Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mountains, erosion and the carbon cycle


Mountain building results in high erosion rates and the interaction of rocks with the atmosphere, water and life. Carbon transfers that result from increased erosion could control the evolution of Earth’s long-term climate. For decades, attention has focused on the hypothesized role of mountain building in drawing down atmospheric carbon dioxide (CO2) via silicate weathering. However, it is now recognized that mountain building and erosion affect the carbon cycle in other important ways. For example, erosion mobilizes organic carbon (OC) from terrestrial vegetation, transferring it to rivers and sediments, and thereby acting to draw down atmospheric CO2 in tandem with silicate weathering. Meanwhile, exhumation of sedimentary rocks can release CO2 through the oxidation of rock OC and sulfide minerals. In this Review, we examine the mechanisms of carbon exchange between rocks and the atmosphere, and discuss the balance of CO2 sources and sinks. It is demonstrated that OC burial and oxidative weathering, not widely considered in most models, control the net CO2 budget associated with erosion. Lithology strongly influences the impact of mountain building on the global carbon cycle, with an orogeny dominated by sedimentary rocks, and thus abundant rock OC and sulfides, tending towards being a CO2 source.

Key points

  • Erosion resulting from mountain building increases transfer of carbon between the atmosphere and storage in rocks.

  • The traditional view has focused on carbon dioxide (CO2) drawdown by silicate weathering, and its links to climate and erosion.

  • An emerging view also considers CO2 drawdown by organic-carbon burial and CO2 emissions from oxidative weathering of both rock organic carbon and sulfide minerals.

  • CO2 sources and sinks increase with erosion, and the net balance has now been quantified in a handful of locations.

  • Climate (temperature, hydrology) regulates inorganic and organic CO2 sinks, with complex interdependency on erosion.

  • Lithology is important: a mountain range composed of sedimentary rocks may be a weak CO2 sink (or CO2 source), but volcanic rocks favour CO2 drawdown.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The geological carbon cycle and transfers of carbon between the atmosphere and rocks.
Fig. 2: Comparison of major fluxes and timescales of relevance in the global carbon cycle.
Fig. 3: A river-catchment view of physical erosion rate versus carbon transfer.
Fig. 4: Net rock–atmosphere CO2 exchange in river catchments.
Fig. 5: A new view of mountains, erosion and the carbon cycle.


  1. 1.

    Ahnert, F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am. J. Sci. 268, 243–263 (1970).

    Article  Google Scholar 

  2. 2.

    Dewey, J. F. & Horsfield, B. Plate tectonics, orogeny and continental growth. Nature 225, 521–525 (1970).

    Article  Google Scholar 

  3. 3.

    Hager, B. H. & Richards, M. A. Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Philos. Trans. R. Soc. A 328, 309–327 (1989).

    Google Scholar 

  4. 4.

    Willett, S. D. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).

    Article  Google Scholar 

  5. 5.

    Braun, J. The many surface expressions of mantle dynamics. Nat. Geosci. 3, 825–833 (2010).

    Article  Google Scholar 

  6. 6.

    Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  7. 7.

    Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280–318 (1999).

    Article  Google Scholar 

  8. 8.

    Chamberlin, T. C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J. Geol. 7, 545–584 (1899). First paper (as far as known) to propose mountain building as a driver of atmospheric CO 2 drawdown and global cooling, suggesting this mechanism as the most plausible explanation for episodes of glaciation in the geologic past.

    Article  Google Scholar 

  9. 9.

    Richter, F. M., Rowley, D. B. & DePaolo, D. J. Sr isotope evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett. 109, 11–23 (1992).

    Article  Google Scholar 

  10. 10.

    Molnar, P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philos. Trans. R. Soc. London Ser. A 326, 33–88 (1988).

    Article  Google Scholar 

  11. 11.

    Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  Google Scholar 

  12. 12.

    Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988). Pioneering study connecting evolution of Tibetan Plateau uplift, changes in marine chemistry and global cooling over the past 60 Myr; stimulated a renaissance in efforts to understanding links between mountain building and climate.

    Article  Google Scholar 

  13. 13.

    Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  Google Scholar 

  14. 14.

    Volk, T. Cooling in the late Cenozoic. Nature 361, 123 (1993).

    Article  Google Scholar 

  15. 15.

    Caldeira, K., Arthur, M. A., Berner, R. A. & Lasaga, A. C. Cooling in the late Cenozoic. Nature 361, 123–124 (1993).

    Article  Google Scholar 

  16. 16.

    Raymo, M. E. & Ruddiman, W. Cooling in the late Cenozoic. Nature 361, 124 (1993).

    Article  Google Scholar 

  17. 17.

    Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  18. 18.

    Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999). Assembled and analyzed a river-chemistry database to provide landmark estimates of silicate-weathering fluxes and their global controls, revealing a broad relationship between atmospheric CO 2 drawdown by weathering and erosion rates.

    Article  Google Scholar 

  19. 19.

    Galy, A. & France-Lanord, C. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 159, 31–60 (1999).

    Article  Google Scholar 

  20. 20.

    White, A. F. & Brantley, S. L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geol. 202, 479–506 (2003).

    Article  Google Scholar 

  21. 21.

    Ebelmen, J. Sur les produits de la décomposition des especes minérales de la famille des silicates. Ann. Mines 7, 3–66 (1845).

    Google Scholar 

  22. 22.

    Urey, H. C. On the early chemical history of the Earth and the origin of life. Proc. Natl Acad. Sci. USA 38, 351–363 (1952).

    Article  Google Scholar 

  23. 23.

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article  Google Scholar 

  24. 24.

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  25. 25.

    Anderson, S. P. Breaking it down: mechanical processes in the weathering engine. Elements 15, 247–252 (2019).

    Article  Google Scholar 

  26. 26.

    Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E. & Nagy, K. L. Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58, 2361–2386 (1994).

    Article  Google Scholar 

  27. 27.

    Maher, K. The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010).

    Article  Google Scholar 

  28. 28.

    Maher, K. The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes. Earth Planet. Sci. Lett. 312, 48–58 (2011). Developed a mechanistic framework for understanding why hydrology is a primary control on weathering fluxes, revealing the key role of saturation state in influencing reaction rates in natural weathering systems.

    Article  Google Scholar 

  29. 29.

    Brantley, S. L. & Lebedeva, M. Learning to read the chemistry of regolith to understand the critical zone. Annu. Rev. Earth Planet. Sci. 39, 387–416 (2011).

    Article  Google Scholar 

  30. 30.

    Clair, J. S. et al. Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350, 534–538 (2015).

    Article  Google Scholar 

  31. 31.

    Gu, X. et al. Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochim. Cosmochim. Acta 269, 63–100 (2020). Revealed how rock structure varies across erosion rates in ways that may mechanistically explain how erosion and weathering are linked.

    Article  Google Scholar 

  32. 32.

    West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005). Revealed the supply vs kinetic limitation of silicate weathering across river catchments, as a function of erosion rates. By linking the empirical data to a predictive model, the role of erosion rate, temperature and run-off could be deconvolved for the first time.

    Article  Google Scholar 

  33. 33.

    Gabet, E. J. & Mudd, S. M. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–154 (2009).

    Article  Google Scholar 

  34. 34.

    Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).

    Article  Google Scholar 

  35. 35.

    Gaillardet, J. & Galy, A. Himalaya-carbon sink or source? Science 320, 1727–1728 (2008).

    Article  Google Scholar 

  36. 36.

    Derry, L. A. & France-Lanord, C. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett. 142, 59–74 (1996).

    Article  Google Scholar 

  37. 37.

    France-Lanord, C. & Derry, L. A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997). Discovered very high fluxes of organic-carbon burial in the Bengal Fan as a result of Himalayan erosion, far outpacing silicate weathering in this system and giving birth to new lines of research to understand erosional controls on the organic-carbon cycle.

    Article  Google Scholar 

  38. 38.

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: A re-assessment. Glob. Biogeochem. Cycles 19, GB4011 (2005).

    Article  Google Scholar 

  39. 39.

    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  40. 40.

    Petsch, S. T. (2014). in Treatise on Geochemistry 2nd edn Vol. 12 (eds Holland, H. D. & Turekian, K. K.) 217–238 (Elsevier).

  41. 41.

    Hilton, R. G., Gaillardet, J. Ô., Calmels, D. & Birck, J. L. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth Planet. Sci. Lett. 403, 27–36 (2014). Developed a new proxy that enables measurement of petrogenic carbon-oxidation fluxes at the scale of river catchments and found a link between oxidation fluxes and physical erosion rate.

    Article  Google Scholar 

  42. 42.

    Calmels, D., Gaillardet, J., Brenot, A. & France-Lanord, C. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35, 1003–1006 (2007). Revealed the correlation between erosion rate and fluxes from sulfide oxidation, opening up this field of inquiry.

    Article  Google Scholar 

  43. 43.

    Torres, M. A., West, A. J. & Li, G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 507, 346–349 (2014). Proposed that sulfide oxidation can have important effects on the carbon cycle over long periods of time (up to tens of Myrs), demonstrated links with erosion and explored importance over the past 60 Myrs.

    Article  Google Scholar 

  44. 44.

    Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    Article  Google Scholar 

  45. 45.

    Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 1–22 (2019).

    Article  Google Scholar 

  46. 46.

    Kerrick, D. M. & Caldeira, K. Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213–232 (1998).

    Article  Google Scholar 

  47. 47.

    Becker, J. A., Bickle, M. J., Galy, A. & Holland, T. J. B. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs. Earth Planet. Sci. Lett. 265, 616–629 (2008).

    Article  Google Scholar 

  48. 48.

    Ciais, P. et al in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F., et al) 465–570 (Cambridge Univ. Press, 2013).

  49. 49.

    Sundquist, E. T. & Visser, K. The geologic history of the carbon cycle. Treatise Geochem. 8, 425–472 (2004).

    Google Scholar 

  50. 50.

    Holland, H. D., Lazar, B. & McCaffrey, M. Evolution of the atmosphere and oceans. Nature 320, 27–33 (1986).

    Article  Google Scholar 

  51. 51.

    Moon, S., Chamberlain, C. P. & Hilley, G. E. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim. Cosmochim. Acta 134, 257–274 (2014).

    Article  Google Scholar 

  52. 52.

    Kump, L. R., & Arthur, M. A. (1997). in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 399–426 (Springer, 2013).

  53. 53.

    Caves, J. K., Jost, A. B., Lau, K. V. & Maher, K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet. Sci. Lett. 450, 152–163 (2016).

    Article  Google Scholar 

  54. 54.

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  Google Scholar 

  55. 55.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  Google Scholar 

  56. 56.

    Edmond, J. M. & Huh, Y. Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2. Earth Planet. Sci. Lett. 216, 125–139 (2003).

    Article  Google Scholar 

  57. 57.

    Kump, L. R. Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation? Philos. Trans. R. Soc. A 376, 20170078 (2018).

    Article  Google Scholar 

  58. 58.

    Isson, T. T. et al. Evolution of the global carbon cycle and climate regulation on earth. Glob. Biogeochem. Cycles 34, e2018GB006061 (2020).

    Article  Google Scholar 

  59. 59.

    Kao, S. J. et al. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: Mountain building and atmospheric carbon dioxide sequestration. Earth Surf. Dyn. 2, 127–139 (2014).

    Article  Google Scholar 

  60. 60.

    Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Article  Google Scholar 

  61. 61.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B Biol. Sci. 361, 931–950 (2006).

    Article  Google Scholar 

  62. 62.

    Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F. & West, A. J. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proc. Natl Acad. Sci. USA 114, 8716–8721 (2017).

    Article  Google Scholar 

  63. 63.

    Stolper, D. A., Bender, M. L., Dreyfus, G. B., Yan, Y. & Higgins, J. A. A Pleistocene ice core record of atmospheric O2 concentrations. Science 353, 1427–1430 (2016).

    Article  Google Scholar 

  64. 64.

    Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Article  Google Scholar 

  65. 65.

    Mayorga, E. et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436, 538–541 (2005).

    Article  Google Scholar 

  66. 66.

    Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).

    Article  Google Scholar 

  67. 67.

    Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

    Article  Google Scholar 

  68. 68.

    Larsen, I. J., Montgomery, D. R. & Greenberg, H. M. The contribution of mountains to global denudation. Geology 42, 527–530 (2014).

    Article  Google Scholar 

  69. 69.

    Jacobson, A. D. & Blum, J. D. Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology 31, 865–868 (2003). Brought to light the importance of distinguishing carbonate vs silicate weathering in evaluating CO 2 drawdown, demonstrating that high erosion rates tend to produce increased proportion of solutes from carbonate sources.

    Article  Google Scholar 

  70. 70.

    Stallard, R. F. & Edmond, J. M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Oceans 88, 9671–9678 (1983).

    Article  Google Scholar 

  71. 71.

    Riebe, C. S., Kirchner, J. W. & Finkel, R. C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224, 547–562 (2004).

    Article  Google Scholar 

  72. 72.

    Dixon, J. L. & von Blanckenburg, F. Soils as pacemakers and limiters of global silicate weathering. Comptes Rendus Geosci. 344, 597–609 (2012).

    Article  Google Scholar 

  73. 73.

    Hilley, G. E., Chamberlain, C. P., Moon, S., Porder, S. & Willett, S. D. Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth Planet. Sci. Lett. 293, 191–199 (2010).

    Article  Google Scholar 

  74. 74.

    West, A. J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).

    Article  Google Scholar 

  75. 75.

    Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).

    Article  Google Scholar 

  76. 76.

    Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).

    Article  Google Scholar 

  77. 77.

    Ludwig, W., Probst, J. L. & Kempe, S. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10, 23–41 (1996).

    Article  Google Scholar 

  78. 78.

    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Article  Google Scholar 

  79. 79.

    Berhe, A. A., Harte, J., Harden, J. W. & Torn, M. S. The significance of the erosion-induced terrestrial carbon sink. BioScience 57, 337–346 (2007).

    Article  Google Scholar 

  80. 80.

    Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Article  Google Scholar 

  81. 81.

    Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Article  Google Scholar 

  82. 82.

    Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  83. 83.

    Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Article  Google Scholar 

  84. 84.

    Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138–155 (2018).

    Article  Google Scholar 

  85. 85.

    Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Article  Google Scholar 

  86. 86.

    Hilton, R. G. et al. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 1, 759–762 (2008).

    Article  Google Scholar 

  87. 87.

    Clark, K. E. et al. Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. J. Geophys. Res. Biogeosci. 122, 449–469 (2017).

    Article  Google Scholar 

  88. 88.

    Kao, S. J. & Liu, K. K. Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan. Limnol. Oceanogr 41, 1749–1757 (1996).

    Article  Google Scholar 

  89. 89.

    Blair, N. E. et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta 67, 63–73 (2003).

    Article  Google Scholar 

  90. 90.

    Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015). Assembled database of organic-carbon fluxes to show and quantify key relationships between erosion and organic-carbon export from the continents.

    Article  Google Scholar 

  91. 91.

    Lyons, W. B., Nezat, C. A., Carey, A. E. & Hicks, D. M. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 443–446 (2002).

    Article  Google Scholar 

  92. 92.

    Hilton, R. G. Climate regulates the erosional carbon export from the terrestrial biosphere. Geomorphology 277, 118–132 (2017).

    Article  Google Scholar 

  93. 93.

    Hilton, R. G. et al. Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Glob. Biogeochem. Cycles 26, GB3014 (2012).

    Article  Google Scholar 

  94. 94.

    Hovius, N., Stark, C. P., Hao-Tsu, C. & Jiun-Chuan, L. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol. 108, 73–89 (2000).

    Article  Google Scholar 

  95. 95.

    Larsen, I. J. & Montgomery, D. R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 5, 468–473 (2012).

    Article  Google Scholar 

  96. 96.

    Mayer, L. M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 114, 347–363 (1994).

    Article  Google Scholar 

  97. 97.

    Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Article  Google Scholar 

  98. 98.

    Aller, R. C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Mar. Geol. 61, 143–155 (1998).

    Google Scholar 

  99. 99.

    Goldsmith, S. T. et al. Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology 36, 483–486 (2008).

    Article  Google Scholar 

  100. 100.

    Clark, K. E. et al. Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surf. Dyn. 4, 47–70 (2016).

    Article  Google Scholar 

  101. 101.

    Hatten, J. A., Goñi, M. A. & Wheatcroft, R. A. Chemical characteristics of particulate organic matter from a small, mountainous river system in the Oregon Coast Range, USA. Biogeochemistry 107, 43–66 (2012).

    Article  Google Scholar 

  102. 102.

    Goñi, M. A., Hatten, J. A., Wheatcroft, R. A. & Borgeld, J. C. Particulate organic matter export by two contrasting small mountainous rivers from the Pacific Northwest, USA. J. Geophys. Res. Biogeosci 118, 112–134 (2013).

    Article  Google Scholar 

  103. 103.

    Wang, J. et al. The isotopic composition and fluxes of particulate organic carbon exported from the eastern margin of the Tibetan Plateau. Geochim. Cosmochim. Acta 252, 1–15 (2019).

    Article  Google Scholar 

  104. 104.

    Smith, J. C. et al. Runoff-driven export of particulate organic carbon from soil in temperate forested uplands. Earth Planet. Sci. Lett. 365, 198–208 (2013).

    Article  Google Scholar 

  105. 105.

    West, A. J. et al. Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol. Oceanogr. 56, 77–85 (2011).

    Article  Google Scholar 

  106. 106.

    Wohl, E. & Ogden, F. L. Organic carbon export in the form of wood during an extreme tropical storm, Upper Rio Chagres, Panama. Earth Surf. Process. Landf. 38, 1407–1416 (2013).

    Google Scholar 

  107. 107.

    Porder, S., Hilley, G. E. & Chadwick, O. A. Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth Planet. Sci. Lett. 258, 414–427 (2007).

    Article  Google Scholar 

  108. 108.

    Porder, S. et al. Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma 249, 100–110 (2015).

    Article  Google Scholar 

  109. 109.

    Morford, S. L., Houlton, B. Z. & Dahlgren, R. A. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Glob. Biogeochem. Cycles 30, 333–349 (2016).

    Article  Google Scholar 

  110. 110.

    Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the δ15N of mountain forests. Biogeosciences 10, 1693–1705 (2013).

    Article  Google Scholar 

  111. 111.

    Weintraub, S. R. et al. Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96, 1561–1574 (2015).

    Article  Google Scholar 

  112. 112.

    Milodowski, D. T., Mudd, S. M. & Mitchard, E. T. A. Erosion rates as a potential bottom-up control of forest structural characteristics in the Sierra Nevada Mountains. Ecology 96, 31–38 (2015).

    Article  Google Scholar 

  113. 113.

    Shields, G. A. & Mills, B. J. W. Tectonic controls on the long-term carbon isotope mass balance. Proc. Natl Acad. Sci. USA 114, 4318–4323 (2017).

    Article  Google Scholar 

  114. 114.

    Copard, Y., Amiotte-Suchet, P. & Di-Giovanni, C. Storage and release of fossil organic carbon related to weathering of sedimentary rocks. Earth Planet. Sci. Lett. 258, 345–357 (2007).

    Article  Google Scholar 

  115. 115.

    Husson, J. M. & Peters, S. E. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet. Sci. Lett. 460, 68–75 (2017).

    Article  Google Scholar 

  116. 116.

    Keller, C. K. & Bacon, D. H. Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2, and 14CO2. Glob. Biogeochem. Cycles 12, 361–372 (1998).

    Article  Google Scholar 

  117. 117.

    Petsch, S. T., Berner, R. A. & Eglinton, T. I. A field study of the chemical weathering of ancient sedimentary organic matter. Org. Geochem. 31, 475–487 (2000).

    Article  Google Scholar 

  118. 118.

    Soulet, G. et al. Technical note: in situ measurement of flux and isotopic composition of CO2 released during oxidative weathering of sedimentary rocks. Biogeosciences 15, 4087–4102 (2018).

    Article  Google Scholar 

  119. 119.

    Galy, V., Beyssac, O., France-Lanord, C. & Eglinton, T. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943–945 (2008).

    Article  Google Scholar 

  120. 120.

    Bouchez, J. et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 38, 255–258 (2010).

    Article  Google Scholar 

  121. 121.

    Chang, S. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).

    Article  Google Scholar 

  122. 122.

    White, A. F., & Buss, H. L. (2013). in Treatise on Geochemistry 2nd edn Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 115–155 (Elsevier).

  123. 123.

    Bolton, E. W., Berner, R. A. & Petsch, S. T. The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling. Am. J. Sci. 306, 575–615 (2006).

    Article  Google Scholar 

  124. 124.

    Dalai, T. K., Singh, S. K., Trivedi, J. R. & Krishnaswami, S. Dissolved rhenium in the Yamuna River system and the Ganga in the Himalaya: role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere. Geochim. Cosmochim. Acta 66, 29–43 (2002).

    Article  Google Scholar 

  125. 125.

    Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J. & Chen, H. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. Geology 39, 71–74 (2011).

    Article  Google Scholar 

  126. 126.

    Graz, Y. et al. Annual fossil organic carbon delivery due to mechanical and chemical weathering of marly badlands areas. Earth Surf. Process. Landf. 37, 1263–1271 (2012).

    Article  Google Scholar 

  127. 127.

    Horan, K. et al. Mountain glaciation drives rapid oxidation of rock-bound organic carbon. Sci. Adv. 3, e1701107 (2017).

    Article  Google Scholar 

  128. 128.

    Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209–212 (2018).

    Article  Google Scholar 

  129. 129.

    Beyssac, O. et al. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26, TC6001 (2007).

    Article  Google Scholar 

  130. 130.

    Sparkes, R. B., Hovius, N., Galy, A. & Liu, J. T. Survival of graphitized petrogenic organic carbon through multiple erosional cycles. Earth Planet. Sci. Lett. 531, 115992 (2020).

    Article  Google Scholar 

  131. 131.

    Petsch, S. T., Edwards, K. J. & Eglinton, T. I. Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol 219, 157–170 (2005).

    Article  Google Scholar 

  132. 132.

    Torres, M. A. et al. The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth Planet. Sci. Lett. 450, 381–391 (2016).

    Article  Google Scholar 

  133. 133.

    Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 496, 168–177 (2018).

    Article  Google Scholar 

  134. 134.

    Das, A., Chung, C. H. & You, C. F. Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophys. Res. Lett. 39, L12404 (2012).

    Article  Google Scholar 

  135. 135.

    Turchyn, A. V., Tipper, E. T., Galy, A., Lo, J. K. & Bickle, M. J. Isotope evidence for secondary sulfide precipitation along the Marsyandi River, Nepal, Himalayas. Earth Planet. Sci. Lett. 374, 36–46 (2013).

    Article  Google Scholar 

  136. 136.

    Williamson, M. A. & Rimstidt, J. D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58, 5443–5454 (1994).

    Article  Google Scholar 

  137. 137.

    Berner, R. A., Scott, M. R. & Thomlinson, C. Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol. Oceanogr. 15, 544–549 (1970).

    Article  Google Scholar 

  138. 138.

    Winnick, M. J. et al. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado. Water Resour. Res. 53, 2507–2523 (2017).

    Article  Google Scholar 

  139. 139.

    Hilton, R. G., Galy, A. & Hovius, N. Riverine particulate organic carbon from an active mountain belt: importance of landslides. Glob. Biogeochem. Cycles 22, GB1017 (2008).

    Article  Google Scholar 

  140. 140.

    Millot, R., Gaillardet, J., Dupré, B. & Allégre, C. J. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim. Cosmochim. Acta 67, 1305–1329 (2003).

    Article  Google Scholar 

  141. 141.

    Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 84–87 (2015).

    Article  Google Scholar 

  142. 142.

    Horan, K. et al. Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin. Am. J. Sci. 319, 473–499 (2019). First study to put together a comprehensive catchment-scale budget for key long-term carbon-cycle fluxes, akin to those in Fig. 4.

    Article  Google Scholar 

  143. 143.

    Calmels, D. et al. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet. Sci. Lett. 303, 48–58 (2011).

    Article  Google Scholar 

  144. 144.

    Lloret, E. et al. Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem. Geol. 280, 65–78 (2011).

    Article  Google Scholar 

  145. 145.

    Lloret, E. et al. Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds. Chem. Geol. 351, 229–244 (2013).

    Article  Google Scholar 

  146. 146.

    Ferguson, R. I. Accuracy and precision of methods for estimating river loads. Earth Surf. Process. Landf. 12, 95–104 (1987).

    Article  Google Scholar 

  147. 147.

    Gaillardet, J., Dupré, B. & Allègre, C. J. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim. Cosmochim. Acta 63, 4037–4051 (1999).

    Article  Google Scholar 

  148. 148.

    Mills, B., Daines, S. J. & Lenton, T. M. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst 15, 4866–4884 (2014).

    Article  Google Scholar 

  149. 149.

    Jenny, H. Factors of soil formation. Soil. Sci. 52, 415 (1941).

    Article  Google Scholar 

  150. 150.

    Brimhall, G. H. & Dietrich, W. E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim. Cosmochim. Acta 51, 567–587 (1987).

    Article  Google Scholar 

  151. 151.

    Brantley, S. L., Buss, H., Lebedeva, M., Fletcher, R. C. & Ma, L. Investigating the complex interface where bedrock transforms to regolith. Appl. Geochem. 26, S12–S15 (2011).

    Article  Google Scholar 

  152. 152.

    Fletcher, R. C., Buss, H. L. & Brantley, S. L. A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth Planet. Sci. Lett. 244, 444–457 (2006).

    Article  Google Scholar 

  153. 153.

    Goodfellow, B. W. et al. The chemical, mechanical, and hydrological evolution of weathering granitoid. J. Geophys. Res. Earth Surf. 121, 1410–1435 (2016).

    Article  Google Scholar 

  154. 154.

    Brantley, S. L. et al. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology 277, 100–117 (2017).

    Article  Google Scholar 

  155. 155.

    Buss, H. L., Sak, P. B., Webb, S. M. & Brantley, S. L. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing. Geochim. Cosmochim. Acta 72, 4488–4507 (2008).

    Article  Google Scholar 

  156. 156.

    Molnar, P., Anderson, R. S. & Anderson, S. P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. Earth Surf. 112, F03014 (2007).

    Article  Google Scholar 

  157. 157.

    Moon, S., Perron, J. T., Martel, S. J., Holbrook, W. S. & St. Clair, J. A model of three-dimensional topographic stresses with implications for bedrock fractures, surface processes, and landscape evolution. J. Geophys. Res. Earth Surf. 122, 823–846 (2017).

    Article  Google Scholar 

  158. 158.

    Lebedeva, M. I., Fletcher, R. C. & Brantley, S. L. A mathematical model for steady-state regolith production at constant erosion rate. Earth Surf. Process. Landf. 35, 508–524 (2010).

    Google Scholar 

  159. 159.

    Li, D. D., Jacobson, A. D. & McInerney, D. J. A reactive-transport model for examining tectonic and climatic controls on chemical weathering and atmospheric CO2 consumption in granitic regolith. Chem. Geol. 365, 30–42 (2014).

    Article  Google Scholar 

  160. 160.

    Hilton, R. G., Meunier, P., Hovius, N., Bellingham, P. J. & Galy, A. Landslide impact on organic carbon cycling in a temperate montane forest. Earth Surf. Process. Landf. 36, 1670–1679 (2011).

    Article  Google Scholar 

  161. 161.

    Ramos Scharrón, C. E., Castellanos, E. J. & Restrepo, C. The transfer of modern organic carbon by landslide activity in tropical montane ecosystems. J. Geophys. Res. Biogeosci 117, G03016 (2012).

    Article  Google Scholar 

  162. 162.

    Emberson, R., Hovius, N., Galy, A. & Marc, O. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nat. Geosci. 9, 42–45 (2016). Revealed the importance of landslides as ‘weathering reactors’, generating high-solute fluxes that can play a key role in total weathering from mountainous terrain.

    Article  Google Scholar 

  163. 163.

    Emberson, R., Hovius, N., Galy, A. & Marc, O. Oxidation of sulfides and rapid weathering in recent landslides. Earth Surf. Dyn. 4, 727–742 (2016).

    Article  Google Scholar 

  164. 164.

    Carretier, S., Goddéris, Y., Martinez, J., Reich, M. & Martinod, P. Colluvial deposits as a possible weathering reservoir in uplifting mountains. Earth Surf. Dyn. 6, 217 (2018).

    Article  Google Scholar 

  165. 165.

    Croissant, T. et al. Seismic cycles, earthquakes, landslides and sediment fluxes: Linking tectonics to surface processes using a reduced-complexity model. Geomorphology 339, 87–103 (2019).

    Article  Google Scholar 

  166. 166.

    Keefer, D. K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10, 265–284 (1994).

    Article  Google Scholar 

  167. 167.

    Wang, J. et al. Earthquake-triggered increase in biospheric carbon export from a mountain belt. Geology 44, 471–474 (2016).

    Article  Google Scholar 

  168. 168.

    Frith, N. V. et al. Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia. Nat. Geosci. 11, 772–776 (2018).

    Article  Google Scholar 

  169. 169.

    Jin, Z. et al. Seismically enhanced solute fluxes in the Yangtze River headwaters following the AD 2008 Wenchuan earthquake. Geology 44, 47–50 (2016).

    Article  Google Scholar 

  170. 170.

    Kao, S. J., Dai, M. H., Wei, K. Y., Blair, N. E. & Lyons, W. B. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation. Paleoceanography 23, PA2207 (2008).

    Article  Google Scholar 

  171. 171.

    Blair, N. E., Leithold, E. L. & Aller, R. C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems. Mar. Chem., 92, 141–156 (2004).

    Article  Google Scholar 

  172. 172.

    Leithold, E. L., Blair, N. E. & Wegmann, K. W. Source-to-sink sedimentary systems and global carbon burial: A river runs through it. Earth Sci. Rev. 153, 30–42 (2016).

    Article  Google Scholar 

  173. 173.

    Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  174. 174.

    Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Article  Google Scholar 

  175. 175.

    Galy, V., Eglinton, T., France-Lanord, C. & Sylva, S. The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers. Earth Planet. Sci. Lett. 304, 1–12 (2011).

    Article  Google Scholar 

  176. 176.

    Feakins, S. J., Wu, M. S., Ponton, C., Galy, V. & West, A. J. Dual isotope evidence for sedimentary integration of plant wax biomarkers across an Andes-Amazon elevation transect. Geochim. Cosmochim. Acta 242, 64–81 (2018).

    Article  Google Scholar 

  177. 177.

    Ponton, C., West, A. J., Feakins, S. J. & Galy, V. Leaf wax biomarkers in transit record river catchment composition. Geophys. Res. Lett. 41, 6420–6427 (2014).

    Article  Google Scholar 

  178. 178.

    Hemingway, J. D. et al. Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chem. Geol. 466, 454–465 (2017).

    Article  Google Scholar 

  179. 179.

    Scheingross, J. S. et al. Preservation of organic carbon during active fluvial transport and particle abrasion. Geology 47, 958–962 (2019).

    Article  Google Scholar 

  180. 180.

    Johnson, J. E., Gerpheide, A., Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Bull. Geol. Soc. Am. 126, 813–830 (2014).

    Article  Google Scholar 

  181. 181.

    Dellinger, M. et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta 164, 71–93 (2015).

    Article  Google Scholar 

  182. 182.

    Lupker, M. et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta 84, 410–432 (2012).

    Article  Google Scholar 

  183. 183.

    Bickle, M. J. et al. Chemical weathering outputs from the flood plain of the Ganga. Geochim. Cosmochim. Acta 225, 146–175 (2018).

    Article  Google Scholar 

  184. 184.

    Bouchez, J. et al. Floodplains of large rivers: Weathering reactors or simple silos? Chem. Geol. 332, 166–184 (2012).

    Article  Google Scholar 

  185. 185.

    Moquet, J. S. et al. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean. Environ. Sci. Pollut. Res. 23, 11405–11429 (2016).

    Article  Google Scholar 

  186. 186.

    Lupker, M. et al. A Rouse-based method to integrate the chemical composition of river sediments: application to the Ganga basin. J. Geophys. Res. Earth Surf. 116, F04012 (2011).

    Article  Google Scholar 

  187. 187.

    Lupker, M., France-Lanord, C., Galy, V., Lavé, J. Ô. & Kudrass, H. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet. Sci. Lett. 365, 243–252 (2013).

    Article  Google Scholar 

  188. 188.

    Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Article  Google Scholar 

  189. 189.

    Wan, S. et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma. Geophys. Res. Lett. 39, L15611 (2012).

    Article  Google Scholar 

  190. 190.

    Frings, P. J. Palaeoweathering: how do weathering rates vary with climate? Elements 15, 259–265 (2019).

    Article  Google Scholar 

  191. 191.

    Schachtman, N. S., Roering, J. J., Marshall, J. A., Gavin, D. G. & Granger, D. E. The interplay between physical and chemical erosion over glacial-interglacial cycles. Geology 47, 613–616 (2019).

    Article  Google Scholar 

  192. 192.

    Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000).

    Article  Google Scholar 

  193. 193.

    Li, G. & Elderfield, H. Evolution of carbon cycle over the past 100 million years. Geochim. Cosmochim. Acta 103, 11–25 (2013).

    Article  Google Scholar 

  194. 194.

    Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    Article  Google Scholar 

  195. 195.

    Willenbring, J. K. & Von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).

    Article  Google Scholar 

  196. 196.

    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article  Google Scholar 

  197. 197.

    Shackleton, N. J. The carbon isotope record of the Cenozoic: History of organic carbon burial and of oxygen in the ocean and atmosphere. Geol. Soc. Spec. Publ. 26, 423–434 (1987).

    Article  Google Scholar 

  198. 198.

    Derry, L. A. (2013). in Treatise on Geochemistry 2nd edn Vol. 12 (eds Holland, H. D. & Turekian, K. K.) 239–249 (Elsevier).

  199. 199.

    Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017).

    Article  Google Scholar 

  200. 200.

    Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allègre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  201. 201.

    Rad, S., Rive, K., Vittecoq, B., Cerdan, O. & Allegre, C. J. Chemical weathering and erosion rates in the Lesser Antilles: an overview in Guadeloupe, Martinique and Dominica. J. South. Am. Earth Sci. 45, 331–344 (2013).

    Article  Google Scholar 

  202. 202.

    Borker, J., Hartmann, J., Romero-Mujalli, G. & Li, G. J. Aging of basalt volcanic systems and decreasing CO2 consumption by weathering. Earth Surf. Dyn. 7, 191–197 (2019).

    Article  Google Scholar 

  203. 203.

    Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L. & Jagoutz, O. Arc-continent collision in tropics set Earth’s climate state. Science 364, 181–184 (2019).

    Google Scholar 

  204. 204.

    Wilson, J. T. Static or mobile earth: the current scientific revolution. Proc. Am. Philos. Soc. 112, 309–320 (1968).

    Google Scholar 

  205. 205.

    Blattmann, T. M. et al. Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Sci. Rep. 9, 2945 (2019).

    Article  Google Scholar 

  206. 206.

    White, A. F. & Blum, A. E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747 (1995).

    Article  Google Scholar 

  207. 207.

    Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Article  Google Scholar 

  208. 208.

    Kao, S. J. & Milliman, J. D. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J. Geol 116, 431–448 (2008).

    Article  Google Scholar 

  209. 209.

    Gomez, B., Carter, L. & Trustrum, N. A. A 2400 yr record of natural events and anthropogenic impacts in intercorrelated terrestrial and marine sediment cores: Waipaoa sedimentary system, New Zealand. Bull. Geol. Soc. Am. 119, 1415–1432 (2007).

    Article  Google Scholar 

  210. 210.

    Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L. & Bernhardt, E. S. Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Glob. Biogeochem. Cycles 32, 1182–1194 (2018).

    Google Scholar 

  211. 211.

    Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  212. 212.

    Zolkos, S., Tank, S. E. & Kokelj, S. V. Mineral weathering and the permafrost carbon-climate feedback. Geophys. Res. Lett. 45, 9623–9632 (2018). Documented large increases in sulfide oxidation and associated CO 2 release associated with thawing permafrost slumps in the Canadian Arctic, pointing to potential weathering-driven positive feedbacks associated with warming.

    Article  Google Scholar 

  213. 213.

    Lyons, S. L. et al. Palaeocene–Eocene thermal maximum prolonged by fossil carbon oxidation. Nat. Geosci. 12, 54–60 (2019).

    Article  Google Scholar 

  214. 214.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Article  Google Scholar 

  215. 215.

    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Article  Google Scholar 

  216. 216.

    Norton, K. P. & von Blanckenburg, F. Silicate weathering of soil-mantled slopes in an active Alpine landscape. Geochim. Cosmochim. Acta 74, 5243–5258 (2010).

    Article  Google Scholar 

  217. 217.

    Dixon, J. L., Hartshorn, A. S., Heimsath, A. M., DiBiase, R. A. & Whipple, K. X. Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California. Earth Planet. Sci. Lett. 323, 40–49 (2012).

    Article  Google Scholar 

Download references


R.G.H. was funded by a European Research Council Starting Grant (project #678779, ROC-CO2) and a Natural Environment Research Council, UK, Standard Grant NE/P013538/1. A.J.W. was funded by US National Science Foundation grants EAR-1455352 and EAR-1640894. This Review was made possible by many stimulating discussions with colleagues, including at AGU, EGU and Goldschmidt conferences, and with students, postdocs and collaborators. Though there are too many individuals to mention, we have cited the work of many here.

Author information




R.G.H. and A.J.W. formulated the Review and identified the themes to be covered. R.G.H. compiled the data sets and drafted the figures. R.G.H. and A.J.W. contributed equally to the discussion and writing of the manuscript.

Corresponding authors

Correspondence to Robert G. Hilton or A. Joshua West.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Hemingway, R. Emberson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


Mountain building

The formation of a mountain range due to tectonic-plate convergence, folding and faulting, or through dynamic forces that act on Earth’s crust.


The movement of mass across Earth’s surface, usually by fluids (granular, liquid or gas; t km−2 year−1).

Drawdown of carbon dioxide

Transfer of C from the CO2 molecule in the atmosphere to bicarbonate, carbonate or organic matter.

Chemical weathering

The chemical processes that disintegrate (break up, loosen) rock, altering its original characteristics and producing weathering products.

Critical zone

The region from the top of the vegetation canopy to the base of the groundwater, where rocks, water, atmosphere and life interact.


The tendency of a substance (atom, molecule) to undergo a reaction; is considered in terms of the individual phase (silicate mineral, organic molecule) and associated acid–base or reduction–oxidation reactions in chemical weathering.

Weathering flux

The rate of the mass transfer of weathering products (t km−2 year−1). Equivalent to the product of total-denudation rate and chemical-weathering intensity.

Weathering thermostat

The response of weathering fluxes to changes in climate that act to stabilize atmospheric CO2 and Earth’s surface temperature; increases in temperature and/or CO2 concentrations cause a response that acts to draw down CO2.


The total loss of mass from a landscape, driven by erosion (physical denudation) and/or by chemical weathering (chemical denudation; t km−2 year−1).

Supply-limited weathering

When chemical-weathering reactions are limited by the supply of minerals to react.

Weathering limited

When chemical weathering fluxes are limited by factors that control the rate of reaction, such as temperature and fluid flow.


An erosion process that acts to move material in a rapid motion and results in transfer of mass downslope.

Biospheric organic carbon

Carbon derived from living plants and degraded organic matter in soils, up to a few thousands of years in age.

Petrogenic OC

Organic carbon that is rock-derived, typically defined on the basis of being depleted in radiocarbon (therefore, greater than ~60,000 years old).

Weathering profiles

One-dimensional views of the chemical and/or physical changes to rocks as they are exposed to life, water and the atmosphere.

Weathering front

A marked gradient in the chemical composition of a weathering profile where a parameter changes from the original unweathered rock to the solid weathering products.

Weathering intensity

The ratio between chemical denudation and total denudation (represented by a fraction or percentage).


A type of sedimentary rock that is typically fine-grained and mostly made up of silt and clay-sized clasts, and can contain up to a few weight percent of carbonate, OCpetro and sulfide minerals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hilton, R.G., West, A.J. Mountains, erosion and the carbon cycle. Nat Rev Earth Environ 1, 284–299 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing