South Pacific Convergence Zone dynamics, variability and impacts in a changing climate

Abstract

The South Pacific Convergence Zone (SPCZ) is a diagonal band of intense rainfall and deep atmospheric convection extending from the equator to the subtropical South Pacific. Displacement of the SPCZ causes variability in rainfall, tropical-cyclone activity and sea level that affects South Pacific island populations and surrounding ecosystems. In this Review, we synthesize recent advances in understanding the physical mechanisms responsible for the SPCZ location and orientation, its interactions with the principal drivers of tropical climate variability, regional and global effects of the SPCZ and its response to anthropogenic climate change. Emerging insight is beginning to provide a coherent description of the character and variability of the SPCZ over synoptic, intraseasonal, interannual and longer timescales. For example, the diagonal orientation of the SPCZ and its natural variability are both the result of a subtle chain of interactions between the tropical and extratropical atmosphere, forced and modulated by the underlying sea surface temperature gradients. However, persistent biases in, and deficiencies of, existing models limit confidence in future projections. Improved climate models and new methods for regional modelling might better constrain future SPCZ projections, aiding climate change adaptation and planning among vulnerable South Pacific communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Climatology of the South Pacific.
Fig. 2: Formation of the diagonal South Pacific Convergence Zone.
Fig. 3: El Niño–Southern Oscillation influence on South Pacific Convergence Zone orientation.
Fig. 4: El Niño–Southern-Oscillation-modulated South Pacific Convergence Zone climate variability.
Fig. 5: Climate-model simulation of the South Pacific Convergence Zone.
Fig. 6: Effects of climate change on the South Pacific Convergence Zone.

References

  1. 1.

    Vincent, D. G. The South-Pacific convergence zone (SPCZ): A review. Mon. Weather Rev. 122, 1949–1970 (1994). Reviews the state of knowledge of the SPCZ based on observations, theoretical considerations and model studies, and posed key questions.

    Google Scholar 

  2. 2.

    Hubert, L. F. A subtropical convergence line of the South Pacific: A case study using meteorological satellite data. J. Geophys. Res. 66, 797–812 (1961).

    Google Scholar 

  3. 3.

    Streten, N. A. Some characteristics of satellite-observed bands of persistent cloudiness over the Southern Hemisphere. Mon. Weather Rev. 101, 486–495 (1973).

    Google Scholar 

  4. 4.

    Trenberth, K. E. Spatial and temporal variations of the Southern Oscillation. Q. J. R. Meteorol. Soc. 102, 639–653 (1976). Discusses the origin of the SPCZ and its variability with ENSO. It introduces the idea of the SPCZ as a graveyard for fronts.

    Google Scholar 

  5. 5.

    Hoyos, C. D. & Webster, P. J. Evolution and modulation of tropical heating from the last glacial maximum through the twenty-first century. Clim. Dyn. 38, 1501–1519 (2012).

    Google Scholar 

  6. 6.

    Johnson, N. C. & Xie, S. P. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 3, 842–845 (2010).

    Google Scholar 

  7. 7.

    Kiladis, G. N., Von Storch, H. & Van Loon, H. Origin of the South Pacific convergence zone. J. Clim. 2, 1185–1195 (1989). Uses an idealized set of climate-model experiments to investigate the role of Australian and South American orography in the origin of the diagonal SPCZ.

    Google Scholar 

  8. 8.

    Australian Bureau of Meteorology and Commonwealth Scientific and Industrial Research Organisation (CSIRO). Climate Change in the Pacific: Scientific Assessment and New Research 257 pp (CSIRO, 2011).

  9. 9.

    Kuleshov, Y. et al. Extreme weather and climate events and their impacts on island countries in the Western Pacific: cyclones, floods and droughts. Atmos. Clim. Sci. 04, 51441 (2014).

    Google Scholar 

  10. 10.

    McGree, S., Schreider, S. & Kuleshov, Y. Trends and variability in droughts in the Pacific Islands and Northeast Australia. J. Clim. 29, 8377–8397 (2016).

    Google Scholar 

  11. 11.

    Vincent, E. M. et al. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim. Dyn. 36, 1881–1896 (2011). Investigates the SPCZ response to ENSO, finding a zonally orientated SPCZ during strong El Niño events and links to tropical-cyclone activity.

    Google Scholar 

  12. 12.

    Jourdain, N. C. et al. Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability. J. Clim. 24, 3–25 (2011).

    Google Scholar 

  13. 13.

    Menkes, C. E. et al. Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim. Dyn. 38, 301–321 (2012).

    Google Scholar 

  14. 14.

    Widlansky, M. J. et al. Changes in South Pacific rainfall bands in a warming climate. Nat. Clim. Change 3, 417–423 (2013). Uses a hierarchy of models to show that uncertainty in SPCZ projections is due to competing dynamic and thermodynamic mechanisms.

    Google Scholar 

  15. 15.

    Brown, J. R., Moise, A. F. & Colman, R. A. The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Clim. Dyn. 41, 2179–2197 (2013).

    Google Scholar 

  16. 16.

    Cai, W. J. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012). Uses a large ensemble of climate-model simulations to identify an increase in the frequency of ‘zonal SPCZ’ events in a warmer climate.

    Google Scholar 

  17. 17.

    Haffke, C. & Magnusdottir, G. The South Pacific Convergence Zone in three decades of satellite images. J. Geophys. Res. Atmos. 118, 10,839–10,849 (2013).

    Google Scholar 

  18. 18.

    Haffke, C. & Magnusdottir, G. Diurnal cycle of the South Pacific Convergence Zone in 30 years of satellite images. J. Geophys. Res. Atmos. 120, 9059–9070 (2015).

    Google Scholar 

  19. 19.

    Kidwell, A., Lee, T., Jo, Y. H. & Yan, X. H. Characterization of the variability of the South Pacific convergence zone using satellite and reanalysis wind products. J. Clim. 29, 1717–1732 (2016).

    Google Scholar 

  20. 20.

    Zuo, H., Balmaseda, M. A. & Mogensen, K. The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Clim. Dyn. 49, 791–811 (2017).

    Google Scholar 

  21. 21.

    Harvey, T., Renwick, J. A., Lorrey, A. M. & Ngari, A. The representation of the South Pacific convergence zone in the twentieth century reanalysis. Mon. Weather. Rev. 147, 841–851 (2019).

    Google Scholar 

  22. 22.

    Linsley, B. K. et al. Tracking the extent of the South Pacific Convergence Zone since the early 1600s. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005gc001115 (2006).

    Article  Google Scholar 

  23. 23.

    Linsley, B. K., Zhang, P. P., Kaplan, A., Howe, S. S. & Wellington, G. M. Interdecadal-decadal climate variability from multicoral oxygen isotope records in the south Pacific convergence zone region since 1650 A.D. Paleoceanography 23, PA2219 (2008).

    Google Scholar 

  24. 24.

    Linsley, B. K. et al. SPCZ zonal events and downstream influence on surface ocean conditions in the Indonesian throughflow region. Geophys. Res. Lett. 44, 293–303 (2017).

    Google Scholar 

  25. 25.

    Partin, J. W. et al. Multidecadal rainfall variability in South Pacific Convergence Zone as revealed by stalagmite geochemistry. Geology 41, 1143–1146 (2013).

    Google Scholar 

  26. 26.

    Widlansky, M. J., Webster, P. J. & Hoyos, C. D. On the location and orientation of the South Pacific Convergence Zone. Clim. Dyn. 36, 561–578 (2011). Investigates the origin of the SPCZ and identifies the role of the background SST state in promoting the diagonal SPCZ.

    Google Scholar 

  27. 27.

    Matthews, A. J. A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Q. J. R. Meteorol. Soc. 138, 1165–1178 (2012).

    Google Scholar 

  28. 28.

    van der Wiel, K., Matthews, A. J., Stevens, D. P. & Joshi, M. M. A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones. Q. J. R. Meteorol. Soc. 141, 1997–2010 (2015). Develops a conceptual framework for the diagonal SPCZ based on triggering of convection by Rossby waves.

    Google Scholar 

  29. 29.

    van der Wiel, K., Matthews, A. J., Joshi, M. M. & Stevens, D. P. The influence of diabatic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow. Q. J. R. Meteorol. Soc. 142, 901–910 (2016).

    Google Scholar 

  30. 30.

    van der Wiel, K., Matthews, A. J., Joshi, M. M. & Stevens, D. P. Why the South Pacific convergence zone is diagonal. Clim. Dyn. 46, 1683–1698 (2016).

    Google Scholar 

  31. 31.

    Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Clim. 20, 3434–3451 (2007).

    Google Scholar 

  32. 32.

    Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Clim. 20, 5696–5706 (2007). Along with its companion paper, outlines the importance of the eastern Pacific dry zone for the formation of the SPCZ.

    Google Scholar 

  33. 33.

    Lintner, B. R. & Neelin, J. D. Eastern margin variability of the South Pacific convergence zone. Geophys. Res. Lett. 35, L16701 (2008).

    Google Scholar 

  34. 34.

    Matthews, A. J., Hoskins, B. J., Slingo, J. M. & Blackburn, M. Development of convection along the SPCZ within a Madden-Julian oscillation. Q. J. R. Meteorol. Soc. 122, 669–688 (1996).

    Google Scholar 

  35. 35.

    Lintner, B. R. & Boos, W. R. Using atmospheric energy transport to quantitatively constrain South Pacific convergence zone shifts during ENSO. J. Clim. 32, 1839–1855 (2019).

    Google Scholar 

  36. 36.

    Folland, C. K., Renwick, J. A., Salinger, M. J. & Mullan, A. B. Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett. 29, 21-1–21-4 (2002).

    Google Scholar 

  37. 37.

    Brown, J. R. et al. Evaluation of the South Pacific Convergence Zone in IPCC AR4 climate model simulations of the twentieth century. J. Clim. 24, 1565–1582 (2011).

    Google Scholar 

  38. 38.

    Brown, J. R., Moise, A. F. & Delage, F. P. Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Clim. Dyn. 39, 1–19 (2012).

    Google Scholar 

  39. 39.

    Niznik, M. J., Lintner, B. R., Matthews, A. J. & Widlansky, M. J. The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific Convergence Zone in CMIP5 models. J. Clim. 28, 3353–3374 (2015).

    Google Scholar 

  40. 40.

    Evans, J. P., Bormann, K., Katzfey, J., Dean, S. & Arritt, R. Regional climate model projections of the South Pacific Convergence Zone. Clim. Dyn. 47, 817–829 (2016).

    Google Scholar 

  41. 41.

    Dutheil, C. et al. Impact of surface temperature biases on climate change projections of the South Pacific Convergence Zone. Clim. Dyn. 53, 3197–3219 (2019).

    Google Scholar 

  42. 42.

    Kodama, Y. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part I: Characteristics of subtropical frontal zones. J. Meteorol. Soc. Jpn. 70, 813–836 (1992).

    Google Scholar 

  43. 43.

    Kodama, Y. M. Large-scale common features of sub-tropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part II: conditions of the circulations for generating the STCZs. J. Meteorol. Soc. Jpn. 71, 581–610 (1993).

    Google Scholar 

  44. 44.

    Cook, K. H. The South Indian convergence zone and interannual rainfall variability over southern Africa. J. Clim. 13, 3789–3804 (2000).

    Google Scholar 

  45. 45.

    Kodama, Y. M. Roles of the atmospheric heat sources in maintaining the subtropical convergence zones: an aqua-planet GCM study. J. Atmos. Sci. 56, 4032–4049 (1999).

    Google Scholar 

  46. 46.

    Hoskins, B. J. & Ambrizzi, T. Rossby-wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

    Google Scholar 

  47. 47.

    Webster, P. J. & Holton, J. R. Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci. 39, 722–733 (1982).

    Google Scholar 

  48. 48.

    Neelin, J. D., Peters, O. & Hales, K. The transition to strong convection. J. Atmos. Sci. 66, 2367–2384 (2009).

    Google Scholar 

  49. 49.

    Kalnay, E., Mo, K. C. & Paegle, J. Large-amplitude, short-scale stationary Rossby waves in the Southern Hemisphere: Observations and mechanistic experiments to determine their origin. J. Atmos. Sci. 43, 252–275 (1986).

    Google Scholar 

  50. 50.

    Madden, R. A. & Julian, P. R. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708 (1971).

    Google Scholar 

  51. 51.

    Madden, R. A. & Julian, P. R. Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29, 1109–1123 (1972).

    Google Scholar 

  52. 52.

    Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Weather Rev. 132, 1917–1932 (2004).

    Google Scholar 

  53. 53.

    Trenberth, K. E. & Shea, D. J. On the evolution of the Southern Oscillation. Mon. Weather Rev. 115, 3078–3096 (1987).

    Google Scholar 

  54. 54.

    van Loon, H. & Shea, D. J. The Southern Oscillation. Part VI: Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon. Weather Rev. 115, 370–379 (1987).

    Google Scholar 

  55. 55.

    Santoso, A., McPhaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Google Scholar 

  56. 56.

    Borlace, S., Santoso, A., Cai, W. J. & Collins, M. Extreme swings of the South Pacific Convergence Zone and the different types of El Niño events. Geophys. Res. Lett. 41, 4695–4703 (2014).

    Google Scholar 

  57. 57.

    Trenberth, K. E., Caron, J. M., Stepaniak, D. P. & Worley, S. Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. Atmos. 107, AAC5-1–AAC5-17 (2002).

    Google Scholar 

  58. 58.

    Gouriou, Y. & Delcroix, T. Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. J. Geophys. Res. Oceans 107, SRF12-1–SRF12-14 (2002).

    Google Scholar 

  59. 59.

    Ganachaud, A. et al. The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE). J. Geophys. Res. Oceans 119, 7660–7686 (2014).

    Google Scholar 

  60. 60.

    Juillet-Leclerc, A. et al. SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophys. Res. Lett. 33, L17710 (2006).

    Google Scholar 

  61. 61.

    Dassie, E. P., Hasson, A., Khodri, M., Lebas, N. & Linsley, B. K. Spatiotemporal variability of the South Pacific Convergence Zone fresh pool eastern front from coral-derived surface salinity data. J. Clim. 31, 3265–3288 (2018).

    Google Scholar 

  62. 62.

    Tangri, N., Dunbar, R. B., Linsley, B. K. & Mucciarone, D. M. ENSO’s shrinking twentieth-century footprint revealed in a half-millennium coral core from the South Pacific Convergence Zone. Paleoceanogr. Paleoclimatol. 33, 1136–1150 (2018).

    Google Scholar 

  63. 63.

    Gorman, M. K. et al. A coral-based reconstruction of sea surface salinity at Sabine Bank, Vanuatu from 1842 to 2007 CE. Paleoceanogr. Paleoclimatol. 27, PA3226 (2012).

    Google Scholar 

  64. 64.

    Kilbourne, K. H., Quinn, T. M., Taylor, F. W., Delcroix, T. & Gouriou, Y. El Nino-Southern Oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanogr. Paleoclimatol. 19, PA4002 (2004).

    Google Scholar 

  65. 65.

    Le Bec, N., Juillet-Leclerc, A., Correge, T., Blamart, D. & Delcroix, T. A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys. Res. Lett. 27, 3897–3900 (2000).

    Google Scholar 

  66. 66.

    Linsley, B. K., Dunbar, R. B., Lee, D., Tangri, N. & Dassié, E. P. Abrupt northward shift of SPCZ position in the late-1920s indicates coordinated Atlantic and Pacific ITCZ change. Past. Glob. Changes Mag. 25, 52–56 (2017).

    Google Scholar 

  67. 67.

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Google Scholar 

  68. 68.

    Newman, M. et al. The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Google Scholar 

  69. 69.

    Salinger, M. J., Renwick, J. A. & Mullan, A. B. Interdecadal Pacific oscillation and south Pacific climate. Int. J. Climatol. 21, 1705–1721 (2001).

    Google Scholar 

  70. 70.

    Deser, C., Phillips, A. S. & Hurrell, J. W. Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Clim. 17, 3109–3124 (2004).

    Google Scholar 

  71. 71.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Google Scholar 

  72. 72.

    Bagnato, S., Linsley, B. K., Howe, S. S., Wellington, G. M. & Salinger, J. Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004gc000879 (2005).

    Article  Google Scholar 

  73. 73.

    Maupin, C. R. et al. Persistent decadal-scale rainfall variability in the tropical South Pacific Convergence Zone through the past six centuries. Clim. Past 10, 1319–1332 (2014).

    Google Scholar 

  74. 74.

    Murphy, B. F., Power, S. B. & McGree, S. The varied impacts of El Niño–Southern Oscillation on Pacific island climates. J. Clim. 27, 4015–4036 (2014).

    Google Scholar 

  75. 75.

    Griffiths, G. M., Salinger, M. J. & Leleu, I. Trends in extreme daily rainfall across the South Pacific and relationship to the South Pacific Convergence Zone. Int. J. Climatol. 23, 847–869 (2003).

    Google Scholar 

  76. 76.

    Greene, J. S., Paris, B. & Morrissey, M. Historical changes in extreme precipitation events in the tropical Pacific region. Clim. Res. 34, 1–14 (2007).

    Google Scholar 

  77. 77.

    McGree, S. et al. An updated assessment of trends and variability in total and extreme rainfall in the western Pacific. Int. J. Climatol. 34, 2775–2791 (2014).

    Google Scholar 

  78. 78.

    Widlansky, M. J., Timmermann, A., McGregor, S., Stuecker, M. F. & Cai, W. J. An interhemispheric tropical sea level seesaw due to El Niño Taimasa. J. Clim. 27, 1070–1081 (2014).

    Google Scholar 

  79. 79.

    World Bank Group. Not If, But When: Adapting to Natural Hazards in the Pacific Islands Region — A Policy Note (World Bank Group, 2006).

  80. 80.

    Magee, A. D., Verdon-Kidd, D. C., Kiem, A. S. & Royle, S. A. Tropical cyclone perceptions, impacts and adaptation in the Southwest Pacific: an urban perspective from Fiji, Vanuatu and Tonga. Nat. Hazards Earth Syst. Sci. 16, 1091–1105 (2016).

    Google Scholar 

  81. 81.

    Widlansky, M. J. et al. Tropical cyclone projections: changing climate threats for Pacific Island defense installations. Weather. Clim. Soc. 11, 3–15 (2019).

    Google Scholar 

  82. 82.

    Basher, R. E. & Zheng, X. Tropical cyclones in the southwest Pacific: Spatial patterns and relationships to Southern Oscillation and sea surface temperature. J. Clim. 8, 1249–1260 (1995).

    Google Scholar 

  83. 83.

    Kuleshov, Y., Qi, L., Fawcett, R. & Jones, D. On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett. 35, L14S08 (2008).

    Google Scholar 

  84. 84.

    Ramsay, H. A., Leslie, L. M., Lamb, P. J., Richman, M. B. & Leplastrier, M. Interannual variability of tropical cyclones in the Australian region: role of large-scale environment. J. Clim. 21, 1083–1103 (2008).

    Google Scholar 

  85. 85.

    Larrue, S. & Chiron, T. Les îles de Polynésie française face à l’aléa cyclonique. [VertigO] La revue électronique en sciences de l’environnement 10, 0–0 (2010).

    Google Scholar 

  86. 86.

    Chappel, L. C. & Bate, P. W. The South Pacific and southeast Indian Ocean tropical cyclone season 1997–98. Aust. Meteorol. Mag. 49, 121–138 (2000).

    Google Scholar 

  87. 87.

    Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010).

    Google Scholar 

  88. 88.

    Raymundo, L. J., Burdick, D., Lapacek, V. A., Miller, R. & Brown, V. Anomalous temperatures and extreme tides: Guam staghorn Acropora succumb to a double threat. Mar. Ecol. Prog. Ser. 564, 47–55 (2017).

    Google Scholar 

  89. 89.

    Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S. & Ball, M. C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 7, 1680 (2017).

    Google Scholar 

  90. 90.

    Delcroix, T. Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: A tentative overview. J. Geophys. Res. Oceans 103, 18611–18633 (1998).

    Google Scholar 

  91. 91.

    Widlansky, M. J., Timmermann, A. & Cai, W. J. Future extreme sea level seesaws in the tropical Pacific. Sci. Adv. 1, e1500560 (2015).

    Google Scholar 

  92. 92.

    Becker, M. et al. Sea level variations at tropical Pacific islands since 1950. Glob. Planet. Change 80–81, 85–98 (2012).

    Google Scholar 

  93. 93.

    Han, S.-C., Sauber, J., Pollitz, F. & Ray, R. Sea level rise in the Samoan Islands escalated by viscoelastic relaxation after the 2009 Samoa-Tonga earthquake. J. Geophys. Res. Solid Earth 124, 4142–4156 (2019).

    Google Scholar 

  94. 94.

    Widlansky, M. J. et al. Multimodel ensemble sea level forecasts for tropical Pacific Islands. J. Appl. Meteorol. Climatol. 56, 849–862 (2017).

    Google Scholar 

  95. 95.

    Garreaud, R. D. & Aceituno, P. Interannual rainfall variability over the South American Altiplano. J. Clim. 14, 2779–2789 (2001).

    Google Scholar 

  96. 96.

    Vuille, M. & Keimig, F. Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J. Clim. 17, 3334–3348 (2004).

    Google Scholar 

  97. 97.

    Sulca, J., Takahashi, K., Espinoza, J.-C., Vuille, M. & Lavado-Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 38, 420–435 (2018).

    Google Scholar 

  98. 98.

    Sulca, J., Vuille, M., Silva, Y. & Takahashi, K. Teleconnections between the Peruvian central Andes and northeast Brazil during extreme rainfall events in austral summer. J. Hydrometeorol. 17, 499–515 (2016).

    Google Scholar 

  99. 99.

    Grimm, A. M. & Silva Dias, P. L. Analysis of tropical–extratropical interactions with influence functions of a barotropic model. J. Atmos. Sci. 52, 3538–3555 (1995).

    Google Scholar 

  100. 100.

    Liebmann, B., Kiladis, G. N., Marengo, J., Ambrizzi, T. & Glick, J. D. Submonthly convective variability over South America and the South Atlantic convergence zone. J. Clim. 12, 1877–1891 (1999).

    Google Scholar 

  101. 101.

    Vera, C., Silvestri, G., Barros, V. & Carril, A. Differences in El Niño response over the Southern Hemisphere. J. Clim. 17, 1741–1753 (2004).

    Google Scholar 

  102. 102.

    Clem, K. R. & Renwick, J. A. Austral spring Southern Hemisphere circulation and temperature changes and links to the SPCZ. J. Clim. 28, 7371–7384 (2015).

    Google Scholar 

  103. 103.

    Clem, K. R., Lintner, B. R., Broccoli, A. J. & Miller, J. R. Role of the South Pacific convergence zone in West Antarctic decadal climate variability. Geophys. Res. Lett. 46, 6900–6909 (2019).

    Google Scholar 

  104. 104.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Google Scholar 

  105. 105.

    Christensen, J. H. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1217–1308 (Cambridge Univ. Press, 2013).

  106. 106.

    Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Google Scholar 

  107. 107.

    Chadwick, R., Boutle, I. & Martin, G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822 (2013).

    Google Scholar 

  108. 108.

    McGree, S. et al. Recent changes in mean and extreme temperature and precipitation in the Western Pacific Islands. J. Clim. 32, 4919–4941 (2019).

    Google Scholar 

  109. 109.

    Salinger, M. J., McGree, S., Beucher, F., Power, S. B. & Delage, F. A new index for variations in the position of the South Pacific convergence zone 1910/11–2011/2012. Clim. Dyn. 43, 881–892 (2014).

    Google Scholar 

  110. 110.

    Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Google Scholar 

  111. 111.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  112. 112.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  113. 113.

    Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2014).

    Google Scholar 

  114. 114.

    Grose, M. R. et al. Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol. 34, 3382–3399 (2014).

    Google Scholar 

  115. 115.

    Li, G. & Xie, S.-P. Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).

    Google Scholar 

  116. 116.

    Brown, J. N., Matear, R. J., Brown, J. R. & Katzfey, J. Precipitation projections in the tropical Pacific are sensitive to different types of SST bias adjustment. Geophys. Res. Lett. 42, 10856–10866 (2015).

    Google Scholar 

  117. 117.

    Ham, Y.-G. & Kug, J.-S. ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophys. Res. Lett. 43, 422–430 (2016).

    Google Scholar 

  118. 118.

    Niznik, M. J. & Lintner, B. R. Circulation, moisture, and precipitation relationships along the South Pacific convergence zone in reanalyses and CMIP5 models. J. Clim. 26, 10174–10192 (2013).

    Google Scholar 

  119. 119.

    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Google Scholar 

  120. 120.

    Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

    Google Scholar 

  121. 121.

    Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Google Scholar 

  122. 122.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Google Scholar 

  123. 123.

    Chung, C. T. Y. & Power, S. B. Modelled rainfall response to strong El Niño sea surface temperature anomalies in the tropical pacific. J. Clim. 28, 3133–3151 (2015).

    Google Scholar 

  124. 124.

    Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Google Scholar 

  125. 125.

    Emile-Geay, J. et al. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

    Google Scholar 

  126. 126.

    Atsawawaranunt, K. et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 10, 1687–1713 (2018).

    Google Scholar 

  127. 127.

    Dassie, E. et al. Saving our marine archives. Eos 98, 32–36 (2017).

    Google Scholar 

  128. 128.

    Saint-Lu, M., Braconnot, P., Leloup, J., Lengaigne, M. & Marti, O. Changes in the ENSO/SPCZ relationship from past to future climates. Earth Planet. Sci. Lett. 412, 18–24 (2015).

    Google Scholar 

  129. 129.

    Zhou, Z.-Q. & Xie, S.-P. Effects of climatological model biases on the projection of tropical climate change. J. Clim. 28, 9909–9917 (2015).

    Google Scholar 

  130. 130.

    Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).

    Google Scholar 

  131. 131.

    Kanamitsu, M. et al. NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644 (2002).

    Google Scholar 

  132. 132.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Google Scholar 

  133. 133.

    Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 91, 363–376 (2010).

    Google Scholar 

  134. 134.

    Le Traon, P. Y. et al. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. 6, 234 (2019).

    Google Scholar 

  135. 135.

    Caldwell, P. C., Merrifield, M. A. & Thompson, P. R. in The Joint Archive for Sea Level Holdings, NCEI Accession 0019568 (NOAA National Centers for Environmental Information, 2015).

  136. 136.

    Huffman, G. J. et al. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 78, 5–20 (1997).

    Google Scholar 

Download references

Acknowledgements

J.R.B. acknowledges support from the ARC Centre of Excellence for Climate Extremes (CE170100023).

Author information

Affiliations

Authors

Contributions

J.R.B., M.L., B.R.L., M.J.W. and K.v.d.W. researched data for the article, wrote the manuscript, contributed to discussions of its content and participated in review and/or editing of the manuscript before submission. C.D., B.K.L., A.J.M. and J.R. also wrote the manuscript and participated in review and/or editing of the manuscript before submission. C.D. additionally researched data for the article.

Corresponding author

Correspondence to Josephine R. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Judson Partin, Leila Carvalho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, J.R., Lengaigne, M., Lintner, B.R. et al. South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nat Rev Earth Environ 1, 530–543 (2020). https://doi.org/10.1038/s43017-020-0078-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing