Beach nourishment has complex implications for the future of sandy shores

Abstract

Beach nourishment — the addition of sand to increase the width or sand volume of the beach — is a widespread coastal management technique to counteract coastal erosion. Globally, rising sea levels, storms and diminishing sand supplies threaten beaches and the recreational, ecosystem, groundwater and flood protection services they provide. Consequently, beach nourishment practices have evolved from focusing on maximizing the time sand stays on the beach to also encompassing human safety and water recreation, groundwater dynamics and ecosystem impacts. In this Perspective, we present a multidisciplinary overview of beach nourishment, discussing physical aspects of beach nourishment alongside ecological and socio-economic impacts. The future of beach nourishment practices will vary depending on local vulnerability, sand availability, financial resources, government regulations and efficiencies, and societal perceptions of environmental risk, recreational uses, ecological conservation and social justice. We recommend co-located, multidisciplinary research studies on the combined impacts of nourishments, and explorations of various designs to guide these globally diverse nourishment practices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Beach nourishment projects.
Fig. 2: Evolution of sandy beach nourishments.
Fig. 3: Groundwater processes related to nourishments.
Fig. 4: Potential ecological changes during and following beach nourishment.
Fig. 5: Integration of impacts into nourishment design.

References

  1. 1.

    Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

    Article  Google Scholar 

  2. 2.

    Merkens, J. L., Reimann, L., Hinkel, J. & Vafeidis, A. T. Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Glob. Planet. Change 145, 57–66 (2016).

    Article  Google Scholar 

  3. 3.

    Ranasinghe, R., Callaghan, D. & Stive, M. J. F. Estimating coastal recession due to sea level rise: beyond the Bruun rule. Clim. Change 110, 561–574 (2012).

    Article  Google Scholar 

  4. 4.

    Vousdoukas, M. I. et al. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 10, 260–263 (2020).

    Article  Google Scholar 

  5. 5.

    Nicholls, R. J. Planning for the impacts of sea level rise. Oceanography 24, 144–157 (2011).

    Article  Google Scholar 

  6. 6.

    Dean, R. G. Beach Nourishment: Theory and Practice (World Scientific, 2003).

  7. 7.

    Montague, C. L. Ecological engineering of inlets in southeastern Florida: design criteria for sea turtle nesting beaches. J. Coast. Res. 18, 267–276 (1993).

    Google Scholar 

  8. 8.

    Li, S. et al. A comparison of coastal habitat restoration projects in China and the United States. Sci. Rep. 9, 14388 (2019).

    Article  Google Scholar 

  9. 9.

    van der Meulen, F., van der Valk, B., Vertegaal, K. & van Eerden, M. ‘Building with nature’ at the Dutch dune coast: compensation target management in Spanjaards Duin at EU and regional policy levels. J. Coast. Conserv. 19, 707–714 (2015).

    Article  Google Scholar 

  10. 10.

    Leonard, L., Clayton, T. D., Dixon, K. & Pilkey, O. H. US beach replenishment experience: a comparison of the Atlantic, Pacific and Gulf coasts. J. Coast. Res. 89, 1994–2006 (1989).

    Google Scholar 

  11. 11.

    Hino, M., Field, C. B. & Mach, K. J. Managed retreat as a response to natural hazard risk. Nat. Clim. Chang. 7, 364–370 (2017).

    Article  Google Scholar 

  12. 12.

    Castelle, B., Turner, I. L., Bertin, X. & Tomlinson, R. Beach nourishments at Coolangatta Bay over the period 1987–2005: impacts and lessons. Coast. Eng. 56, 940–950 (2009).

    Article  Google Scholar 

  13. 13.

    Cooke, B. C., Jones, A. R., Goodwin, I. D. & Bishop, M. J. Nourishment practices on Australian sandy beaches: A review. J. Environ. Manage. 113, 319–327 (2012).

    Article  Google Scholar 

  14. 14.

    Hanson, H. et al. Beach nourishment projects, practices, and objectives — a European overview. Coast. Eng. 47, 81–111 (2002).

    Article  Google Scholar 

  15. 15.

    Young, A. P. et al. Coarse sediment yields from seacliff erosion in the Oceanside littoral cell. J. Coast. Res. 263, 580–585 (2010).

    Article  Google Scholar 

  16. 16.

    Fletcher, C. H., Richmond, B. M. & Mullane, R. A. Beach loss along armored shorelines on Oahu, Hawaiian Islands. J. Coast. Res. 13, 209–215 (1997).

    Google Scholar 

  17. 17.

    Bruun, P. The development of downdrift erosion. J. Coast. Res. 11, 1242–1257 (1995).

    Google Scholar 

  18. 18.

    Luo, S., Liu, Y., Jin, R., Zhang, J. & Wei, W. A guide to coastal management: Benefits and lessons learned of beach nourishment practices in China over the past two decades. Ocean Coast. Manag. 134, 207–215 (2016).

    Article  Google Scholar 

  19. 19.

    Lanza, S. & Randazzo, G. Tourist-beach protection in north-eastern Sicily (Italy). J. Coast. Conserv. 17, 49–57 (2013).

    Article  Google Scholar 

  20. 20.

    Gómez-Pina, G., Fages, L., Ramírez, J. L., Muñoz-Pérez, J. J. & Enríquez, J. in Coastal Engineering 2006 (ed. McKee Smith, J.) 4167–4178 (World Scientific, 2006).

  21. 21.

    Valverde, H. R., Trembanis, A. C. & Pilkey, O. H. Summary of beach nourishment episodes on the U.S. East Coast barrier islands. J. Coast. Res. 15, 1100–1118 (1999).

    Google Scholar 

  22. 22.

    Flick, R. E. The myth and reality of southern California beaches. Shore Beach 61, 3–13 (1993).

    Google Scholar 

  23. 23.

    Liu, Z., Cui, B. & He, Q. Shifting paradigms in coastal restoration: Six decades’ lessons from China. Sci. Total Environ. 566–567, 205–214 (2016).

    Article  Google Scholar 

  24. 24.

    Hamm, L. et al. A summary of European experience with shore nourishment. Coast. Eng. 47, 237–264 (2002).

    Article  Google Scholar 

  25. 25.

    Jiménez, J. A., Gracia, V., Valdemoro, H. I., Mendoza, E. T. & Sánchez-Arcilla, A. Managing erosion-induced problems in NW Mediterranean urban beaches. Ocean Coast. Manag. 54, 907–918 (2011).

    Article  Google Scholar 

  26. 26.

    Stive, M. J. F. F. et al. A new alternative to saving our beaches from sea-level rise: the sand engine. J. Coast. Res. 29, 999–1008 (2013).

    Google Scholar 

  27. 27.

    Banno, M., Takewaka, S. & Kuriyama, Y. in Proceedings of Coastal Dynamics 2017 (eds Aagaard, T., Deigaard, R. & Fuhrman, D.) 820–829 (Univ. Copenhagen, 2017).

  28. 28.

    Liu, G. et al. A method to nourished beach stability assessment: The case of China. Ocean Coast. Manag. 177, 166–178 (2019).

    Article  Google Scholar 

  29. 29.

    van Oudenhoven, A. P. E. et al. ‘Mind the Gap’ between ecosystem services classification and strategic decision making. Ecosyst. Serv. 33, 77–88 (2018).

    Article  Google Scholar 

  30. 30.

    Morris, R. L. et al. in Oceanography and Marine Biology: An Annual Review (eds Hawkins, S. J. et al.) 169–228 (CRC Press, 2019).

  31. 31.

    de Vriend, H. J., van Koningsveld, M., Aarninkhof, S. G. J., de Vries, M. B. & Baptist, M. J. Sustainable hydraulic engineering through building with nature. J. Hydro-Environ. Res. 9, 159–171 (2015).

    Article  Google Scholar 

  32. 32.

    Bridges, T. et al. Engineering With Nature (Environmental Laboratory (U.S.), Engineering With Nature Program (U.S.), U.S. Army Engineer Research and Development Center (U.S.), 2018).

  33. 33.

    Powell, E. J., Tyrrell, M. C., Milliken, A., Tirpak, J. M. & Staudinger, M. D. A review of coastal management approaches to support the integration of ecological and human community planning for climate change. J. Coast. Conserv. 23, 1–18 (2019).

    Article  Google Scholar 

  34. 34.

    McFarland, S., Whitcombe, L. & Collins, M. Recent shingle beach renourishment schemes in the UK: some preliminary observations. Ocean Coast. Manag. 25, 143–149 (1994).

    Article  Google Scholar 

  35. 35.

    Shu, F. et al. Morphodynamics of an artificial cobble beach in Tianquan Bay, Xiamen, China. J. Ocean Univ. China 18, 868–882 (2019).

    Article  Google Scholar 

  36. 36.

    Baptist, M. J. et al. Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’. Ecol. Eng. 127, 312–323 (2019).

    Article  Google Scholar 

  37. 37.

    Clayton, T. D. Beach replenishment activities on U.S. continental Pacific coast. J. Coast. Res. 7, 1195–1210 (1991).

    Google Scholar 

  38. 38.

    Haddad, T. C. & Pilkey, O. H. Summary of the New England beach nourishment experience (1935-1996). J. Coast. Res. 14, 1395–1404 (1998).

    Google Scholar 

  39. 39.

    Trembanis, A. C. & Pilkey, O. H. Summary of beach nourishment along the U.S. Gulf of Mexico shoreline. J. Coast. Res. 14, 407–417 (1998).

    Google Scholar 

  40. 40.

    Palalane, J., Larson, M., Hanson, H. & Juízo, D. Coastal erosion in Mozambique: Governing processes and remedial measures. J. Coast. Res. 32, 700–718 (2016).

    Article  Google Scholar 

  41. 41.

    Cai, F., Dean, R. G. & Liu, J. Beach nourishment in China: status and prospects. Coast. Eng. Proc. https://doi.org/10.9753/icce.v32.management.31 (2010).

    Article  Google Scholar 

  42. 42.

    Lee, W. D., Kim, I. H., Yoon, J. S., Cho, W. C. & Hur, D. S. Analysis of beach deformation according to nourishing sand in Haeundae Beach, Korea. J. Coast. Res. 75, 1372–1376 (2016).

    Article  Google Scholar 

  43. 43.

    Elko, N. A. & Wang, P. Immediate profile and planform evolution of a beach nourishment project with hurricane influences. Coast. Eng. 54, 49–66 (2007).

    Article  Google Scholar 

  44. 44.

    Yates, M. L., Guza, R. T., O’Reilly, W. C. & Seymour, R. J. Seasonal persistence of a small southern California beach fill. Coast. Eng. 56, 559–564 (2009).

    Article  Google Scholar 

  45. 45.

    Seymour, R., Guza, R. T., O’Reilly, W. & Elgar, S. Rapid erosion of a small southern California beach fill. Coast. Eng. 52, 151–158 (2005).

    Article  Google Scholar 

  46. 46.

    Dean, R. G. Equilibrium beach profiles: characteristics and applications. J. Coast. Res. 7, 53–84 (1991).

    Google Scholar 

  47. 47.

    Luijendijk, A. P. et al. The initial morphological response of the Sand Engine: A process-based modelling study. Coast. Eng. 119, 1–14 (2017).

    Article  Google Scholar 

  48. 48.

    Smith, A. W. S. Discussion of: Pilkey, O. H., 1990. A time to look back at beach replenishment (editorial), Journal of Coastal Research, 6(1), iii-vii. And, Leonard, L.; Clayton, T., and Pilkey, O.H., 1990. An analysis of replenished beach design parameters on U.S. east coast barrier islands, Journal of Coastal Research, 6(1) 15-36. J. Coast. Res. 6, 1041–1045 (1990).

    Google Scholar 

  49. 49.

    Dean, R. G. & Campbell, T. J. in Springer Handbook of Ocean Engineering (eds Dhanak, M. R. & Xiros, N. I.) 635–652 (Springer, 2016).

  50. 50.

    Ludka, B. C., Gallien, T. W., Crosby, S. C. & Guza, R. T. Mid-El Niño erosion at nourished and unnourished Southern California beaches. Geophys. Res. Lett. 43, 4510–4516 (2016).

    Article  Google Scholar 

  51. 51.

    Hoonhout, B. & de Vries, S. Aeolian sediment supply at a mega nourishment. Coast. Eng. 123, 11–20 (2017).

    Article  Google Scholar 

  52. 52.

    Jackson, N. L. & Nordstrom, K. F. Aeolian sediment transport and landforms in managed coastal systems: a review. Aeolian Res. 3, 181–196 (2011).

    Article  Google Scholar 

  53. 53.

    de Schipper, M. A. et al. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 111, 23–38 (2016).

    Article  Google Scholar 

  54. 54.

    Ludka, B. C., Guza, R. T. & O’Reilly, W. C. Nourishment evolution and impacts at four southern California beaches: A sand volume analysis. Coast. Eng. 136, 96–105 (2018).

    Article  Google Scholar 

  55. 55.

    de Schipper, M. A. Alongshore variability of nourished and natural beaches. PhD thesis, Delft University of Technology, Faculty of Civil Engineering and Geosciences (2014).

  56. 56.

    Radermacher, M., de Schipper, M. A., Swinkels, C., MacMahan, J. H. & Reniers, A. J. H. M. Tidal flow separation at protruding beach nourishments. J. Geophys. Res. Oceans 122, 63–79 (2017).

    Article  Google Scholar 

  57. 57.

    Huisman, B. J. A., de Schipper, M. A. & Ruessink, B. G. Sediment sorting at the Sand Motor at storm and annual time scales. Mar. Geol. 381, 209–2296 (2016).

    Article  Google Scholar 

  58. 58.

    van Bemmelen, C. W. T., de Schipper, M. A., Darnall, J. & Aarninkhof, S. G. J. Beach scarp dynamics at nourished beaches. Coast. Eng. 160, 103725 (2020).

    Article  Google Scholar 

  59. 59.

    de Alegria-Arzaburu, A. R., Mariño-Tapia, I., Silva, R. & Pedrozo-Acuña, A. Post-nourishment beach scarp morphodynamics. J. Coast. Res. 65, 576–581 (2013).

    Article  Google Scholar 

  60. 60.

    Crain, D. A., Bolten, A. B. & Bjorndal, K. A. Effects of beach nourishment on sea turtles: review and research initiatives. Restor. Ecol. 3, 95–104 (1995).

    Article  Google Scholar 

  61. 61.

    Ranasinghe, R. & Turner, I. L. Shoreline response to submerged structures: a review. Coast. Eng. 53, 65–79 (2006).

    Article  Google Scholar 

  62. 62.

    Moreno, L. et al. An engineering method for the preliminary functional design of perched beaches. theoretical approach. J. Coast. Res. 85, 1261–1265 (2018).

    Article  Google Scholar 

  63. 63.

    Muñoz-Perez, J. J., Gallop, S. L. & Moreno, L. J. A comparison of beach nourishment methodology and performance at two fringing reef beaches in Waikiki (Hawaii, USA) and Cadiz (SW Spain). J. Mar. Sci. Eng. 8, 266 (2020).

    Article  Google Scholar 

  64. 64.

    Pilkey, O. H. The fox guarding the hen house. J. Coast. Res. 11, iii–v (1995).

    Google Scholar 

  65. 65.

    Guo, J. et al. Monitoring and evaluation of sand nourishments on an embayed beach exposed to frequent storms in eastern China. Ocean Coast. Manag. 195, 105284 (2020).

    Article  Google Scholar 

  66. 66.

    Cooper, N. J., Leggett, D. J. & Lowe, J. P. Beach-profile measurement, theory and analysis: Practical guidance and applied case studies. Water Environ. J. 14, 79–88 (2000).

    Article  Google Scholar 

  67. 67.

    Ludka, B. C. et al. Sixteen years of bathymetry and waves at San Diego beaches. Sci. Data 6, 161 (2019).

    Article  Google Scholar 

  68. 68.

    Splinter, K. D., Harley, M. D. & Turner, I. L. Remote sensing is changing our view of the coast: Insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 10, 1744 (2018).

    Article  Google Scholar 

  69. 69.

    Browder, A. E. & Dean, R. G. Monitoring and comparison to predictive models of the Perdido Key beach nourishment project, Florida, USA. Coast. Eng. 39, 173–191 (2000).

    Article  Google Scholar 

  70. 70.

    Lee, G. H., Nicholls, R. J. & Birkemeier, W. A. Storm-driven variability of the beach-nearshore profile at Duck, North Carolina, USA, 1981–1991. Mar. Geol. 148, 163–177 (1998).

    Article  Google Scholar 

  71. 71.

    Holman, R. A. & Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 54, 477–491 (2007).

    Article  Google Scholar 

  72. 72.

    Elko, N. A., Holman, R. A. & Gelfenbaum, G. Quantifying the rapid evolution of a nourishment project with video imagery. J. Coast. Res. 214, 633–645 (2005).

    Article  Google Scholar 

  73. 73.

    Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. & Turner, I. L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 150, 160–174 (2019).

    Article  Google Scholar 

  74. 74.

    Vandebroek, E. et al. Semi-automated monitoring of a mega-scale beach nourishment using high-resolution TerraSAR-X satellite data. Remote Sens. 9, 653 (2017).

    Article  Google Scholar 

  75. 75.

    Silva, P. G., da, Coco, G., Garnier, R. & Klein, A. H. F. On the prediction of runup, setup and swash on beaches. Earth-Sci. Rev. 204, 103148 (2020).

    Article  Google Scholar 

  76. 76.

    Almeida, L. P. et al. Deriving high spatial-resolution coastal topography from sub-meter satellite stereo imagery. Remote Sens. 11, 590 (2019).

    Article  Google Scholar 

  77. 77.

    Wiggins, M., Scott, T., Masselink, G., Russell, P. & McCarroll, R. J. Coastal embayment rotation: Response to extreme events and climate control, using full embayment surveys. Geomorphology 327, 385–403 (2019).

    Article  Google Scholar 

  78. 78.

    Shean, D. E. et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101–117 (2016).

    Article  Google Scholar 

  79. 79.

    Magruder, L. et al. New Earth orbiter provides a sharper look at a changing planet. Eos https://doi.org/10.1029/2019EO133233 (2019).

    Article  Google Scholar 

  80. 80.

    Phillips, M. S., Blenkinsopp, C. E., Splinter, K. D., Harley, M. D. & Turner, I. L. Modes of berm and beachface recovery following storm reset: observations using a continuously scanning lidar. J. Geophys. Res. Earth Surf. 124, 720–736 (2019).

    Article  Google Scholar 

  81. 81.

    Launeau, P. et al. Full-waveform LiDAR pixel analysis for low-growing vegetation mapping of coastal foredunes in Western France. Remote Sens. 10, 669 (2018).

    Article  Google Scholar 

  82. 82.

    Deronde, B., Houthuys, R., Henriet, J. P. & Van Lancker, V. Monitoring of the sediment dynamics along a sandy shoreline by means of airborne hyperspectral remote sensing and LIDAR: a case study in Belgium. Earth Surf. Process. Landf. 33, 280–294 (2008).

    Article  Google Scholar 

  83. 83.

    Matsumoto, H. & Young, A. P. Automated cobble mapping of a mixed sand-cobble beach using a mobile LiDAR system. Remote Sens. 10, 1253 (2018).

    Article  Google Scholar 

  84. 84.

    Casella, E. et al. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36, 269–275 (2017).

    Article  Google Scholar 

  85. 85.

    Peeri, S., Gardner, J. V., Ward, L. G. & Morrison, J. R. The seafloor: A key factor in LiDAR bottom detection. IEEE Trans. Geosci. Remote Sens. 49, 1150–1157 (2011).

    Article  Google Scholar 

  86. 86.

    Brodie, K. L. et al. Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast. Eng. 136, 147–160 (2018).

    Article  Google Scholar 

  87. 87.

    Gawehn, M. et al. The application of a radar-based depth inversion method to monitor near-shore nourishments on an open sandy coast and an ebb-tidal delta. Coast. Eng. 159, 103716 (2020).

    Article  Google Scholar 

  88. 88.

    Hoefel, F. & Elgar, S. Wave-induced sediment transport and onshore sandbar migration. Science 299, 1885–1887 (2003).

    Article  Google Scholar 

  89. 89.

    Elko, N. et al. The future of nearshore processes research. Shore Beach 83, 13–38 (2015).

    Google Scholar 

  90. 90.

    Luijendijk, A. P., de Vries, S., van het Hooft, T. & de Schipper, M. A. in Coastal Sediments 2019 (eds Wang, P., Rosati, J. D. & Vallee, M.) 1319–1326 (World Scientific, 2019).

  91. 91.

    Luijendijk, A. P., de Schipper, M. A. & Ranasinghe, R. Morphodynamic acceleration techniques for multi-timescale predictions of complex sandy interventions. J. Mar. Sci. Eng. 7, 78 (2019).

    Article  Google Scholar 

  92. 92.

    Huisman, B. J. A., Walstra, D. J. R., Radermacher, M., de Schipper, M. A. & Ruessink, B. G. Observations and modelling of shoreface nourishment behaviour. J. Mar. Sci. Eng. 7, 59 (2019).

    Article  Google Scholar 

  93. 93.

    Weathers, H. D. & Voulgaris, G. Evaluation of beach nourishment evolution models using data from two South Carolina, USA beaches: Folly Beach and Hunting Island. J. Coast. Res. 69, 84–98 (2013).

    Article  Google Scholar 

  94. 94.

    Tonnon, P. K., Huisman, B. J. A., Stam, G. N. & van Rijn, L. C. Numerical modelling of erosion rates, life span and maintenance volumes of mega nourishments. Coast. Eng. 131, 51–69 (2018).

    Article  Google Scholar 

  95. 95.

    Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M. & Stelling, G. S. Development and validation of a three-dimensional morphological model. Coast. Eng. 51, 883–915 (2004).

    Article  Google Scholar 

  96. 96.

    Zyserman, J. A. & Johnson, H. K. Modelling morphological processes in the vicinity of shore-parallel breakwaters. Coast. Eng. 45, 261–284 (2002).

    Article  Google Scholar 

  97. 97.

    Walstra, D. J. R., Reniers, A. J. H. M., Ranasinghe, R., Roelvink, J. A. & Ruessink, B. G. On bar growth and decay during interannual net offshore migration. Coast. Eng. 60, 190–200 (2012).

    Article  Google Scholar 

  98. 98.

    Barnard, P. L. et al. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 74, 1095–1125 (2014).

    Article  Google Scholar 

  99. 99.

    Kalligeris, N., Smit, P. B., Ludka, B. C., Guza, R. T. & Gallien, T. W. Calibration and assessment of process-based numerical models for beach profile evolution in southern California. Coast. Eng. 158, 103650 (2020).

    Article  Google Scholar 

  100. 100.

    Roelvink, D. et al. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133–1152 (2009).

    Article  Google Scholar 

  101. 101.

    Huisman, B. J. A., Ruessink, B. G., de Schipper, M. A., Luijendijk, A. P. & Stive, M. J. F. Modelling of bed sediment composition changes at the lower shoreface of the Sand Motor. Coast. Eng. 132, 33–49 (2018).

    Article  Google Scholar 

  102. 102.

    Kroon, A., de Schipper, M. A., van Gelder, P. & Aarninkhof, S. G. J. Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change. J. Coast. Eng. 158, 103673 (2020).

    Article  Google Scholar 

  103. 103.

    Le Cozannet, G. et al. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 9, 42 (2019).

    Article  Google Scholar 

  104. 104.

    Baas, A. C. W. Simulating dune landscapes in vegetated environments. Scenario 6, 1–22 (1997).

    Google Scholar 

  105. 105.

    Ranasinghe, R. On the need for a new generation of coastal change models for the 21st century. Sci. Rep. 10, 2010 (2020).

    Article  Google Scholar 

  106. 106.

    Anderson, W. P. & Lauer, R. M. The role of overwash in the evolution of mixing zone morphology within barrier islands. Hydrogeol. J. 16, 1483–1495 (2008).

    Article  Google Scholar 

  107. 107.

    Terry, J. P. & Falkland, A. C. Responses of atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands. Hydrogeol. J. 18, 749–759 (2010).

    Article  Google Scholar 

  108. 108.

    Ataie-Ashtiani, B., Werner, A. D., Simmons, C. T., Morgan, L. K. & Lu, C. How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise? Hydrogeol. J. 21, 1673–1677 (2013).

    Article  Google Scholar 

  109. 109.

    Morgan, L. K. & Werner, A. D. Seawater intrusion vulnerability indicators for freshwater lenses in strip islands. J. Hydrol. 508, 322–327 (2014).

    Article  Google Scholar 

  110. 110.

    Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B. & Simmons, C. T. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. J. Hydrol. 535, 235–255 (2016).

    Article  Google Scholar 

  111. 111.

    Chang, S. W., Nemec, K., Kalin, L. & Clement, T. P. Impacts of climate change and urbanization on groundwater resources in a barrier island. J. Environ. Eng. 142, D4016001 (2016).

    Article  Google Scholar 

  112. 112.

    White, I. & Falkland, T. Management of freshwater lenses on small Pacific islands. Hydrogeol. J. 18, 227–246 (2010).

    Article  Google Scholar 

  113. 113.

    Oberle, F. K. J., Swarzenski, P. W. & Storlazzi, C. D. Atoll groundwater movement and its response to climatic and sea-level fluctuations. Water 9, 650 (2017).

    Article  Google Scholar 

  114. 114.

    Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi-Hart, J. A. & Voss, C. I. Increasing threat of coastal groundwater hazards from sea-level rise in California. Nat. Clim. Change 10, 946–952 (2020).

    Article  Google Scholar 

  115. 115.

    Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).

    Article  Google Scholar 

  116. 116.

    Habel, S., Fletcher, C. H., Anderson, T. R. & Thompson, P. R. Sea-level rise induced multi-mechanism flooding and contribution to urban infrastructure failure. Sci. Rep. 10, 3796 (2020).

    Article  Google Scholar 

  117. 117.

    Huizer, S., Oude Essink, G. H. P. & Bierkens, M. F. P. Fresh groundwater resources in a large sand replenishment. Hydrol. Earth Syst. Sci. 20, 3149–3166 (2016).

    Article  Google Scholar 

  118. 118.

    Huizer, S., Radermacher, M., de Vries, S., Oude Essink, G. H. P. & Bierkens, M. F. P. Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment. Hydrol. Earth Syst. Sci. 22, 1065–1080 (2018).

    Article  Google Scholar 

  119. 119.

    Robinson, C., Xin, P., Li, L. & Barry, D. A. Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions. Water Resour. Res. 50, 165–181 (2014).

    Article  Google Scholar 

  120. 120.

    Li, L., Cartwright, N., Nielsen, P. & Lockington, D. Response of coastal groundwater table to offshore storms. China Ocean Eng. 18, 423–431 (2004).

    Google Scholar 

  121. 121.

    Trglavcnik, V., Morrow, D., Weber, K. P., Li, L. & Robinson, C. E. Analysis of tide and offshore storm-induced water table fluctuations for structural characterization of a coastal island aquifer. Water Resour. Res. 54, 2749–2767 (2018).

    Article  Google Scholar 

  122. 122.

    Housego, R. et al. Barrier Island Groundwater (ICCE, 2018).

  123. 123.

    Silva, F. G., Wijnberg, K. M., de Groot, A. V. & Hulscher, S. J. M. H. The influence of groundwater depth on coastal dune development at sand flats close to inlets. Ocean Dyn. 68, 885–897 (2018).

    Article  Google Scholar 

  124. 124.

    Horn, D. P. Beach groundwater dynamics. Geomorphology 48, 121–146 (2002).

    Article  Google Scholar 

  125. 125.

    Evans, T. B. & Wilson, A. M. Groundwater transport and the freshwater–saltwater interface below sandy beaches. J. Hydrol. 538, 563–573 (2016).

    Article  Google Scholar 

  126. 126.

    Román-Sierra, J., Muñoz-Perez, J. J. & Navarro-Pons, M. Beach nourishment effects on sand porosity variability. Coast. Eng. 83, 221–232 (2014).

    Article  Google Scholar 

  127. 127.

    Soares, A. G., McLachlan, A. & Schlacher, T. A. Disturbance effects of stranded kelp on populations of the sandy beach bivalve Donax serra (Röding). J. Exp. Mar. Biol. Ecol. 205, 165–186 (1996).

    Article  Google Scholar 

  128. 128.

    Schlacher, T. A. et al. Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar. Ecol. 29, 70–90 (2008).

    Article  Google Scholar 

  129. 129.

    Schlacher, T. A. & Thompson, L. Environmental control of community organisation on ocean-exposed sandy beaches. Mar. Freshw. Res. 64, 119–129 (2013).

    Article  Google Scholar 

  130. 130.

    Schlacher, T. A. & Thompson, L. Spatial structure on ocean-exposed sandy beaches: faunal zonation metrics and their variability. Mar. Ecol. Prog. Ser. 478, 43–55 (2013).

    Article  Google Scholar 

  131. 131.

    Schoeman, D. S., Schlacher, T. A. & Defeo, O. Climate-change impacts on sandy-beach biota: crossing a line in the sand. Glob. Change Biol. 20, 2383–2392 (2014).

    Article  Google Scholar 

  132. 132.

    Rafael Barboza, F. & Defeo, O. Global diversity patterns in sandy beach macrofauna: A biogeographic analysis. Sci. Rep. 5, 14515 (2015).

    Article  Google Scholar 

  133. 133.

    Maslo, B. et al. Selecting umbrella species for conservation: A test of habitat models and niche overlap for beach-nesting birds. Biol. Conserv. 203, 233–242 (2016).

    Article  Google Scholar 

  134. 134.

    Maslo, B. et al. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds. PeerJ 4, e2460 (2016).

    Article  Google Scholar 

  135. 135.

    Schlacher, T. et al. The early shorebird will catch fewer invertebrates on trampled sandy beaches. PLoS ONE 11, e0161905 (2016).

    Article  Google Scholar 

  136. 136.

    Olds, A. D. et al. The ecology of fish in the surf zones of ocean beaches: A global review. Fish Fish. 19, 78–89 (2018).

    Article  Google Scholar 

  137. 137.

    Rae, C., Hyndes, G. A. & Schlacher, T. A. Trophic ecology of ghost crabs with diverse tastes: Unwilling vegetarians. Estuar. Coast. Shelf Sci. 224, 272–280 (2019).

    Article  Google Scholar 

  138. 138.

    Schlacher, T. A. et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 23, 906–916 (2020).

    Article  Google Scholar 

  139. 139.

    Brown, A. Behavioural plasticity as a key factor in the survival and evolution of the macrofauna on exposed sandy beaches. Rev. Chil. Hist. Nat. 69, 469–474 (1996).

    Google Scholar 

  140. 140.

    Dugan, J. E. et al. Give beach ecosystems their day in the sun. Science 329, 1146 (2010).

    Article  Google Scholar 

  141. 141.

    Manning, L. M., Peterson, C. H. & Fegley, S. R. Degradation of surf-fish foraging habitat driven by persistent sedimentological modifications caused by beach nourishment. Bull. Mar. Sci. 89, 83–106 (2013).

    Article  Google Scholar 

  142. 142.

    Manning, L. M., Peterson, C. H. & Bishop, M. J. Dominant macrobenthic populations experience sustained impacts from annual disposal of fine sediments on sandy beaches. Mar. Ecol. Prog. Ser. 508, 1–15 (2014).

    Article  Google Scholar 

  143. 143.

    Peterson, C. H., Bishop, M. J., D’Anna, L. M. & Johnson, G. A. Multi-year persistence of beach habitat degradation from nourishment using coarse shelly sediments. Sci. Total Environ. 487, 481–492 (2014).

    Article  Google Scholar 

  144. 144.

    Schlacher, T. A. et al. Golden opportunities: a horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 157, 1–6 (2015).

    Article  Google Scholar 

  145. 145.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  146. 146.

    Defeo, O. et al. Threats to sandy beach ecosystems: a review. Estuar. Coast. Shelf Sci. 81, 1–12 (2009).

    Article  Google Scholar 

  147. 147.

    Schlacher, T. A. et al. Sandy beaches at the brink. Divers. Distrib. 13, 556–560 (2007).

    Article  Google Scholar 

  148. 148.

    Speybroeck, J. et al. Beach nourishment: an ecologically sound coastal defence alternative? A review. Aquat. Conserv. Mar. Freshw. Ecosyst. 16, 419–435 (2006).

    Article  Google Scholar 

  149. 149.

    Wooldridge, T., Henter, H. J. & Kohn, J. R. Effects of beach replenishment on intertidal invertebrates: A 15-month, eight beach study. Estuar. Coast. Shelf Sci. 175, 24–33 (2016).

    Article  Google Scholar 

  150. 150.

    Schooler, N. K., Dugan, J. E. & Hubbard, D. M. No lines in the sand: Impacts of intense mechanized maintenance regimes on sandy beach ecosystems span the intertidal zone on urban coasts. Ecol. Indic. 106, 105457 (2019).

    Article  Google Scholar 

  151. 151.

    Jones, A. R., Murray, A., Lasiak, T. A. & Marsh, R. E. The effects of beach nourishment on the sandy-beach amphipod Exoediceros fossor: impact and recovery in Botany Bay, New South Wales, Australia. Mar. Ecol. 29, 28–36 (2008).

    Article  Google Scholar 

  152. 152.

    Schlacher, T. A., Noriega, R., Jones, A. & Dye, T. The effects of beach nourishment on benthic invertebrates in eastern Australia: impacts and variable recovery. Sci. Total Environ. 435–436, 411–417 (2012).

    Article  Google Scholar 

  153. 153.

    Schlacher, T. A. & Thompson, L. M. C. Exposure of fauna to off-road vehicle (ORV) traffic on sandy beaches. Coast. Manag. 35, 567–583 (2007).

    Article  Google Scholar 

  154. 154.

    Schlacher, T. A., Thompson, L. M. C. & Walker, S. J. Mortalities caused by off-road vehicles (ORVs) to a key member of sandy beach assemblages, the surf clam Donax deltoides. Hydrobiologia 610, 345–350 (2008).

    Article  Google Scholar 

  155. 155.

    Sheppard, N., Pitt, K. A. & Schlacher, T. A. Sub-lethal effects of off-road vehicles (ORVs) on surf clams on sandy beaches. J. Exp. Mar. Biol. Ecol. 380, 113–118 (2009).

    Article  Google Scholar 

  156. 156.

    Thompson, L. & Schlacher, T. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biol. Conserv. 147, 123–132 (2011).

    Google Scholar 

  157. 157.

    Manzanera, M., Alcoverro, T., Jiménez, J. A. & Romero, J. The large penumbra: Long-distance effects of artificial beach nourishment on Posidonia oceanica meadows. Mar. Pollut. Bull. 86, 129–137 (2014).

    Article  Google Scholar 

  158. 158.

    Convertino, M. et al. Anthropogenic renourishment feedback on shorebirds: a multispecies Bayesian perspective. Ecol. Eng. 37, 1184–1194 (2011).

    Article  Google Scholar 

  159. 159.

    Martin, K. L. M. & Adams, L. C. Effects of repeated sand replenishment projects on runs of a beach-spawning fish, the California grunion. J. Mar. Sci. Eng. 8, 178 (2020).

    Article  Google Scholar 

  160. 160.

    Van Tomme, J., Vanden Eede, S., Speybroeck, J., Degraer, S. & Vincx, M. Macrofaunal sediment selectivity considerations for beach nourishment programmes. Mar. Environ. Res. 84, 10–16 (2013).

    Article  Google Scholar 

  161. 161.

    Peterson, C. H., Hickerson, D. H. M. & Johnson, G. G. Short-term consequences of nourishment and bulldozing on the dominant large invertebrates of a sandy beach. J. Coast. Res. 16, 368–378 (2000).

    Google Scholar 

  162. 162.

    Viola, S. M., Hubbard, D. M., Dugan, J. E. & Schooler, N. K. Burrowing inhibition by fine textured beach fill: implications for recovery of beach ecosystems. Estuar. Coast. Shelf Sci. 150, 142–148 (2014).

    Article  Google Scholar 

  163. 163.

    Dugan, J. E., Airoldi, L., Chapman, M. G., Walker, S. J. & Schlacher, T. Estuarine and coastal structures: environmental effects, a focus on shore and nearshore structures. Treatise Estuar. Coast. Sci. 8, 17–41 (2012).

    Google Scholar 

  164. 164.

    Martins, G. M., Amaral, A. F., Wallenstein, F. M. & Neto, A. I. Influence of a breakwater on nearby rocky intertidal community structure. Mar. Environ. Res. 67, 237–245 (2009).

    Article  Google Scholar 

  165. 165.

    van Egmond, E. M. et al. A mega-nourishment creates novel habitat for intertidal macroinvertebrates by enhancing habitat relief of the sandy beach. Estuar. Coast. Shelf Sci. 207, 232–241 (2018).

    Article  Google Scholar 

  166. 166.

    Peterson, C. H., Bishop, M. J., Johnson, G. A., D’Anna, L. M. & Manning, L. M. Exploiting beach filling as an unaffordable experiment: benthic intertidal impacts propagating upwards to shorebirds. J. Exp. Mar. Biol. Ecol. 338, 205–221 (2006).

    Article  Google Scholar 

  167. 167.

    Peterson, C. H. & Bishop, M. J. Assessing the environmental impacts of beach nourishment. Bioscience 55, 887–896 (2005).

    Article  Google Scholar 

  168. 168.

    Brock, K. A., Reece, J. S. & Ehrhart, L. M. The effects of artificial beach nourishment on marine turtles: differences between loggerhead and green turtles. Restor. Ecol. 17, 297–307 (2009).

    Article  Google Scholar 

  169. 169.

    Lithgow, D. et al. Linking restoration ecology with coastal dune restoration. Geomorphology 199, 214–224 (2013).

    Article  Google Scholar 

  170. 170.

    Pranzini, E. et al. Sand colour at Cuba and its influence on beach nourishment and management. Ocean Coast. Manag. 126, 51–60 (2016).

    Article  Google Scholar 

  171. 171.

    Greene, K. in ASMFC Habitat Management Series # 7 1–174 (Atlantic States Marine Fisheries Commission, 2002).

  172. 172.

    Bendixen, M., Best, J., Hackney, C. & Iversen, L. L. Time is running out for sand. Nature 571, 29–31 (2019).

    Article  Google Scholar 

  173. 173.

    Peduzzi, P. Sand, rarer than one thinks. Environ. Dev. 11, 208–218 (2014).

    Article  Google Scholar 

  174. 174.

    Haasnoot, M. et al. Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environ. Res. Lett. 15, 034007 (2020).

    Article  Google Scholar 

  175. 175.

    Vidal, R. & van Oord, G. Environmental impacts in beach nourishment: a comparison of options. Terra Aqua 19, 14–20 (2010).

    Google Scholar 

  176. 176.

    van der Bilt, V. Assessing emission performance of dredging projects. Master’s thesis, Delft University of Technology, Faculty of Civil Engineering and Geosciences (2019).

  177. 177.

    Hoagland, P., Jin, D. & Kite-Powell, H. L. The costs of beach replenishment along the U.S. Atlantic Coast. J. Coast. Res. 278, 199–204 (2012).

    Article  Google Scholar 

  178. 178.

    Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Glob. Planet. Change 111, 150–158 (2013).

    Article  Google Scholar 

  179. 179.

    CEDA. Effective contract-type selection in the dredging industry. A guidance paper. Central Dredging Association (CEDA) https://dredging.org/media/ceda/org/documents/resources/cedaonline/2019-12-ecs.pdf (2019).

  180. 180.

    SANDAG & Moffatt & Nichol. Feasibility study. San Diego regional beach sand replenishment project, San Diego, California. SANDAG http://www.sandag.org/uploads/publicationid/publicationid_1327_7318.pdf (2007).

  181. 181.

    Bendixen, M., Iversen, L. L. & Overeem, I. Greenland: Build an economy on sand. Science 358, 879 (2017).

    Google Scholar 

  182. 182.

    Boyd, S. E., Limpenny, D. S., Rees, H. L. & Cooper, K. M. The effects of marine sand and gravel extraction on the macrobenthos at a commercial dredging site (results 6 years post-dredging). ICES J. Mar. Sci. 62, 145–162 (2005).

    Article  Google Scholar 

  183. 183.

    de Jong, M. F. et al. Impact on demersal fish of a large-scale and deep sand extraction site with ecosystem-based landscaped sandbars. Estuar. Coast. Shelf Sci. 146, 83–94 (2014).

    Article  Google Scholar 

  184. 184.

    Jiao, S., Chen, X. & Du, Q. in Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC 2011) 3604–3607 (ICECC, 2011).

  185. 185.

    Parkinson, R. W. & Ogurcak, D. E. Beach nourishment is not a sustainable strategy to mitigate climate change. Estuar. Coast. Shelf Sci. 212, 203–209 (2018).

    Article  Google Scholar 

  186. 186.

    Goncalves Castro, M. B., Mestemaker, B. T. W. & Van Den Heuvel, H. in International Conference on Modelling and Optimisation of Ship Energy Systems (2019).

  187. 187.

    Pendleton, L., Mohn, C., Vaughn, R. K., King, P. & Zoulas, J. G. Size matters: The economic value of beach erosion and nourishment in Southern California. Contemp. Econ. Policy 30, 223–237 (2012).

    Article  Google Scholar 

  188. 188.

    Todd, D. J. & Bowa, K. Development of beach health index for the Gold Coast, Australia. J. Coast. Res. 75, 710–714 (2016).

    Article  Google Scholar 

  189. 189.

    Muller, M. W. Beach replenishment and surf-zone injuries along the coast of Delmarva, USA. Ocean Coast. Manag. 151, 127–133 (2018).

    Article  Google Scholar 

  190. 190.

    de Zeeuw, R. C., de Schipper, M. A., Roelvink, D., de Vries, S. & Stive, M. J. F. in Proceedings of the Coastal Engineering Conference (2012).

  191. 191.

    de Schipper, M. A. et al. in Coastal Dynamics 2013: 7th International Conference on Coastal Dynamics, Arcachon, France (Bordeaux University, 2013).

  192. 192.

    Fletemeyer, J., Hearin, J., Haus, B. & Sullivan, A. The impact of sand nourishment on beach safety. J. Coast. Res. 341, 1–5 (2018).

    Article  Google Scholar 

  193. 193.

    Dally, W. R. & Osiecki, D. A. Evaluating the impact of beach nourishment on surfing: Surf City, Long Beach Island, New Jersey, U.S.A. J. Coast. Res. 344, 793–805 (2018).

    Article  Google Scholar 

  194. 194.

    Corne, N. P. The implications of coastal protection and development on surfing. J. Coast. Res. 25, 427–434 (2009).

    Article  Google Scholar 

  195. 195.

    Albada, E., Goshow, C. & Dompe, P. Effect of beach nourishment on surfing – observations from the St. Johns county shore protection project. Florida Shore and Beach Preservation Association (FSBPA) https://fsbpa.com/07Proceedings/05Albada2007.pdf (2007).

  196. 196.

    Miller, J. K., Mahon, A. M. & Herrington, T. O. in Proceedings of the Coastal Engineering Conference 1–15 (2010).

  197. 197.

    Gopalakrishnan, S., Smith, M. D., Slott, J. M. & Murray, A. B. The value of disappearing beaches: A hedonic pricing model with endogenous beach width. J. Environ. Econ. Manage. 61, 297–310 (2011).

    Article  Google Scholar 

  198. 198.

    Lazarus, E. D., McNamara, D. E., Smith, M. D., Gopalakrishnan, S. & Murray, A. B. Emergent behavior in a coupled economic and coastline model for beach nourishment. Nonlinear Process. Geophys. 18, 989–999 (2011).

    Article  Google Scholar 

  199. 199.

    Murray, A. B., Gopalakrishnan, S., McNamara, D. E. & Smith, M. D. Progress in coupling models of human and coastal landscape change. Comput. Geosci. 53, 30–38 (2013).

    Article  Google Scholar 

  200. 200.

    Lazarus, E. D., Ellis, M. A., Murray, A. B. & Hall, D. M. An evolving research agenda for human-coastal systems. Geomorphology 256, 81–90 (2016).

    Article  Google Scholar 

  201. 201.

    USACE. New Directions in Water Resources Planning for the U.S. Army Corps of Engineers (National Academies Press, 1999).

  202. 202.

    Parsons, G. R., Massey, D. M. & Tomasi, T. Familiar and favorite sites in a random utility model of beach recreation. Mar. Resour. Econ. 14, 299–315 (1999).

    Article  Google Scholar 

  203. 203.

    Costa, M. F. & Kahn, J. R. Boa Viagem erosion prevention and beach nourishment project. IX Congr. da Assoc. Bras. Estud. do Quaternário (2003).

  204. 204.

    Nordstrom, K. F., Pranzini, E., Jackson, N. L. & Coli, M. The marble beaches of Tuscany. Geogr. Rev. 98, 280–300 (2008).

    Article  Google Scholar 

  205. 205.

    Asensio-Montesinos, F. et al. The origin of sand and its colour on the south-eastern coast of Spain: Implications for erosion management. Water 12, 377 (2020).

    Article  Google Scholar 

  206. 206.

    Gopalakrishnan, S., McNamara, D., Smith, M. D. & Murray, A. B. Decentralized management hinders coastal climate adaptation: the spatial-dynamics of beach nourishment. Environ. Resour. Econ. 67, 761–787 (2017).

    Article  Google Scholar 

  207. 207.

    Martinich, J., Neumann, J., Ludwig, L. & Jantarasami, L. Risks of sea level rise to disadvantaged communities in the United States. Mitig. Adapt. Strateg. Glob. Chang. 18, 169–185 (2013).

    Article  Google Scholar 

  208. 208.

    Whitehead, J. C., Dumas, C. F., Herstine, J., Hill, J. & Buerger, B. Valuing beach access and width with revealed and stated preference data. Mar. Resour. Econ. 23, 119–135 (2008).

    Article  Google Scholar 

  209. 209.

    Masselink, G., Russell, P., Rennie, A., Brooks, S. & Spencer, T. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev. https://doi.org/10.14465/2020.arc08.cgm (2020).

    Article  Google Scholar 

  210. 210.

    Verhagen, H. J. Analysis of beach nourishment schemes. J. Coast. Res. 12, 179–185 (1996).

    Google Scholar 

  211. 211.

    Dean, R. G. & Yoo, C. H. Beach-nourishment performance predictions. J. Waterw. Port Coast. Ocean Eng. 118, 567–586 (1992).

    Article  Google Scholar 

  212. 212.

    Pan, Y. et al. Performance evaluation of a beach nourishment project at West Beach in Beidaihe, China. J. Coast. Res. 27, 769–783 (2011).

    Article  Google Scholar 

  213. 213.

    Raybould, M. & Mules, T. A cost–benefit study of protection of the northern beaches of Australia’s Gold Coast. Tour. Econ. 5, 121–139 (1999).

    Article  Google Scholar 

  214. 214.

    Shin, B. S. & Kim, K. H. in Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC 2013) 69–74 (APAC, 2013).

  215. 215.

    Martino, S. & Amos, C. L. Valuation of the ecosystem services of beach nourishment in decision-making: The case study of Tarquinia Lido, Italy. Ocean Coast. Manag. 111, 82–91 (2015).

    Article  Google Scholar 

  216. 216.

    Murcia, C. et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol. Evol. 29, 548–553 (2014).

    Article  Google Scholar 

  217. 217.

    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    Article  Google Scholar 

  218. 218.

    Hinkel, J. et al. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Chang. 8, 570–578 (2018).

    Article  Google Scholar 

  219. 219.

    Hauer, M. E. Migration induced by sea-level rise could reshape the US population landscape. Nat. Clim. Chang. 7, 321–325 (2017).

    Article  Google Scholar 

  220. 220.

    Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020).

    Article  Google Scholar 

  221. 221.

    Oppenheimer, M. et al. Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. IPCC 355, 126–129 (2019).

    Google Scholar 

  222. 222.

    Griffith, A. D., Coburn, A. S., Peek, K. M. & Young, R. S. in Learning from the Impacts of Superstorm Sandy (eds Bret Bennington, J. & Farmer, E. C.) 57–68 (Academic Press, 2014).

  223. 223.

    Stephens, S. A., Bell, R. G. & Lawrence, J. Developing signals to trigger adaptation to sea-level rise. Environ. Res. Lett. 13, 10 (2018)

    Article  Google Scholar 

  224. 224.

    Griggs, G. & Kinsman, N. Beach widths, cliff slopes, and artificial nourishment along the California coast. Shore 84, 1–12 (2016).

    Google Scholar 

  225. 225.

    Gontz, A. M., Moss, P. T. & Wagenknecht, E. K. Stratigraphic architecture of a regressive strand plain, flinders beach, north Stradbroke Island, Queensland, Australia. J. Coast. Res. 30, 575–585 (2014).

    Google Scholar 

  226. 226.

    Bingham, E. L. et al. Functional plasticity in vertebrate scavenger assemblages in the presence of introduced competitors. Oecologia 188, 583–593 (2018).

    Article  Google Scholar 

  227. 227.

    Jackson, A., Hill, P. & McGrath, J. A history of the implementation and evolution of sand nourishment methods on the Gold Coast, Australia. Coasts Ports 2013, 418–423 (2013).

    Google Scholar 

  228. 228.

    Turner, I. L. et al. Predicted and observed coastline changes at the Gold Coast artificial reef. Coast. Eng. 2000, 1836–1847 (2001).

    Google Scholar 

  229. 229.

    de Boer, W. et al. Understanding coastal erosion processes at the Korean east coast. Proc. Coast. Dyn. 2017, 1336–1347 (2017).

    Google Scholar 

  230. 230.

    Chang, J. I. & Yoon, S. The economic benefit of coastal erosion control in Korea. J. Coast. Res. 1, 1317–1321 (2016).

    Article  Google Scholar 

  231. 231.

    Kim, K.-H., Yoo, H.-S. & Kobayashi, N. Mitigation of beach erosion after coastal road construction. J. Coast. Res. 27, 645–651 (2011).

    Article  Google Scholar 

  232. 232.

    Ok, H. Y., Ho, Y. S. & Suh, H. L. Seasonal zonation patterns of benthic amphipods in a sandy shore surf zone of Korea. J. Crustac. Biol. 22, 459–466 (2002).

    Article  Google Scholar 

  233. 233.

    Kabat, P. et al. Dutch coasts in transition. Nat. Geosci. 2, 450–452 (2009).

    Article  Google Scholar 

  234. 234.

    Janssen, G. M., Leewis, L. & Marx, S. in Sandy Beaches and Coastal Zone Management – Proceedings of the Fifth International Symposium on Sandy Beaches 121–123 (2011).

  235. 235.

    Leewis, L., van Bodegom, P. M., Rozema, J. & Janssen, G. M. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance? Estuar. Coast. Shelf Sci. 113, 172–181 (2012).

    Article  Google Scholar 

  236. 236.

    Stronkhorst, J., Huisman, B., Giardino, A., Santinelli, G. & Santos, F. D. Sand nourishment strategies to mitigate coastal erosion and sea level rise at the coasts of Holland (The Netherlands) and Aveiro (Portugal) in the 21st century. Ocean Coast. Manag. 156, 226–276 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

M.A.deS. acknowledges financial support from NWO Domain Applied and Engineering Sciences under project code 15058. B.C.L. acknowledges financial support from United States Army Corps of Engineers (USACE), California Department of Parks and Recreation, Natural Resources Division Oceanography Program and the Copley Foundation. B.R. acknowledges financial support from U.S. National Science Foundation, USACE and the WHOI Investment in Science Fund. A.P.L. is supported by the Deltares Strategic Research Programme ‘Coastal and Offshore Engineering’. Rob Grenzeback, Lucian Parry and Brian Woodward (Scripps Institution of Oceanography) are thanked for providing feedback on the latest survey techniques. Sumi Selvaraj and Carey Batha (California Coastal Commission) are thanked for their helpful discussions about coastal management and social justice. Seok-Bong Lee is thanked for providing information on South Korean nourishments.

Author information

Affiliations

Authors

Contributions

M.A.deS. and B.C.L. conceived the project. All co-authors contributed to the writing and editing of the manuscript. M.A.deS. and B.C.L. gave special attention to the ‘Introduction’, ‘Sand redistribution’, ‘Broader impacts’, ‘Integrating perspectives’ and ‘Future directions’ sections. B.R. gave special attention to the ‘Groundwater impacts’ and ‘Integrating perspectives’ sections. A.P.L. gave special attention to the ‘Sand redistribution’ section. T.A.S. gave special attention to the ‘Ecological impacts’, ‘Integrating perspectives’ and ‘Future directions’ sections. M.A.deS. compiled edits of the text and finalized them, in collaboration with the editor.

Corresponding author

Correspondence to Matthieu A. de Schipper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Feng Cai, José Jiménez, Amaia Ruiz de Alegria Arzaburu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Schipper, M.A., Ludka, B.C., Raubenheimer, B. et al. Beach nourishment has complex implications for the future of sandy shores. Nat Rev Earth Environ 2, 70–84 (2021). https://doi.org/10.1038/s43017-020-00109-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing