirs by thermal and mechanical stimulation: the case of Krafla volcano, Iceland. J. Volcanol. Geotherm. Res. 391, 106351 (2020).

    Article  Google Scholar 

  140. 140.

    Siratovich, P. A., Villeneuve, M. C., Cole, J. W., Kennedy, B. M. & Bégué, F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 80, 265–280 (2015).

    Article  Google Scholar 

  141. 141.

    Morris, A., Ferrill, D. A. & Henderson, D. B. Slip-tendency analysis and fault reactivation. Geology 24, 275–278 (1996).

    Article  Google Scholar 

  142. 142.

    Ferrill, D. A. et al. Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9, 1–8 (1999).

    Article  Google Scholar 

  143. 143.

    Majer, E. L. et al. Induced seismicity associated with enhanced geothermal systems. Geothermics 36, 185–222 (2007).

    Article  Google Scholar 

  144. 144.

    Zang, A. et al. How to reduce fluid-injection-induced seismicity. Rock Mech. Rock Eng. 52, 475–493 (2019).

    Article  Google Scholar 

  145. 145.

    Kwiatek, G. et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci. Adv. 5, eaav7224 (2019).

    Article  Google Scholar 

  146. 146.

    Tarcan, G. Mineral saturation and scaling tendencies of waters discharged from wells (>150 °C) in geothermal areas of Turkey. J. Volcanol. Geotherm. Res. 142, 263–283 (2005).

    Article  Google Scholar 

  147. 147.

    Gunnarsson, I. & Arnórsson, S. Impact of silica scaling on the efficiency of heat extraction from high-temperature geothermal fluids. Geothermics 34, 320–329 (2005).

    Article  Google Scholar 

  148. 148.

    Ölçenoǧlu, K. Scaling in the reservoir in Kizildere geothermal field, Turkey. Geothermics 15, 731–734 (1986).

    Article  Google Scholar 

  149. 149.

    Gallup, D. L. Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 31, 415–430 (2002).

    Article  Google Scholar 

  150. 150.

    Pambudi, N. A. et al. The behavior of silica in geothermal brine from Dieng geothermal power plant, Indonesia. Geothermics 54, 109–114 (2015).

    Article  Google Scholar 

  151. 151.

    Hirtz, P. N. in Geothermal Power Generation Ch. 16 (ed. DiPippo, R.) 443–476 (Woodhead Publishing, 2016).

  152. 152.

    Kruszewski, M. & Wittig, V. Review of failure modes in supercritical geothermal drilling projects. Geotherm. Energy 6, 1–29 (2018).

    Article  Google Scholar 

  153. 153.

    Elders, W. A., Friðleifsson, G. Ó. & Pálsson, B. Iceland Deep Drilling Project: the first well, IDDP-1, drilled into magma. Geothermics 49, 1–128 (2014).

    Article  Google Scholar 

  154. 154.

    Fridleifsson, G. Ó. et al. The Iceland Deep Drilling Project at Reykjanes: Drilling into the root zone of a black smoker analog. J. Volcanol. Geotherm. Res. 391, 106435 (2020).

    Article  Google Scholar 

  155. 155.

    Eichelberger, J. et al. Krafla magma testbed: Understanding and using the magma-hydrothermal connection. Geotherm. Resour. Counc. Trans. 42, 2396–2405 (2018).

    Google Scholar 

  156. 156.

    Muraoka, H. et al. The Japan Beyond-Brittle Project. Sci. Drill. 17, 51–59 (2014).

    Article  Google Scholar 

  157. 157.

    Garcia, J. et al. The Northwest Geysers EGS demonstration project, California: Part 1: characterization and reservoir response to injection. Geothermics 63, 97–119 (2016).

    Article  Google Scholar 

  158. 158.

    Bertani, R. et al. in Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering (2018).

  159. 159.

    Jolie, E. et al. in Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering (2018).

  160. 160.

    Chambefort, I., Mountain, B., Blair, A. & Bignall, G. in Proceedings of the 41st New Zealand Geothermal Workshop (2019).

  161. 161.

    Liebscher, A. & Heinrich, C. A. Fluid–fluid interactions in the Earth’s lithosphere. Rev. Mineral. Geochem. 65, 1–13 (2007).

    Article  Google Scholar 

  162. 162.

    Heřmanská, M., Stefánsson, A. & Scott, S. Supercritical fluids around magmatic intrusions: IDDP-1 at Krafla, Iceland. Geothermics 78, 101–110 (2019).

    Article  Google Scholar 

  163. 163.

    Scott, S., Driesner, T. & Weis, P. Geologic controls on supercritical geothermal resources above magmatic intrusions. Nat. Commun. 6, 7837 (2015).

    Article  Google Scholar 

  164. 164.

    Scott, S., Driesner, T. & Weis, P. The thermal structure and temporal evolution of high-enthalpy geothermal systems. Geothermics 62, 33–47 (2016).

    Article  Google Scholar 

  165. 165.

    Ármannsson, H. et al. The chemistry of the IDDP-01 well fluids in relation to the geochemistry of the Krafla geothermal system. Geothermics 49, 66–75 (2014).

    Article  Google Scholar 

  166. 166.

    Scott, S. W. & Driesner, T. Permeability changes resulting from quartz precipitation and dissolution around upper crustal intrusions. Geofluids 2018, 6957306 (2018).

    Article  Google Scholar 

  167. 167.

    Fournier, R. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophys. Res. Lett. 18, 955–958 (1991).

    Article  Google Scholar 

  168. 168.

    Fournier, R. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1210 (1999).

    Article  Google Scholar 

  169. 169.

    Watanabe, N. et al. Potentially exploitable supercritical geothermal resources in the ductile crust. Nat. Geosci. 10, 140–144 (2017).

    Article  Google Scholar 

  170. 170.

    Violay, M. et al. An experimental study of the brittle-ductile transition of basalt at oceanic crust pressure and temperature conditions. J. Geophys. Res. Solid Earth 117, B03213 (2012).

    Article  Google Scholar 

  171. 171.

    Violay, M., Gibert, B., Mainprice, D. & Burg, J.-P. Brittle versus ductile deformation as the main control of the deep fluid circulation in oceanic crust. Geophys. Res. Lett. 42, 2767–2773 (2015).

    Article  Google Scholar 

  172. 172.

    Cladouhos, T. T. et al. Results from Newberry Volcano EGS demonstration, 2010–2014. Geothermics 63, 44–61 (2016).

    Article  Google Scholar 

  173. 173.

    Watanabe, N. et al. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions. Geophys. Res. Lett. 44, 5468–5475 (2017).

    Article  Google Scholar 

  174. 174.

    Watanabe, N. et al. Cloud-fracture networks as a means of accessing superhot geothermal energy. Sci. Rep. 9, 939 (2019).

    Article  Google Scholar 

  175. 175.

    Watanabe, N. et al. Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments. Appl. Energy 260, 114306 (2020).

    Article  Google Scholar 

  176. 176.

    Hólmgeirsson, S., Ingólfsson, H. P., Eichelberger, J. & Pye, S. Krafla Magma Testbed (KMT): Engineering challenges of drilling into magma and extracting its energy. Geotherm. Resour. Counc. Trans. 42, 2422–2434 (2018).

    Google Scholar 

  177. 177.

    Coumou, D., Driesner, T. & Heinrich, C. A. The structure and dynamics of mid-ocean ridge hydrothermal systems. Science 321, 1825–1828 (2008).

    Article  Google Scholar 

  178. 178.

    Karason, B., Gudjonsdottir, M. S., Valdimarsson, P., Thorolfsson, G. in Proceedings of the Thirty-Eighth Workshop on Geothermal Reservoir Engineering (2013).

  179. 179.

    Hiriart, G., Prol-Ledesma, R. M., Alcocer, S., & Espíndola, S. in Proceedings of the World Geothermal Congress 2010 (2010).

  180. 180.

    Italiano, F. et al. The Marsili volcanic seamount (southern Tyrrhenian Sea): a potential offshore geothermal resource. Energies 7, 4068–4086 (2014).

    Article  Google Scholar 

  181. 181.

    Doust, H. The exploration play: what do we mean by it? AAPG Bull. 94, 1657–1672 (2010).

    Article  Google Scholar 

  182. 182.

    Lautze, N. C. et al. Play fairway analysis of geothermal resources across the State of Hawaii: 1. Geological, geophysical, and geochemical datasets. Geothermics 70, 376–392 (2017).

    Article  Google Scholar 

  183. 183.

    Faulds, J. et al. in Proceedings of the 45th Workshop on Geothermal Reservoir Engineering (2020).

  184. 184.

    Siler, D. et al. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region. Geothermics 69, 15–33 (2017).

    Article  Google Scholar 

  185. 185.

    Cracknell, M. & Reading, A. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 63, 22–33 (2014).

    Article  Google Scholar 

  186. 186.

    Brown, S. et al. Machine learning for natural resource assessment: an application to the blind geothermal systems of Nevada. Geotherm. Resour. Counc. Trans. 44, 920–932 (2020).

    Google Scholar 

  187. 187.

    Coro, G. & Trumpy, E. Predicting geographical suitability of geothermal power plants. J. Clean. Prod. 267, 121874 (2020).

    Article  Google Scholar 

  188. 188.

    Ziegler, M. & Heidbach, O. The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin. Geotherm. Energy 8, 11 (2020).

    Article  Google Scholar 

  189. 189.

    Trainor-Guitton, W. J. et al. The value of spatial information for determining well placement: a geothermal example. Geophysics 79, 27–41 (2014).

    Article  Google Scholar 

  190. 190.

    Trainor-Guitton, W. J., Hoversten, G. M., Nordquist, G. & Intani, R. Value of MT inversions for geothermal exploration: Accounting for multiple interpretations of field data & determining new drilling locations. Geothermics 66, 13–22 (2017).

    Article  Google Scholar 

  191. 191.

    Siler, D. L. et al. Three-dimensional geologic mapping to assess geothermal potential: examples from Nevada and Oregon. Geotherm. Energy 7, 2 (2019).

    Article  Google Scholar 

  192. 192.

    Scott, S. W. et al. A probabilistic geologic model of the Krafla geothermal system constrained by gravimetric data. Geotherm. Energy 7, 29 (2019).

    Article  Google Scholar 

  193. 193.

    Ball, P. J. Macro energy trends and the future of geothermal within the low-carbon energy portfolio. J. Energy Resour. Technol. 143, 010904 (2020).

    Article  Google Scholar 

  194. 194.

    Beaulieu, S. E. & Szafranski, K. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields, Version 3.4. http://vents-data.interridge.org (2020).

  195. 195.

    Styron, R. GEMScienceTools/gem-global-active-faults: First release of 2019 (Version 2019.0). Zenodo https://doi.org/10.5281/zenodo.3376300 (2019).

    Article  Google Scholar 

  196. 196.

    American Geological Institute. Global GIS: volcanoes of the world; volcano basic data. EarthWorks, Stanford University https://earthworks.stanford.edu/catalog/harvard-glb-volc (2020).

  197. 197.

    GEBCO Compilation Group. GEBCO 2020 Grid. British Oceanographic Data Centre https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (2020).

  198. 198.

    Wilmarth, M. & Stimac, J. Power density in geothermal fields. Power 19, 25 (2015).

    Google Scholar 

  199. 199.

    Grant, M. A. in Proceedings of the World Geothermal Congress 2000 (2000).

  200. 200.

    Wohletz, K. & Heiken, G. Volcanology and Geothermal Energy (Univ. California Press, 1992).

  201. 201.

    Muffler, L. J. P. Assessment of Geothermal Resources of the United States - 1978 (U.S. Geological Survey, 1979).

  202. 202.

    Bohnsack, D., Potten, M., Pfrang, D., Wolpert, P. & Zosseder, K. Porosity–permeability relationship derived from Upper Jurassic carbonate rock cores to assess the regional hydraulic matrix properties of the Malm reservoir in the South German Molasse Basin. Geotherm. Energy 8, 1–147 (2020).

    Article  Google Scholar 

  203. 203.

    Cant, J. L., Siratovich, P. A., Cole, J. W., Villeneuve, M. C. & Kennedy, B. M. Matrix permeability of reservoir rocks, Ngatamariki geothermal field, Taupo Volcanic Zone, New Zealand. Geotherm. Energy 6, 2 (2018).

    Article  Google Scholar 

  204. 204.

    Coulomb, C. A. Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav. 7, 343–387 (1776).

    Google Scholar 

  205. 205.

    Terzaghi, K. Theoretical Soil Mechanics (Wiley-Blackwell, 1943).

  206. 206.

    Milora, S. L. & Tester, J. W. Geothermal Energy as a Source of Electric Power (MIT Press, 1976).

Download references

Acknowledgements

We are especially grateful to the entire ThinkGeoEnergy team for access to the updated global geothermal power plant database, F. Lucazeau for providing a modified dataset on continental heat flow and E. Trumpy for discussing the global geothermal suitability distribution map.

Author information

Affiliations

Authors

Contributions

E.J. developed the concept and structure of the manuscript. All authors contributed to the scientific input, writing and editing of the manuscript.

Corresponding author

Correspondence to Egbert Jolie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks P. G. Ranjith, D. Elsworth and C. Dezayes for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intermediate-temperature geothermal systems

Systems with temperatures ranging from 125 to 225 °C. Here, it is denoted that geothermal resources are ones where fluids are present, allowing for power generation using binary power plant technology.

High-temperature geothermal systems

Systems with temperatures >225 °C. Here, it is denoted that geothermal resources are ones where fluids are present, allowing for power generation using flash and/or binary power plant technology.

Conventional geothermal resources

Naturally occurring convective hydrothermal systems heated by magma and/or a high geothermal gradient, with sufficient fluid and permeability to be exploited by flash or binary power plants

Flash power plants

Common technology for power generation from a two-phase, high-temperature geothermal reservoir by a steam turbine, with the option of multiple flash stages (single, double or triple).

Exergy

Thermodynamic measure of the maximum available work output from a system. Specific exergy (or availability) is defined as \(e=h-{h}_{0}-T\,(s-{s}_{0})\), where h is specific enthalpy, T is absolute temperature, s is specific entropy and the subscript 0 refers to the reference or dead state (often taken to be 1 atm, 10 °C).

Vapour

Defined as fluid with a density that is lower than the critical density of the fluid composition in question; for geothermal systems, this term is interchangeable with steam.

Binary power plants

Common technology for power generation from a liquid-dominated, intermediate-temperature to high-temperature geothermal reservoir using heat exchangers to evaporate a working fluid with lower boiling point compared with water.

Unconventional geothermal resources

Geothermal systems (for example, petrothermal or supercritical resources) with potential for direct use or power generation, but demand specific enhancement and/or engineering of reservoir properties to become economically exploitable.

Petrothermal systems

Intermediate-temperature to high-temperature geological formations with low permeability (<10−16 m2) and no fluid or insufficient fluid quantity.

Enhanced geothermal system

(EGS). Geothermal resource that is enhanced and/or artificially created (engineered) through hydraulic, chemical or thermal stimulation.

Supercritical geothermal resources

Potentially exploitable part of a high temperature geothermal system where permeability is >10−16 m2, and the temperature and specific enthalpy of water are greater than their critical values for pure water (374 °C, 2 MJ kg−1).

Play fairway analysis

(PFA). Integrative approach to evaluate geothermal favourability, identify potential locations of blind geothermal systems and target the most promising sites for drilling geothermal wells.

Upflow zones

Areas where the hottest geothermal fluids flow upwards towards the surface along structural discontinuities and/or permeable formations.

Outflow zones

Areas where hot geothermal fluids flow laterally, commonly influenced by topography and faulting, normally at shallow depths (<1 km).

Primary permeability

Permeability associated with pore spaces that are naturally present in a rock during deposition and are preserved after burial.

Secondary permeability

Permeability that is generated after the formation was deposited or intruded via processes such as rock deformation (to create fractures) or rock dissolution.

Liquid

Defined as a fluid with a density that is greater than the critical density of the fluid composition in question. For geothermal systems, this term is commonly interchangeable with brine and hot water.

Liquid-dominated geothermal resource

Able to produce a mixture of liquid and vapour (steam), and generally the most common resource type.

Vapour-dominated geothermal resource

Able to produce only vapour (steam), generally a less common resource than liquid-dominated systems.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jolie, E., Scott, S., Faulds, J. et al. Geological controls on geothermal resources for power generation. Nat Rev Earth Environ 2, 324–339 (2021). https://doi.org/10.1038/s43017-021-00154-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing