Climate impacts of the El Niño–Southern Oscillation on South America

Abstract

The climate of South America (SA) has long held an intimate connection with El Niño, historically describing anomalously warm sea-surface temperatures off the coastline of Peru. Indeed, throughout SA, precipitation and temperature exhibit a substantial, yet regionally diverse, relationship with the El Niño–Southern Oscillation (ENSO). For example, El Niño is typically accompanied by drought in the Amazon and north-eastern SA, but flooding in the tropical west coast and south-eastern SA, with marked socio-economic effects. In this Review, we synthesize the understanding of ENSO teleconnections to SA. Recent efforts have sought improved understanding of ocean–atmosphere processes that govern the impact, inter-event and decadal variability, and responses to anthropogenic warming. ENSO’s impacts have been found to vary markedly, affected not only by ENSO diversity, but also by modes of variability within and outside of the Pacific. However, while the understanding of ENSO–SA relationships has improved, with implications for prediction and projection, uncertainty remains in regards to the robustness of the impacts, inter-basin climate interactions and interplay with greenhouse warming. A coordinated international effort is, therefore, needed to close the observational, theoretical and modelling gaps currently limiting progress, with specific efforts in extending palaeoclimate proxies further back in time, reducing systematic model errors and improving simulations of ENSO diversity and teleconnections.

Key points

  • The El Niño–Southern Oscillation (ENSO) influences South America (SA) by modifying a unique set of meteorological processes linked to coastal-warming-induced convection, the Walker circulation or Rossby-wave-train-related atmospheric-circulation anomalies.

  • El Niño impacts on SA feature a pattern with floods along the west coast of Ecuador and Peru, and Colombia, and drought in the Amazon and north-east of the continent.

  • ENSO’s impact is modulated by a multitude of factors, including event diversity within ENSO itself, other modes of climate variability within and outside the Pacific, inter-basin climate interactions and greenhouse warming, making its seasonal prediction challenging.

  • Greenhouse-warming-induced rainfall reductions can overwhelm El Niño-related rainfall increases, as already found in central Chile, leading to persistent dry conditions.

  • Although uncertainty exists, there is a projected intensification of ENSO’s impact on SA under greenhouse warming, which is likely to be exacerbated by the mean state change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: South American meteorological and climatological features.
Fig. 2: Evolution of a typical El Niño event and its impact on the South American climate.
Fig. 3: EP and CP ENSO regimes and their different impacts on the South American climate.
Fig. 4: Modulation of the ENSO’s impact on SA.
Fig. 5: Dependence of projected rainfall change on the level of simulated ENSO non-linearity.
Fig. 6: Dependence of EP ENSO teleconnection on simulated ENSO non-linearity.

References

  1. 1.

    McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Google Scholar 

  2. 2.

    Bjerknes, J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18, 820–829 (1966).

    Google Scholar 

  3. 3.

    Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Google Scholar 

  4. 4.

    Carrillo, C. N. Disertación sobre las corrientes y estudios de la corriente Peruana de Humboldt. Bol. Soc. Geogr. Lima 11, 72–110 (1892).

    Google Scholar 

  5. 5.

    Aceituno, P. On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon. Weather Rev. 116, 505–524 (1988).

    Google Scholar 

  6. 6.

    Rao, V. B. & Hada, K. Characteristics of rainfall over Brazil: annual variations and connections with the Southern Oscillation. Theor. Appl. Climatol. 42, 81–91 (1990).

    Google Scholar 

  7. 7.

    Grimm, A. M., Ferraz, S. E. & Gomes, J. Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J. Clim. 11, 2863–2880 (1998).

    Google Scholar 

  8. 8.

    Grimm, A. M., Barros, V. R. & Doyle, M. E. Climate variability in southern South America associated with El Niño and La Niña events. J. Clim. 13, 35–58 (2000). Offers a comprehensive view of the precipitation and circulation anomalies associated with the various stages of El Niño and La Niña events over southern South America.

    Google Scholar 

  9. 9.

    Barros, V. R., Grimm, A. M. & Doyle, M. E. Relationship between temperature and circulation in southeastern South America and its influence from El Niño and La Niña events. J. Meteorol. Soc. Jpn. Ser. II 80, 21–32 (2002).

    Google Scholar 

  10. 10.

    Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 115, 1606–1626 (1987).

    Google Scholar 

  11. 11.

    Ropelewski, C. F. & Halpert, M. S. Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Clim. 2, 268–284 (1989).

    Google Scholar 

  12. 12.

    Takahashi, K. & Martínez, A. G. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim. Dyn. 52, 7389–7415 (2019).

    Google Scholar 

  13. 13.

    Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).

    Google Scholar 

  14. 14.

    Anderson, W. B., Seager, R., Baethgen, W., Cane, M. & You, L. Synchronous crop failures and climate-forced production variability. Sci. Adv. 5, eaaw1976 (2019).

    Google Scholar 

  15. 15.

    Lehodey, P. et al. Climate variability, fish, and fisheries. J. Clim. 19, 5009–5030 (2006).

    Google Scholar 

  16. 16.

    Bouma, M. J. et al. Predicting high-risk years for malaria in Colombia using parameters of El Niño Southern Oscillation. Trop. Med. Int. Health 2, 1122–1127 (1997).

    Google Scholar 

  17. 17.

    Poveda, G. et al. Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ. Health Perspect. 109, 489–493 (2001). Provides evidence that the El Niño phenomenon intensifies the annual cycle of malaria cases in endemic areas of Colombia as a consequence of concomitant anomalies in the normal annual cycle of temperature and precipitation.

    Google Scholar 

  18. 18.

    Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Google Scholar 

  19. 19.

    Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N. & Mantilla, R. Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Water Resour. Res. 37, 2169–2178 (2001).

    Google Scholar 

  20. 20.

    Acevedo, E. C., Turbay, S., Hurlbert, M., Barco, M. H. & Lopez, K. J. Governance and climate variability in Chinchiná River, Colombia. Int. J. Clim. Change Strateg. Manag. 8, 632–653 (2016).

    Google Scholar 

  21. 21.

    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Google Scholar 

  22. 22.

    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    Google Scholar 

  23. 23.

    Marengo, J. A. et al. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An. Acad. Bras. Cienc. 90, 1973–1985 (2018).

    Google Scholar 

  24. 24.

    Takahashi, K. et al. The 2017 coastal El Niño [in State of the Climate in 2017]. Bull. Am. Meteorol. Soc. 99, S210–S211 (2018).

    Google Scholar 

  25. 25.

    Peng, Q., Xie, S. P., Wang, D., Zheng, X. T. & Zhang, H. Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 10, 298 (2019).

    Google Scholar 

  26. 26.

    Grimm, A. M. & Tedeschi, R. G. ENSO and extreme rainfall events in South America. J. Clim. 22, 1589–1609 (2009).

    Google Scholar 

  27. 27.

    Tachini, M. Flood Damage Assessment in the Municipality of Blumenau (in Portuguese). Doctoral thesis, Federal Univ. Santa Catarina, 179 pp (2010).

  28. 28.

    ONEMI. Annual Summary of Natural Hazards and Emergencies. Technical report, Oficina Nacional de Emergencias, Chile. 53 pp (1997).

  29. 29.

    Aldunce Ide, P. & González, M. Desastres asociados al clima en la agricultura y medio rural en Chile. Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile; Fundación para la Innovación Agraria (FIA), Ministerio de Agricultura (2009).

  30. 30.

    Quinn, W. H., Neal, V. T. & De Mayolo, S. E. A. El Niño occurrences over the past four and a half centuries. J. Geophys. Res. Oceans 92, 14449–14461 (1987). Documents El Niño occurrences over a multi-century period based on evidence from the west coast region of northern South America and its adjacent Pacific Ocean waters.

    Google Scholar 

  31. 31.

    Meggers, B. J. Archeological evidence for the impact of mega-Niño events on Amazonia during the past two millennia. Clim. Change 28, 321–338 (1994).

    Google Scholar 

  32. 32.

    Czaja, A. & Frankignoul, C. Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Clim. 15, 606–623 (2002).

    Google Scholar 

  33. 33.

    Giannini, A., Saravanan, R. & Chang, P. The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim. Dyn. 22, 839–855 (2004).

    Google Scholar 

  34. 34.

    Chang, P., Fang, Y., Saravanan, R., Ji, L. & Seidel, H. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature 443, 324–328 (2006).

    Google Scholar 

  35. 35.

    Rodrigues, R. R. & McPhaden, M. J. Why did the 2011–2012 La Niña cause a severe drought in the Brazilian Northeast? Geophys. Res. Lett. 41, 1012–1018 (2014).

    Google Scholar 

  36. 36.

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans 112, C11007 (2007).

    Google Scholar 

  37. 37.

    Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011). Provides independent indices that differentiate central and eastern Pacific El Niño events and the asymmetry with their La Niña counterparts.

    Google Scholar 

  38. 38.

    Hill, K. J., Taschetto, A. S. & England, M. H. South American rainfall impacts associated with inter-El Niño variations. Geophys. Res. Lett. 36, L19702 (2009).

    Google Scholar 

  39. 39.

    McPhaden, M. J. Evolution of the 2002/03 El Niño. Bull. Am. Meteorol. Soc. 85, 677–695 (2004). Describes the contrasting rainfall anomalies in the coastal zone of western South America associated with the 2002–03 El Niño (a central Pacific event) and the 1997–98 El Niño (an eastern Pacific event).

    Google Scholar 

  40. 40.

    Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D. & Ambrizzi, T. The impacts of inter-El Niño variability on the tropical Atlantic and northeast Brazil climate. J. Clim. 24, 3402–3422 (2011).

    Google Scholar 

  41. 41.

    Tedeschi, R. G., Grimm, A. M. & Cavalcanti, I. F. Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer. Int. J. Climatol. 35, 2045–2064 (2015). Outlines the magnitude and geographic variability of precipitation anomalies in South America associated with central Pacific and eastern Pacific El Niño and La Niña events.

    Google Scholar 

  42. 42.

    Tedeschi, R. G., Grimm, A. M. & Cavalcanti, I. F. Influence of Central and East ENSO on precipitation and its extreme events in South America during austral autumn and winter. Int. J. Climatol. 36, 4797–4814 (2016).

    Google Scholar 

  43. 43.

    McPhaden, M. J. Playing hide and seek with El Niño. Nat. Clim. Change 5, 791–795 (2015).

    Google Scholar 

  44. 44.

    L’Heureux, M. L. et al. Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc. 98, 1363–1382 (2017).

    Google Scholar 

  45. 45.

    Santoso, A., McPhaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Google Scholar 

  46. 46.

    Izumo, T. et al. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. 3, 168–172 (2010).

    Google Scholar 

  47. 47.

    Kug, J.-S. & Kang, I.-S. Interactive feedback between ENSO and the Indian Ocean. J. Clim. 19, 1784–1801 (2006). Suggests that an anomalous warming in the Indian Ocean produces an easterly wind anomaly over the western Pacific, which helps termination of an El Niño and its transition to La Niña.

    Google Scholar 

  48. 48.

    Kucharski, F., Syed, F. S., Burhan, A., Farah, I. & Gohar, A. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Clim. Dyn. 44, 881–896 (2015).

    Google Scholar 

  49. 49.

    Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Google Scholar 

  50. 50.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Google Scholar 

  51. 51.

    Vera, C. S. & Silvestri, G. Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim. Dyn. 32, 1003–1014 (2009).

    Google Scholar 

  52. 52.

    Saji, N. H., Ambrizzi, T. & Ferraz, S. E. T. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Oceans 39, 87–101 (2005).

    Google Scholar 

  53. 53.

    Andreoli, R. V. & Kayano, M. T. ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int. J. Climatol. 25, 2017–2030 (2005).

    Google Scholar 

  54. 54.

    Kayano, M. T. & Capistrano, V. B. How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. Int. J. Climatol. 34, 162–178 (2014).

    Google Scholar 

  55. 55.

    Fernandes, L. G. & Rodrigues, R. R. Changes in the patterns of extreme rainfall events in southern Brazil. Int. J. Climatol. 38, 1337–1352 (2018).

    Google Scholar 

  56. 56.

    Ham, Y.-G., Kug, J.-S., Park, J.-Y. & Jin, F.-F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 6, 112–116 (2013).

    Google Scholar 

  57. 57.

    Garreaud, R. D. et al. The Central Chile Mega Drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 39, 421–439 (2019).

    Google Scholar 

  58. 58.

    Gong, D. & Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).

    Google Scholar 

  59. 59.

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Google Scholar 

  60. 60.

    Levine, A. F. Z., McPhaden, M. J. & Frierson, D. M. W. The impact of the AMO on multidecadal ENSO variability. Geophys. Res. Lett. 44, 3877–3886 (2017).

    Google Scholar 

  61. 61.

    Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American Climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195 (2009).

    Google Scholar 

  62. 62.

    Poveda, G., Waylen, P. R. & Pulwarty, R. Modern climate variability in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 234, 3–27 (2006).

    Google Scholar 

  63. 63.

    Montoya, G., Pelkowski, J. & Eslava, J. A. On the northeastern trade winds and the existence of a low-level jet over the piedmont of the Eastern Andes [in Spanish]. Rev. Acad. Colomb. Cienc. 25, 363–370 (2001).

    Google Scholar 

  64. 64.

    Poveda, G. & Mesa, O. J. The CHOCO low-level jet and two other jets over Colombia: climatology and variability during ENSO [in Spanish]. Rev. Acad. Colomb. Cienc. 23, 517–528 (1999).

    Google Scholar 

  65. 65.

    Grimm, A. M., Vera, C. S. & Mechoso, C. R. in The Global Monsoon System: Research and Forecast (eds Chang, C.-P., Wang, B. & Lau, N.-C. G.) 219–238 (WMO, 2005).

  66. 66.

    Marengo, J. A. et al. Recent developments on the South American monsoon system. Int. J. Climatol. 32, 1–21 (2012).

    Google Scholar 

  67. 67.

    Kodama, Y.-M. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones. J. Meteorol. Soc. Jpn. Ser. II 70, 813–836 (1992).

    Google Scholar 

  68. 68.

    Lenters, J. D. & Cook, K. H. On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci. 54, 656–678 (1997).

    Google Scholar 

  69. 69.

    Vera, C. et al. The South American low-level jet experiment. Bull. Am. Meteorol. Soc. 87, 63–78 (2006).

    Google Scholar 

  70. 70.

    Zhou, J. & Lau, K.-M. Does a monsoon climate exist over South America? J. Clim. 11, 1020–1040 (1998).

    Google Scholar 

  71. 71.

    Carvalho, L. M. V., Jones, C. & Liebmann, B. The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 17, 88–108 (2004).

    Google Scholar 

  72. 72.

    Marengo, J. A. et al. Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J. Clim. 17, 2261–2280 (2004). Illustrates that the South American low-level jet occurs all year long, bringing tropical moist air masses from the Amazon to southern Brazil–northern Argentina more frequently in the warm season, but tropical maritime air more frequently during the cold season.

    Google Scholar 

  73. 73.

    Liebmann, B. et al. Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Clim. 17, 3829–3842 (2004).

    Google Scholar 

  74. 74.

    Salio, P., Nicolini, M. & Zipser, E. J. Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Weather Rev. 135, 1290–1309 (2007).

    Google Scholar 

  75. 75.

    Fuenzalida, H., Sánchez, R. & Garreaud, R. D. A climatology of cutoff lows in the Southern Hemisphere. J. Geophys. Res. Atmos. 110, D18101 (2005).

    Google Scholar 

  76. 76.

    Viale, M., Valenzuela, R., Garreaud, R. D. & Ralph, R. M. Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeorol. 19, 1671–1687 (2018).

    Google Scholar 

  77. 77.

    Gimeno, L. et al. Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour. 41, 117–141 (2016).

    Google Scholar 

  78. 78.

    Hu, Z. Z., Huang, B., Zhu, J., Kumar, A. & McPhaden, M. J. On the variety of coastal El Niño events. Clim. Dyn. 52, 7537–7552 (2019).

    Google Scholar 

  79. 79.

    Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 46, 1627–1645 (2016).

    Google Scholar 

  80. 80.

    Chiang, J. C. H., Kushnir, Y. & Giannini, A. Deconstructing Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res. Atmos. 107, ACL 3-1–ACL 3-19 (2002).

    Google Scholar 

  81. 81.

    Grimm, A. M. The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences. J. Clim. 16, 263–280 (2003).

    Google Scholar 

  82. 82.

    Grimm, A. M. & Ambrizzi, T. in Past Climate Variability in South America and Surrounding Regions. Developments in Paleoenvironmental Research Vol. 14 (eds Vimeaux, F., Sylvestre, F. & Khodri, M.) 159–191 (Springer, 2009).

  83. 83.

    Sasaki, W., Doi, T., Richards, K. J. & Masumoto, Y. The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM. Clim. Dyn. 44, 191–202 (2015).

    Google Scholar 

  84. 84.

    Ropelewski, C. F. & Bell, M. A. Shifts in the statistics of daily rainfall in South America conditional on ENSO phase. J. Clim. 21, 849–865 (2008).

    Google Scholar 

  85. 85.

    Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69, 318–359 (2006).

    Google Scholar 

  86. 86.

    Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather Rev. 109, 784–812 (1981).

    Google Scholar 

  87. 87.

    Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev. 109, 813–829 (1981).

    Google Scholar 

  88. 88.

    Mo, K. C. & Ghil, M. Statistics and dynamics of persistent anomalies. J. Atmos. Sci. 44, 877–902 (1987). Finds that an equivalent barotropic-wave-train pattern of circulation anomalies — the Pacific–South American (PSA) pattern — occurs in response to anomalous convective heating in the equatorial Pacific, extending over the south Pacific Ocean to South America.

    Google Scholar 

  89. 89.

    Karoly, D. J. Southern hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).

    Google Scholar 

  90. 90.

    Mo, K. C. Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies. J. Clim. 13, 3599–3610 (2000).

    Google Scholar 

  91. 91.

    Cazes-Boezio, G., Robertson, A. W. & Mechoso, C. R. Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J. Clim. 16, 1159–1176 (2003).

    Google Scholar 

  92. 92.

    Silva, G. A. M. & Ambrizzi, T. Inter-El Niño variability and its impact on the South American low-level jet east of the Andes during austral summer–two case studies. Adv. Geosci. 6, 283–287 (2006).

    Google Scholar 

  93. 93.

    Montini, T. L., Jones, C. & Carvalho, L. M. The South American low-level jet: a new climatology, variability, and changes. J. Geophys. Res. Atmos. 124, 1200–1218 (2019).

    Google Scholar 

  94. 94.

    Diaz, A. F., Studzinski, C. D. & Mechoso, C. R. Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans. J. Clim. 11, 251–271 (1998).

    Google Scholar 

  95. 95.

    Rutllant, J. & Fuenzalida, H. Synoptic aspects of the central Chile rainfall variability associated with the southern oscillation. Int. J. Climatol. 11, 63–76 (1991).

    Google Scholar 

  96. 96.

    Hastenrath, S. Circulation and teleconnection mechanisms of northeast Brazil droughts. Prog. Oceanogr. 70, 407–415 (2006).

    Google Scholar 

  97. 97.

    Xie, S.-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46, 340–350 (1994).

    Google Scholar 

  98. 98.

    Chang, P., Ji, L. & Li, H. A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385, 516–518 (1997).

    Google Scholar 

  99. 99.

    Nobre, P. & Shukla, J. Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Clim. 9, 2464–2479 (1996). Shows that north-eastern Brazil droughts are a local manifestation of a large-scale rainfall-anomaly pattern encompassing the whole equatorial Atlantic and Amazon region, related to an early withdrawal of the intertropical convergence zone towards the warm SST anomalies over the northern tropical Atlantic.

    Google Scholar 

  100. 100.

    Chiang, J. C. H. & Vimont, D. Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    Google Scholar 

  101. 101.

    Pezzi, L. P. & Cavalcanti, I. F. A. The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim. Dyn. 17, 205–212 (2001).

    Google Scholar 

  102. 102.

    Kayano, M. T., Andreoli, R. V., de Souza, R. A. F. & Garcia, S. R. Spatiotemporal variability modes of surface air temperature in South America during the 1951–2010 period: ENSO and non-ENSO components. Int. J. Climatol. 37, 1–13 (2017).

    Google Scholar 

  103. 103.

    Li, Y. et al. Two leading modes of the interannual variability in South American surface air temperature during austral winter. Clim. Dyn. 51, 2141–2156 (2018).

    Google Scholar 

  104. 104.

    Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Google Scholar 

  105. 105.

    Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Google Scholar 

  106. 106.

    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Google Scholar 

  107. 107.

    Kug, J. S., Jin, F. F. & An, S.-I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Google Scholar 

  108. 108.

    Mosquera-Vásquez, K., Dewitte, B. & Illig, S. The Central Pacific El Niño intraseasonal Kelvin wave. J. Geophys. Res. Oceans 119, 6605–6621 (2014).

    Google Scholar 

  109. 109.

    Frauen, C., Dommenget, D., Tyrrell, N., Rezny, M. & Wales, S. Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Clim. 27, 6225–6244 (2014). Finds that the atmospheric-circulation response is stronger for El Niño events compared with La Niña, and for eastern Pacific compared with central Pacific ENSO events, leading to strong regional differences in ENSO teleconnections.

    Google Scholar 

  110. 110.

    Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).

    Google Scholar 

  111. 111.

    McPhaden, M. J., Lee, T. & McClurg, D. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett. 38, L15709 (2011).

    Google Scholar 

  112. 112.

    Yeh, S. W., Kirtman, B. P., Kug, J. S., Park, W. & Latif, M. Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys. Res. Lett. 38, L02704 (2011). Shows that variations in the frequency of central Pacific El Niño versus that of eastern Pacific El Niño can occur without forcing of greenhouse warming.

    Google Scholar 

  113. 113.

    Hill, K. J., Taschetto, A. S. & England, M. H. Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies. Geophys. Res. Lett. 38, L01701 (2011). Shows opposite rainfall responses when SST warming occurs in the eastern as opposed to the western half of the equatorial Pacific.

    Google Scholar 

  114. 114.

    Lavado-Casimiro, W. & Espinoza, J. C. Impacts of El Niño and La Niña in the precipitation over Perú (1965–2007). Rev. Bras. Meteorol. 29, 171–182 (2014).

    Google Scholar 

  115. 115.

    Vicente-Serrano, S. M. et al. The complex influence of ENSO on droughts in Ecuador. Clim. Dyn. 48, 405–427 (2017).

    Google Scholar 

  116. 116.

    Rodrigues, R. R., Campos, E. J. D. & Haarsma, R. The impact of ENSO on the South Atlantic subtropical dipole mode. J. Clim. 28, 2691–2705 (2015).

    Google Scholar 

  117. 117.

    Amaya, D. J. & Foltz, G. R. Impacts of canonical and Modoki El Niño on tropical Atlantic SST. J. Geophys. Res. Oceans 119, 777–789 (2014).

    Google Scholar 

  118. 118.

    Taschetto, A. S., Rodrigues, R. R., Meehl, G. A., McGregor, S. & England, M. H. How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Clim. Dyn. 46, 1841–1860 (2016).

    Google Scholar 

  119. 119.

    Navarro-Monterroza, E., Arias, P. A. & Vieira, S. C. El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 43, 120–132 (2019).

    Google Scholar 

  120. 120.

    Grimm, A. M., Pal, J. S. & Giorgi, F. Connection between spring conditions and peak summer monsoon rainfall in South America: role of soil moisture, surface temperature, and topography in eastern Brazil. J. Clim. 20, 5929–5945 (2007).

    Google Scholar 

  121. 121.

    Barreiro, M. & Díaz, N. Land–atmosphere coupling in El Niño influence over South America. Atmos. Sci. Lett. 12, 351–355 (2011).

    Google Scholar 

  122. 122.

    Builes-Jaramillo, A., Marwan, N., Poveda, G. & Kurths, J. Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales. Clim. Dyn. 50, 2951–2969 (2018). Shows that a lower-than-normal rainfall over the Amazon basin decreases the pressure gradient between the Amazon and the tropical North Atlantic, weakens the north-easterly trades, intensifies warming of the tropical North Atlantic, in turn, reinforcing the rainfall decrease over the Amazon basin.

    Google Scholar 

  123. 123.

    Dewitte, B. & Takahashi, K. Diversity of moderate El Niño events evolution: role of air–sea interactions in the eastern tropical Pacific. Clim. Dyn. 52, 7455–7476 (2019).

    Google Scholar 

  124. 124.

    Haarsma, R. J., Campos, E. J. D. & Molteni, F. Atmospheric response to South Atlantic SST dipole. Geophys. Res. Lett. 30, 1864 (2003).

    Google Scholar 

  125. 125.

    Jahfer, S., Vinayachandran, P. N. & Nanjundiah, R. S. Long-term impact of Amazon river runoff on northern hemispheric climate. Sci. Rep. 7, 10989 (2017).

    Google Scholar 

  126. 126.

    Poveda, G., Gil, M. M. & Quiceno, N. The annual cycle of Colombia’s hydrology and its relationship with ENSO and NAO. Bull. Am. Meteorol. Soc. 27, 721–731 (1998).

    Google Scholar 

  127. 127.

    Taschetto, A. S. & Ambrizzi, T. Can Indian Ocean SST anomalies influence South American rainfall? Clim. Dyn. 38, 1615–1628 (2012).

    Google Scholar 

  128. 128.

    Chan, S. C., Behera, S. K. & Yamagata, T. Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett. 35, L14S12 (2008). Outlines that a positive Indian Ocean Dipole excites a dipolar pattern in rainfall anomalies, with reduced rainfall over central Brazil but increased rainfall over La Plata Basin during austral spring.

    Google Scholar 

  129. 129.

    Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).

    Google Scholar 

  130. 130.

    Vera, C. S. & Osman, M. Activity of the Southern Annular Mode during 2015–2016 El Niño event and its impact on Southern Hemisphere climate anomalies. Int. J. Climatol. 38, e1288–e1295 (2018).

    Google Scholar 

  131. 131.

    León-Muñoz, J. et al. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330 (2018).

    Google Scholar 

  132. 132.

    An, S. I. & Wang, B. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Clim. 13, 2044–2055 (2000).

    Google Scholar 

  133. 133.

    da Silva, G. A. M., Drumond, A. & Ambrizzi, T. The impact of El Niño on South American summer climate during different phases of the Pacific decadal oscillation. Theor. Appl. Climatol. 106, 307–319 (2011).

    Google Scholar 

  134. 134.

    Poveda, G., Alvarez, D. M. & Rueda, O. A. Hydroclimatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim. Dyn. 36, 2233–2249 (2011).

    Google Scholar 

  135. 135.

    Wang, G. & Cai, W. Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Sci. Rep. 3, 2039 (2013).

    Google Scholar 

  136. 136.

    Ham, Y. G., Choi, J. Y. & Kug, J. S. The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Clim. Dyn. 49, 249–261 (2017).

    Google Scholar 

  137. 137.

    McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Google Scholar 

  138. 138.

    Wang, L., Yu, J.-Y. & Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 8, 14887 (2017). Shows that a warmer Atlantic since the early 1990s — a result of the positive phase of Atlantic multidecadal oscillation and a global warming trend — has enhanced the biennial cycle of ENSO events.

    Google Scholar 

  139. 139.

    Cai, W. & Cowan, T. Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Clim. 20, 681–693 (2007).

    Google Scholar 

  140. 140.

    Barnston, A. G. et al. Verification of the first 11 years of IRI’s seasonal climate forecasts. J. Appl. Meteorol. Climatol. 49, 493–520 (2010).

    Google Scholar 

  141. 141.

    Bombardi, R. J. et al. Seasonal predictability of summer rainfall over South America. J. Clim. 31, 8181–8195 (2018).

    Google Scholar 

  142. 142.

    Zhao, M., Hendon, H. H., Alves, O., Liu, G. & Wang, G. Weakened Eastern Pacific El Niño predictability in the early twenty-first century. J. Clim. 29, 6805–6822 (2016).

    Google Scholar 

  143. 143.

    Giannini, A., Chiang, J. C. H., Cane, M. A., Kushnir, Y. & Seager, R. The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Clim. 14, 4530–4544 (2001).

    Google Scholar 

  144. 144.

    Richter, I. et al. On the triggering of Benguela Niños: remote equatorial versus local influences. Geophys. Res. Lett. 37, L20604 (2010).

    Google Scholar 

  145. 145.

    Barreiro, M. Influence of ENSO and the South Atlantic Ocean on climate predictability over southeastern South America. Clim. Dyn. 35, 1493–1508 (2010).

    Google Scholar 

  146. 146.

    Keenlyside, N. S., Ding, H. & Latif, M. Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys. Res. Lett. 40, 2278–2283 (2013).

    Google Scholar 

  147. 147.

    Luo, J.-J., Liu, G., Hendon, H., Alves, O. & Yamagata, T. Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep. 7, 2276 (2017).

    Google Scholar 

  148. 148.

    Ren, H. L., Zuo, J. & Deng, Y. Statistical predictability of Niño indices for two types of ENSO. Clim. Dyn. 52, 5361–5382 (2019).

    Google Scholar 

  149. 149.

    Dayan, H., Vialard, J., Izumo, T. & Lengaigne, M. Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim. Dyn. 43, 1311–1325 (2014).

    Google Scholar 

  150. 150.

    Chikamoto, Y. et al. Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun. 6, 6869 (2015).

    Google Scholar 

  151. 151.

    Boulanger, J.-P., Martinez, F. & Segura, E. C. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim. Dyn. 28, 255–271 (2007).

    Google Scholar 

  152. 152.

    Junquas, C., Vera, C. S., Li, L. & Le Treut, H. Impact of projected SST changes on summer rainfall in southeastern South America. Clim. Dyn. 40, 1569–1589 (2013).

    Google Scholar 

  153. 153.

    Jones, C. & Carvalho, L. M. V. Climate change in the South American monsoon system: present climate and CMIP5 projections. J. Clim. 26, 6660–6678 (2013).

    Google Scholar 

  154. 154.

    Li, W., Fu, R. & Dickinson, R. E. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res. Atmos. 111, D02111 (2006). Shows that an El Niño-like sea-surface temperature change and warming in the northern tropical Atlantic enhances atmospheric subsidence and reduces clouds over the Amazon.

    Google Scholar 

  155. 155.

    Bombardi, R. & Carvalho, L. IPCC global coupled model simulations of the South America monsoon system. Clim. Dyn. 33, 893–916 (2009).

    Google Scholar 

  156. 156.

    Karamperidou, C., Jin, F. F. & Conroy, J. L. The importance of ENSO nonlinearities in tropical Pacific response to external forcing. Clim. Dyn. 49, 2695–2704 (2017).

    Google Scholar 

  157. 157.

    Grimm, A. M. & Natori, A. A. Climate change and interannual variability of precipitation in South America. Geophys. Res. Lett. 33, L19706 (2006).

    Google Scholar 

  158. 158.

    da Rocha, R. P., Reboita, M. S., Dutra, L. M. M., Llopart, M. P. & Coppola, E. Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim. Change 125, 95–109 (2014).

    Google Scholar 

  159. 159.

    Perry, S. J., McGregor, S., Gupta, A. S., England, M. H. & Maher, N. Projected late 21st century changes to the regional impacts of the El Niño-Southern Oscillation. Clim. Dyn. 54, 395–412 (2020).

    Google Scholar 

  160. 160.

    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Google Scholar 

  161. 161.

    Christidis, N., Betts, R. A. & Stott, P. A. The extremely wet March of 2017 in Peru. Bull. Am. Meteorol. Soc. 100, S31–S35 (2019).

    Google Scholar 

  162. 162.

    Kim, J. S., Kug, J. S. & Jeong, S. J. Intensification of terrestrial carbon cycle related to El Niño–Southern oscillation under greenhouse warming. Nat. Commun. 8, 1674 (2017).

    Google Scholar 

  163. 163.

    Power, S. B. & Delage, F. P. D. El Niño–Southern Oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J. Clim. 31, 6189–6207 (2018).

    Google Scholar 

  164. 164.

    Blázquez, J. & Nuñez, M. N. Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim. Dyn. 41, 1039–1056 (2013).

    Google Scholar 

  165. 165.

    Tedeschi, R. G. & Collins, M. The influence of ENSO on South American precipitation: simulation and projection in CMIP5 models. Int. J. Climatol. 37, 3319–3339 (2017).

    Google Scholar 

  166. 166.

    Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Google Scholar 

  167. 167.

    Zilli, M. T., Carvalho, L. M. V. & Lintner, B. R. The poleward shift of South Atlantic Convergence Zone in recent decades. Clim. Dyn. 52, 2545–2563 (2019).

    Google Scholar 

  168. 168.

    Bedoya-Soto, J. M., Poveda, G., Trenberth, K. E. & Vélez-Upegui, J. J. Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theor. Appl. Climatol. 135, 1531–1544 (2019).

    Google Scholar 

  169. 169.

    Moy, C., Seltzer, G., Rodbell, D. & Anderson, D. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Google Scholar 

  170. 170.

    Rodbell, D. et al. An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516–520 (1999). Uses inorganic laminae in an alpine lake near Ecuador to show that El Niño periodicity increases from ~15 years 15,000–7,000 years before present to 2–8.5 years in the modern climate.

    Google Scholar 

  171. 171.

    Conroy, J., Overpeck, J., Cole, J., Shanahan, T. & Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166–1180 (2008).

    Google Scholar 

  172. 172.

    Clement, A. C., Seager, R. & Cane, M. A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography 14, 441–456 (1999).

    Google Scholar 

  173. 173.

    Karamperidou, C., Di Nezio, P. N., Timmermann, A., Jin, F. F. & Cobb, K. M. The response of ENSO flavors to mid-Holocene climate: implications for proxy interpretation. Paleoceanography 30, 527–547 (2015).

    Google Scholar 

  174. 174.

    Li, G. & Xie, S.-P. Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).

    Google Scholar 

  175. 175.

    Bellucci, A., Gualdi, S. & Navarra, A. The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J. Clim. 23, 1127–1145 (2010).

    Google Scholar 

  176. 176.

    Cai, W. & Cowan, T. Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett. 40, 1200–1205 (2013).

    Google Scholar 

  177. 177.

    McGregor, S., Stuecker, M. F., Kajtar, J. B., England, M. H. & Collins, M. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Clim. Change 8, 493–498 (2018).

    Google Scholar 

  178. 178.

    Cai, W., Hendon, H. H. & Meyers, G. A. Indian Ocean dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Clim. 18, 1449–1468 (2005).

    Google Scholar 

  179. 179.

    Taschetto, A. S. et al. Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J. Clim. 27, 2861–2885 (2014).

    Google Scholar 

  180. 180.

    Ma, H. Y. et al. Impact of land surface processes on the South American warm season climate. Clim. Dyn. 37, 187–203 (2011).

    Google Scholar 

  181. 181.

    Yin, L., Fu, R., Shevliakova, E. & Dickinson, R. E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim. Dyn. 41, 3127–3143 (2013).

    Google Scholar 

  182. 182.

    Misra, V., Dirmeyer, P. A. & Kirtman, B. P. Dynamic downscaling of seasonal simulations over South America. J. Clim. 16, 103–117 (2003).

    Google Scholar 

  183. 183.

    Solman, S. A., Nunez, M. N. & Cabré, M. F. Regional climate change experiments over southern South America. I: present climate. Clim. Dyn. 30, 533–552 (2008).

    Google Scholar 

  184. 184.

    Cavalcanti, I. F., Goddard, L. & Kirtman, B. The future of seasonal prediction in the Americas. VAMOS Newsl. 3, 3–7 (2006).

    Google Scholar 

  185. 185.

    Grimm, A. M. in Tropical Extremes: Natural Variability and Trends (eds Vuruputur, V., Sukhatme, J., Murtugudde, R. & Roca, R.) 51–93 (Elsevier, 2018).

  186. 186.

    Rodrigues, R. R., Taschetto, A. S., Gupta, A. S. & Foltz, G. R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 12, 620–626 (2019). Finds that drought in eastern South America and marine heatwaves in the adjacent south Atlantic Ocean are concurrently triggered by tropical convection in the Indian and Pacific oceans, which causes Rossby wave trains with a persistent anticyclonic circulation over the region.

    Google Scholar 

  187. 187.

    Erfanian, A., Wang, G. & Fomenko, L. Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Sci. Rep. 7, 5811 (2017).

    Google Scholar 

  188. 188.

    Foley, J. A., Botta, A., Coe, M. T. & Costa, M. H. El Niño–Southern oscillation and the climate, ecosystems and rivers of Amazonia. Glob. Biogeochem. Cycles 16, 79-1–79-20 (2002).

    Google Scholar 

  189. 189.

    Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170312 (2018).

    Google Scholar 

  190. 190.

    Schneider, U., Fuchs, T., Meyer-Christoffer, A. & Rudolf, B. Global precipitation analysis products of the GPCC. dwd.de https://www.dwd.de/EN/ourservices/gpcc/gpcc.html (2008).

  191. 191.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Google Scholar 

  192. 192.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Google Scholar 

  193. 193.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2018YFA0605700). W.C., A.S., B.N. and G.W. are supported by the CSHOR and the Earth System and Climate Change Hub of the Australian Government’s National Environment Science Program. The CSHOR is a joint research Centre for Southern Hemisphere Oceans Research between the Qingdao National Laboratory for Marine Science and Technology (QNLM) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). R.R. is supported by CNPq grant (401873/2016-1), CAPES (88881.145866/2017-1), Program INCT-MCII and Rede CLIMA. A.M.G. acknowledges the support of CNPq (Brazil). A.S.T. is supported by the Australian Research Council (ARC FT160100495). B.D. is supported by Fondecyt grant (1171861) and ANR. G.P. is supported by Universidad Nacional de Colombia at Medellin, Colombia. Y.-G.H. is funded by the Korea Meteorological Administration Research and Development Program under grant (KMI2018-07010). W.A. is supported from the Earth Institute Postdoctoral Fellows program. J.M. is supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq grant (465501/2014-1), FAPESP grant (2014/50848-9) and CAPES grant (88887.136402-00INCT). L.M.A. is supported by Sao Paulo Research Foundation Grant FAPESP (#2015/50122-0), DFG-GRTK (1740/2) and INCR-Climate change project Phase 2 (CNPq465501/2014-1/Public call MCTI/CNPQ/CAPES/FAPS no. 16/2014). L.W. is supported by the National Natural Science Foundation of China projects (41490640 and 41490643). C.K. is supported by US NSF award (AGS-1902970). M.J.M. is supported by NOAA. This is PMEL contribution no. 5039. M.O. and C.V were supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 112-20120100626CO, UBACyT 20020130100489BA and Belmont Forum/ANR-15-JCL/-0002-01 CLIMAX.

Author information

Affiliations

Authors

Contributions

W.C. and M.J.M. conceived the study. M.J.M., A.M.G., R.R., A.S.T., B.D. and A.S. coordinated the presentation and discussion for various sections. All authors contributed to the manuscript preparation, interpretation, discussion and writing, led by W.C.

Corresponding author

Correspondence to Wenju Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer Review information

Nature Reviews Earth & Environment thanks C. Frauen, R. Tedeschi and the other, anonymous, reviewer(s), for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, W., McPhaden, M.J., Grimm, A.M. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat Rev Earth Environ 1, 215–231 (2020). https://doi.org/10.1038/s43017-020-0040-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing