Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The geological history and evolution of West Antarctica


West Antarctica has formed the tectonically active margin between East Antarctica and the Pacific Ocean for almost half a billion years, where it has recorded a dynamic history of magmatism, continental growth and fragmentation. Despite the scale and importance of West Antarctica, there has not been an integrated view of the geology and tectonic evolution of the region as a whole. In this Review, we identify three broad physiographic provinces and present their overlapping and interconnected tectonic, magmatic and sedimentary history. The Weddell Sea region, which lays furthest from the subducting margin, was most impacted by the Jurassic initiation of Gondwana break-up. Marie Byrd Land and the West Antarctic rift system developed as a broad Cretaceous to Cenozoic continental rift system, reworking a former convergent margin. Finally, the Antarctic Peninsula and Thurston Island preserve an almost complete magmatic arc system. We conclude by briefly summarizing the geologic history of the West Antarctic system as a whole, how it provides insight into continental margin evolution and what key topics must be addressed by future research.

Key points

  • West Antarctica is a geologically complex region that developed along the margin of Gondwana between the subducting Paleo-Pacific oceanic plate and the cratonic East Antarctic continent.

  • West Antarctica can be broken into three broad geological and physiographic provinces: the Weddell Sea sector; the West Antarctic rift system and Marie Byrd Land; and the Antarctic Peninsula and Thurston Island.

  • The Weddell Sea sector includes the oldest rocks in West Antarctica, was least affected by the marginal subduction system and its movement to its current position during the Jurassic initiation of Gondwana break-up was associated with back-arc extension in the Weddell Sea rift system.

  • The West Antarctic rift system and Marie Byrd Land region followed as an active subducting margin and magmatic arc outboard from the East Antarctic Ross orogen. Subduction ceased during the Cretaceous, associated with extreme crustal extension and resulting in a broad rift basin and, ultimately, New Zealand rifting away.

  • The Antarctic Peninsula and Thurston Island exemplify a continental margin magmatic arc, preserving a record of the flare-ups in magmatism. Arc magmatism ceased from south to north between 90 and 20 million years ago as the Phoenix oceanic spreading centre reached the continental margin trench.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: West Antarctic setting.
Fig. 2: Timeline of key West Antarctic tectonic and magmatic events.
Fig. 3: Plate tectonic reconstruction from 175 to 45 Ma.
Fig. 4: Cross sections of the evolution of West Antarctica.


  1. 1.

    Rey, P. F. & Müller, R. D. Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge. Nat. Geosci. 3, 257–261 (2010).

    Article  Google Scholar 

  2. 2.

    Storey, B. C. et al. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. Tectonophysics 155, 381–390 (1988).

    Article  Google Scholar 

  3. 3.

    Yakymchuk, C. et al. Paleozoic evolution of western Marie Byrd Land, Antarctica. Geol. Soc. Am. Bull. 127, 1464–1484 (2015). Uses isotope and age data to elucidate Paleozoic crustal evolution and reworking along the East Gondwana convergent plate margin, noting along-arc variations between regions.

    Article  Google Scholar 

  4. 4.

    Dalziel, I. & Lawver, L. in The West Antarctic Ice Sheet: Behavior and Environment Vol. 77 (eds Alley, R. B. and Bindschadle, R. A.) 29–44 (American Geophysical Union, 2001).

  5. 5.

    Curtis, M. L. Tectonic history of the Ellsworth Mountains, West Antarctica: reconciling a Gondwana enigma. Geol. Soc. Am. Bull. 113, 939–958 (2001). Reviews the geological and structural evolution of the Ellsworth Mountains sediments from Cambrian deposition through to Permo-Triassic deformation.

    Article  Google Scholar 

  6. 6.

    Randall, D. E. & MacNiocaill, C. Cambrian palaeomagnetic data confirm a Natal Embayment location for the Ellsworth–Whitmore Mountains, Antarctica, in Gondwana reconstructions. Geophys. J. Int. 157, 105–116 (2004).

    Article  Google Scholar 

  7. 7.

    Mortimer, N. et al. Late Cretaceous oceanic plate reorganization and the breakup of Zealandia and Gondwana. Gondwana Res. 65, 31–42 (2019).

    Article  Google Scholar 

  8. 8.

    Tulloch, A. J. et al. Reconnaissance basement geology and tectonics of South Zealandia. Tectonics 38, 516–551 (2019).

    Article  Google Scholar 

  9. 9.

    Nelson, D. A. & Cottle, J. M. The secular development of accretionary orogens: linking the Gondwana magmatic arc record of West Antarctica, Australia and South America. Gondwana Res. 63, 15–33 (2018). Uses zircon geochemistry and dating to characterize eastern MBL magmatism, and reveal fundamental contrasts along the Gondwanide margin.

    Article  Google Scholar 

  10. 10.

    Siddoway, C. S., Richard, S. M., Fanning, C. M. & Luyendyk, B. P. in Gneiss Domes in Orogeny Vol. 380 (eds Whitney, D. L. Teyssier, C. & Siddoway, C. S.) (Geological Society of America, 2004).

  11. 11.

    Burton-Johnson, A. & Riley, T. R. Autochthonous v. accreted terrane development of continental margins: a revised in situ tectonic history of the Antarctic Peninsula. J. Geol. Soc. 172, 822–835 (2015). Reviews the geotectonic evolution of the Antarctic Peninsula, interpreting it in terms of an evolving in situ continental arc, rather than as a series of accreted disparate terranes.

    Article  Google Scholar 

  12. 12.

    Bell, R. E. et al. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394, 58–62 (1998).

    Article  Google Scholar 

  13. 13.

    Pittard, M. L., Galton-Fenzi, B. K., Roberts, J. L. & Watson, C. S. Organization of ice flow by localized regions of elevated geothermal heat flux. Geophys. Res. Lett. 43, 3342–3350 (2016).

    Article  Google Scholar 

  14. 14.

    Spiegel, C. et al. Tectonomorphic evolution of Marie Byrd Land – implications for Cenozoic rifting activity and onset of West Antarctic glaciation. Glob. Planet. Change 145, 98–115 (2016).

    Article  Google Scholar 

  15. 15.

    Schroeder, D. M., Blankenship, D. D., Young, D. A. & Quartini, E. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Proc. Natl Acad. Sci. USA 111, 9070–9072 (2014).

    Article  Google Scholar 

  16. 16.

    Millar, I. L. & Pankhurst, R. J. in Gondwana Six: Structure, Tectonics, and Geophysics Vol. 40 (ed. McKenzie, G. D.) 151–160 (American Geophysical Union, 1987).

  17. 17.

    Wareham, C. D. et al. Pb, Nd, and Sr isotope mapping of Grenville-age crustal provinces in Rodinia. J. Geol. 106, 647–660 (1998).

    Article  Google Scholar 

  18. 18.

    Garrett, S. W., Herrod, L. D. B. & Mantripp, D. R. in Gondwana Six: Structure, Tectonics and Geophysics Vol. 40 (ed. McKenzie, G. D.) 109–116 (American Geophysical Union, 1987).

  19. 19.

    Golynsky, A. V. et al. New magnetic anomaly map of the Antarctic. Geophys. Res. Lett. 45, 6437–6449 (2018).

    Article  Google Scholar 

  20. 20.

    Grantham, G. H., Storey, B. C., Thomas, R. J. & Jacobs, J. in The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 13–20 (Terra Antartica Publication, 1997).

  21. 21.

    Jacobs, J., Pisarevsky, S., Thomas, R. J. & Becker, T. The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Res. 160, 142–158 (2008).

    Article  Google Scholar 

  22. 22.

    Dalziel, I. W. D. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol. Soc. Am. Bull. 109, 16–42 (1997).

    Article  Google Scholar 

  23. 23.

    Jacobs, J. & Thomas, R. J. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic East African–Antarctic orogen. Geology 32, 721–724 (2004).

    Article  Google Scholar 

  24. 24.

    Dalziel, I. W. D. et al. in Continental Extensional Tectonics (eds. Coward, M. P., Dewey, J. F. & Hancock, P. L.) 433–441 (Geological Society of London, 1987).

  25. 25.

    Flowerdew, M. J. et al. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol. Soc. Am. Bull. 119, 275–288 (2007).

    Article  Google Scholar 

  26. 26.

    Maslanyj, M. P. & Storey, B. C. Regional aeromagnetic anomalies in Ellsworth Land: crustal structure and Mesozoic microplate boundaries within West Antarctica. Tectonics 9, 1515–1532 (1990).

    Article  Google Scholar 

  27. 27.

    Webers, G. F. et al. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica Vol. 170 Ch. 2 (eds. Webers, G. F., Craddock, C. & Splettstoesser, J. F.) (Geological Society of America, 1992).

  28. 28.

    Craddock, J. P., Fitzgerald, P., Konstantinou, A., Nereson, A. & Thomas, R. J. Detrital zircon provenance of upper Cambrian-Permian strata and tectonic evolution of the Ellsworth Mountains, West Antarctica. Gondwana Res. 45, 191–207 (2017).

    Article  Google Scholar 

  29. 29.

    Goodge, J.W. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Res. 80, 50–122 (2020).

    Article  Google Scholar 

  30. 30.

    Castillo, P., Fanning, C. M., Fernandez, R., Poblete, F. & Hervé, F. Provenance and age constraints of Paleozoic siliciclastic rocks from the Ellsworth Mountains in West Antarctica, as determined by detrital zircon geochronology. Geol. Soc. Am. Bull. 129, 1568–1584 (2017).

    Google Scholar 

  31. 31.

    Watts, D. R. & Bramall, A. M. Palaeomagnetic evidence for a displaced terrain in Western Antartica. Nature 293, 638–640 (1981).

    Article  Google Scholar 

  32. 32.

    Spörli, K. B. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica Vol. 170 Ch. 3 (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.) (Geological Society of America, 1992).

  33. 33.

    Matsch, C. L. & Ojakangas, R. W. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica. Vol. 170 (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.) 37–62 (Geological Society of America, 1992).

  34. 34.

    Stone, P. & Thompson, M. R. A. in Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.) 347–357 (Geological Society of London, 2005).

  35. 35.

    Schopf, J. M. Ellsworth Mountains: position in West Antarctica due to sea-floor spreading. Science 164, 63–66 (1969).

    Article  Google Scholar 

  36. 36.

    Collinson, J. W., Vavra, C. L. & Zawiskie, J. M. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica Vol. 170 Ch. 5 (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.) (Geological Society of America, 1992).

  37. 37.

    Elliot, D. H., Fanning, C. M. & Hulett, S. R. W. Age provinces in the Antarctic craton: evidence from detrital zircons in Permian strata from the Beardmore Glacier region, Antarctica. Gondwana Res. 28, 152–164 (2015).

    Article  Google Scholar 

  38. 38.

    Curtis, M. L. Gondwanian age dextral transpression and spatial kinematic partitioning within the Heritage Range, Ellsworth Mountains, West Antarctica. Tectonics 16, 172–181 (1997).

    Article  Google Scholar 

  39. 39.

    Curtis, M. L. Palaeozoic to Mesozoic polyphase deformation of the Patuxent Range, Pensacola Mountains, Antarctica. Antarctic Sci. 14, 175–183 (2002).

    Article  Google Scholar 

  40. 40.

    Dalziel, I. W. D. & Elliot, D. H. West Antarctica: problem child of Gondwanaland. Tectonics 1, 3–19 (1982).

    Article  Google Scholar 

  41. 41.

    Dalziel, I. W. D. & Grunow, A. Late Gondwanide tectonic rotations within Gondwanaland. Tectonics 11, 603–606 (1992).

    Article  Google Scholar 

  42. 42.

    Johnston, S. T. The Cape Fold Belt and Syntaxis and the rotated Falkland Islands: dextral transpressional tectonics along the southwest margin of Gondwana. J. Afr. Earth Sci. 31, 51–63 (2000).

    Article  Google Scholar 

  43. 43.

    Jordan, T. A., Ferraccioli, F. & Leat, P. T. New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddell Sea Rift System of West Antarctica. Gondwana Res. 42, 29–48 (2017). Presents new compilations of magnetic and gravity data over the Weddell Sea province, providing an interpretation of the data consistent with both geological and geophysical observations.

    Article  Google Scholar 

  44. 44.

    Craddock, J. P. et al. Precise U-Pb zircon ages and geochemistry of Jurassic granites, Ellsworth-Whitmore terrane, central Antarctica. Geol. Soc. Am. Bull. 129, 118–136 (2016).

    Article  Google Scholar 

  45. 45.

    Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. & Planke, S. Rapid magma emplacement in the Karoo large igneous province. Earth Planet. Sci. Lett. 325–326, 1–9 (2012).

    Article  Google Scholar 

  46. 46.

    Burgess, S. D., Bowring, S. A., Fleming, T. H. & Elliot, D. H. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).

    Article  Google Scholar 

  47. 47.

    Storey, B. C. & Kyle, P. R. An active mantle mechanism for Gondwana breakup. South African J. Geol. 100, 283–290 (1997).

    Google Scholar 

  48. 48.

    Elliot, D. H. & Fleming, T. H. Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28, 539–542 (2000).

    Article  Google Scholar 

  49. 49.

    White, R. A. & McKenzie, D. P. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  Google Scholar 

  50. 50.

    Choi, S. H. et al. Fossil subduction zone origin for magmas in the Ferrar Large Igneous Province, Antarctica: Evidence from PGE and Os isotope systematics in the Basement Sill of the McMurdo Dry Valleys. Earth Planet. Sci. Lett. 506, 507–519 (2019).

    Article  Google Scholar 

  51. 51.

    Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet. Sci. Lett. 105, 134–148 (1991).

    Article  Google Scholar 

  52. 52.

    Storey, B. C., Hole, M. J., Pankhurst, R. J., Millar, I. L. & Vennum, W. Middle Jurassic within-plate granites in west Antarctica and their bearing on the break-up of Gondwanaland. J. Geol. Soc. 145, 999–1007 (1988).

    Article  Google Scholar 

  53. 53.

    Jordan, T. A. et al. Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data. Tectonophysics 585, 137–160 (2013).

    Article  Google Scholar 

  54. 54.

    An, M. et al. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. J. Geophys. Res. 120, 359–383 (2015).

    Article  Google Scholar 

  55. 55.

    Riley, T. R., Jordan, T. A., Leat, P. T., Curtis, M. L. & Millar, I. L. Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Res. 79, 185–196 (2020).

    Article  Google Scholar 

  56. 56.

    Dalziel, I. W. D., Lawver, L., Norton, I. O. & Gahagan, L. M. The Scotia arc: genesis, evolution, global significance. Annu. Rev. Earth Planet. Sci. 41, 767–793 (2013).

    Article  Google Scholar 

  57. 57.

    Martin, A. K. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback. Tectonophysics 445, 245–272 (2007).

    Article  Google Scholar 

  58. 58.

    Dalziel, I. W. D., Lawver, L. & Murphy, J. B. Plumes, orogenesis, and supercontinental fragmentation. Earth Planet. Sci. Lett. 178, 1–11 (2000).

    Article  Google Scholar 

  59. 59.

    Jokat, W., Fechner, N. & Studinger, M. in The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 453–459 (Terra Antartica Publication, 1997).

  60. 60.

    Jokat, W. & Herter, U. Jurassic failed rift system below the Filchner-Ronne-Shelf, Antarctica: new evidence from geophysical data. Tectonophysics 688, 65–83 (2016). Provides the most up-to-date reanalysis of the critical seismic refraction profile delineating the crustal structure of the outboard edge of the Weddell Sea rift system.

    Google Scholar 

  61. 61.

    Kristoffersen, Y. & Haugland, K. Geophysical evidence for the East Antarctic plate boundary in the Weddell Sea. Nature 322, 538–541 (1986).

    Article  Google Scholar 

  62. 62.

    Studinger, M. & Miller, H. Crustal structure of the Filchner-Ronne Shelf and Coats Land, Antarctica, from gravity and magnetic data: implications for the breakup of Gondwana. J. Geophys. Res. 104, 20379–20394 (1999).

    Article  Google Scholar 

  63. 63.

    Jokat, W., Miller, H. & Hübscher, C. in Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.) 201–211 (Geological Society of London, 1996).

  64. 64.

    Leitchenkov, G. L. & Kudryavtzev, G. A. Structure and origin of the Earth’s crust in the Weddell Sea Embayment (beneath the front of the Filchner and Ronne Ice Shelves) from deep seismic sounding data. Polarforschung 67, 143–154 (1997).

    Google Scholar 

  65. 65.

    Ferris, J. K., Vaughan, A. P. M. & Storey, B. C. Relics of a complex triple junction in the Weddell Sea embayment, Antarctica. Earth Planet. Sci. Lett. 178, 215–230 (2000).

    Article  Google Scholar 

  66. 66.

    Pankhurst, R. J., Weaver, S. D., Bradshaw, J. D., Storey, B. C. & Ireland, T. R. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. J. Geophys. Res. 103, 2529–2547 (1998).

    Article  Google Scholar 

  67. 67.

    Mukasa, S. B. & Dalziel, I. W. D. Marie Byrd Land, West Antarctica: evolution of Gondwana’s Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions. Geol. Soc. Am. Bull. 112, 611–627 (2000).

    Article  Google Scholar 

  68. 68.

    LeMasurier, W. E. & Thomson, J. W. in Volcanoes of the Antarctic Plate and Southern Oceans (American Geophysical Union, 1990).

  69. 69.

    Bradshaw, J. D. in Antarctica: A Keystone in a Changing World – Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences (eds Cooper, A. K., Raymond, C. & 10th ISAES Editorial Team) (US Geological Survey, 2007).

  70. 70.

    Handler, M. R., Wysoczanski, R. J. & Gamble, J. A. Proterozoic lithosphere in Marie Byrd Land, West Antarctica: Re–Os systematics of spinel peridotite xenoliths. Chem. Geol. 196, 131–145 (2003).

    Article  Google Scholar 

  71. 71.

    Chatzaras, V. et al. Axial-type olivine crystallographic preferred orientations: the effect of strain geometry on mantle texture. J. Geophys. Res. 121, 4895–4922 (2016).

    Article  Google Scholar 

  72. 72.

    Adams, C. J., Bradshaw, J. D. & Ireland, T. R. Provenance connections between late Neoproterozoic and early Palaeozoic sedimentary basins of the Ross Sea region, Antarctica, south-east Australia and southern Zealandia. Antarctic Sci. 26, 173–182 (2014).

    Article  Google Scholar 

  73. 73.

    Foden, J., Elburg, M. A., Dougherty-Page, J. & Burtt, A. The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J. Geol. 114, 189–210 (2006).

    Article  Google Scholar 

  74. 74.

    Siddoway, C. S. & Fanning, C. M. Paleozoic tectonism on the East Gondwana margin: evidence from SHRIMP U–Pb zircon geochronology of a migmatite–granite complex in West Antarctica. Tectonophysics 477, 262–277 (2009).

    Article  Google Scholar 

  75. 75.

    Nelson, D. A. & Cottle, J. M. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).

    Article  Google Scholar 

  76. 76.

    Brown, M., Korhonen, F. J. & Siddoway, C. S. Organizing melt flow through the crust. Elements 7, 261–266 (2011).

    Article  Google Scholar 

  77. 77.

    Tinto, K. J. et al. Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat. Geosci. 12, 441–449 (2019). Uses new magnetic and gravity data to illuminate the lithospheric characteristics of the Ross Embayment and introduces a basis for interpreting the sub-sea extent of cratonic margin vs West Antarctic provinces.

    Article  Google Scholar 

  78. 78.

    Bialas, R. W., Buck, W. R., Studinger, M. & Fitzgerald, P. G. Plateau collapse model for the Transantarctic Mountains–West Antarctic Rift System: insights from numerical experiments. Geology 35, 687–690 (2007).

    Article  Google Scholar 

  79. 79.

    Divenere, V., Kent, D. V. & Dalziel, I. W. D. Summary of palaeomagnetic results from West Antarctica: implications for the tectonic evolution of the Pacific margin of Gondwana during the Mesozoic. Geol. Soc. London Spl. Publ. 108, 31–43 (1996).

    Google Scholar 

  80. 80.

    Luyendyk, B., Cisowski, S., Smith, C., Richard, S. & Kimbrough, D. Paleomagnetic study of the northern Ford Ranges, western Marie Byrd Land, West Antarctica: motion between West and East Antarctica. Tectonics 15, 122–141 (1996).

    Article  Google Scholar 

  81. 81.

    Storey, B. C. et al. Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes. J. Geol. Soc. 156, 659–671 (1999).

    Article  Google Scholar 

  82. 82.

    McFadden, R. R., Siddoway, C. S., Teyssier, C. & Fanning, C. M. Cretaceous oblique extensional deformation and magma accumulation in the Fosdick Mountains migmatite-cored gneiss dome, West Antarctica. Tectonics 29, TC4022 (2010).

    Article  Google Scholar 

  83. 83.

    Brown, C. R. et al. From source to sink: petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite–granite complex, West Antarctica. J. Petrol. 57, 1241–1278 (2016).

    Article  Google Scholar 

  84. 84.

    Chaput, J. et al. The crustal thickness of West Antarctica. J. Geophys. Res. 119, 378–395 (2014).

    Article  Google Scholar 

  85. 85.

    Goodge, J. W. & Finn, C. A. Glimpses of East Antarctica: aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica. J. Geophys. Res. 115, B09103 (2010).

    Article  Google Scholar 

  86. 86.

    Tessensohn, F. & Henjes-Kunst, F. Northern Victoria Land terranes, Antarctica: far-travelled or local products? Geol. Soc. London Spl. Publ. 246, 275–291 (2005).

    Google Scholar 

  87. 87.

    Ferraccioli, F. et al. Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging. Tectonophysics 487, 43–61 (2009).

    Article  Google Scholar 

  88. 88.

    Stump, E., Gootee, B. & Talarico, F. in Antarctica: Contributions to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F.) 181–190 (Springer, 2006).

  89. 89.

    Larson, R. L. Geological consequences of superplumes. Geology 19, 963–966 (1991).

    Article  Google Scholar 

  90. 90.

    Sutherland, R. & Hollis, C. Cretaceous demise of the Moa plate and strike-slip motion at the Gondwana margin. Geology 29, 279–282 (2001).

    Article  Google Scholar 

  91. 91.

    Finn, C. A., Müller, R. D. & Panter, K. S. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochem. Geophys. Geosyst. 6, 1–26 (2005).

    Article  Google Scholar 

  92. 92.

    Siddoway, C. S., Baldwin, S., Fitzgerald, P. G., Fanning, C. M. & Luyendyk, B. P. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system. Geology 32, 57–60 (2004).

    Article  Google Scholar 

  93. 93.

    Bradshaw, J. D. Cretaceous geotectonic patterns in the New Zealand region. Tectonics 8, 803–820 (1989).

    Article  Google Scholar 

  94. 94.

    Luyendyk, B. P. Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture. Geology 23, 373–376 (1995).

    Article  Google Scholar 

  95. 95.

    Davy, B., Hoernle, K. & Werner, R. Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history. Geochem. Geophys. Geosyst. 9, Q07004 (2008).

    Article  Google Scholar 

  96. 96.

    Lawver, L. A. & Gahagan, L. M. Constraints on timing of extension in the Ross Sea region. Terra Antartica 1, 545–552 (1994).

    Google Scholar 

  97. 97.

    Siddoway, C. S. in Antarctica: A Keystone in a Changing World Ch. 9 (eds Cooper, A. K., Raymond, C. & 10th ISAES Editorial Team) 91–114 (The National Academies of Sciences, Engineering, and Medicine, 2008). Illuminates the Mesozoic tectonic evolution of Marie Byrd Land with evidence of the metamorphic conditions, kinematics and rapid development of transcurrent structures responsible for large-scale crustal thinning across the region.

  98. 98.

    Eagles, G., Gohl, K. & Larter, R. D. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin. Geochem. Geophys. Geosyst. 5, Q07002 (2004).

    Article  Google Scholar 

  99. 99.

    Gaina, C., Müller, R. D., Roest, W. R. & Symonds, P. The opening of the Tasman Sea: a gravity anomaly animation. Earth Interact. 2, 1–23 (1998).

    Article  Google Scholar 

  100. 100.

    Granot, R., Cande, S. C., Stock, J. M. & Damaske, D. Revised Eocene-Oligocene kinematics for the West Antarctic rift system. Geophys. Res. Lett. 40, 279–284 (2013).

    Article  Google Scholar 

  101. 101.

    Granot, R. & Dyment, J. Late Cenozoic unification of East and West Antarctica. Nat. Commun. 9, 3189 (2018).

    Article  Google Scholar 

  102. 102.

    Cande, S. C., Stock, J. M., Müller, R. D. & Ishihara, T. Cenozoic motion between East and West Antarctica. Nature 404, 145–150 (2000).

    Article  Google Scholar 

  103. 103.

    Rocchi, S., LeMasurier, W. E. & Di Vincenzo, G. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Geol. Soc. Am. Bull. 118, 991–1005 (2006).

    Article  Google Scholar 

  104. 104.

    LeMasurier, W. E. & Rex, D. C. in The Geology of Antarctica (ed. Tingey, R. J.) 249–284 (Clarendon, 1991).

  105. 105.

    LeMasurier, W. Shield volcanoes of Marie Byrd Land, West Antarctic rift: oceanic island similarities, continental signature, and tectonic controls. Bull. Volcanol. 75, 726 (2013).

    Article  Google Scholar 

  106. 106.

    Luyendyk, B. P., Wilson, D. S. & Siddoway, C. S. Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: crustal structure and tectonic development. Geochem. Geophys. Geosyst. 4, 1090 (2003).

    Article  Google Scholar 

  107. 107.

    van Wyk de Vries, M., Bingham, R. G. & Hein, A. S. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. Geol. Soc. London Spl. Publ. 461, (231–248 (2017).

    Google Scholar 

  108. 108.

    Behrendt, J. C. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations: a review. Glob. Planet. Change 23, 25–44 (1999).

    Article  Google Scholar 

  109. 109.

    Heeszel, D. S. et al. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. J. Geophys. Res. 121, 1758–1775 (2016).

    Article  Google Scholar 

  110. 110.

    Panter, K. S. et al. The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in southern New Zealand and subantarctic islands. J. Petrol. 47, 1673–1704 (2006).

    Article  Google Scholar 

  111. 111.

    Wobbe, F., Lindeque, A. & Gohl, K. Anomalous South Pacific lithosphere dynamics derived from new total sediment thickness estimates off the West Antarctic margin. Glob. Planet. Change 123, 139–149 (2014).

    Article  Google Scholar 

  112. 112.

    LeMasurier, W. E. in Antarctica: Contributions to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, D., Miller, H. & Tessensohn, F.) 299–302 (Springer, 2006).

  113. 113.

    LeMasurier, W. E. & Landis, C. A. Mantle-plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand. Geol. Soc. Am. Bull. 108, 1450–1466 (1996).

    Article  Google Scholar 

  114. 114.

    Wilson, D. & Luyendyk, B. P. in Antarctica: Contributions to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, D., Miller, H. & Tessensohn, F.) 123–128 (Springer, 2006).

  115. 115.

    Lloyd, A. J. et al. A seismic transect across West Antarctica: evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome. J. Geophys. Res. 120, 8439–8460 (2015).

    Article  Google Scholar 

  116. 116.

    Vaughan, A. P. M. & Storey, B. C. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. J. Geol. Soc. 157, 1243–1256 (2000).

    Article  Google Scholar 

  117. 117.

    Riley, T. R. et al. A revised geochronology of Thurston Island, West Antarctica, and correlations along the proto-Pacific margin of Gondwana. Antarctic Sci. 29, 47–60 (2017).

    Article  Google Scholar 

  118. 118.

    Zundel, M. et al. Thurston Island (West Antarctica) between Gondwana subduction and continental separation: a multistage evolution revealed by apatite thermochronology. Tectonics 38, 878–897 (2019).

    Article  Google Scholar 

  119. 119.

    Riley, T. R., Flowerdew, M. J. & Whitehouse, M. J. U–Pb ion-microprobe zircon geochronology from the basement inliers of eastern Graham Land, Antarctic Peninsula. J. Geol. Soc. 169, 381–393 (2012).

    Article  Google Scholar 

  120. 120.

    Millar, I. L., Pankhurst, R. J. & Fanning, C. M. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. J. Geol. Soc. 159, 145–157 (2002).

    Article  Google Scholar 

  121. 121.

    Milne, A. J. & Millar, I. L. in Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarctic Earth Sciences (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.) 335–340 (Cambridge Univ. Press, 1991).

  122. 122.

    Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Márquez, M. Gondwanide continental collision and the origin of Patagonia. Earth Sci. Rev. 76, 235–257 (2006).

    Article  Google Scholar 

  123. 123.

    Bradshaw, J. D. et al. Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: sedimentology, geochronology and isotope evidence for provenance and tectonic setting in Gondwana. Geol. Mag. 149, 626–644 (2012).

    Article  Google Scholar 

  124. 124.

    Trouw, R. A. J., Passchier, C. W., Simões, L. S. A., Andreis, R. R. & Valeriano, C. M. Mesozoic tectonic evolution of the South Orkney microcontinent, Scotia arc, Antarctica. Geol. Mag. 134, 383–401 (1997).

    Article  Google Scholar 

  125. 125.

    Elliot, D. H., Fanning, C. M. & Laudon, T. S. The Gondwana plate margin in the Weddell Sea sector: Zircon geochronology of upper Paleozoic (mainly Permian) strata from the Ellsworth Mountains and eastern Ellsworth Land, Antarctica. Gondwana Res. 29, 234–247 (2016). Uses detrital zircons to reveal the sources for sediments within the Ellsworth–Whitmore Mountains and provides a reconstruction of the Permian basin system along the margin of Gondwana.

    Article  Google Scholar 

  126. 126.

    Barbeau, D. L. et al. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Sci. 22, 65–78 (2010).

    Article  Google Scholar 

  127. 127.

    Laudon, T. S. in Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarctic Earth Sciences (eds Thomson, M. R. A., Crame, A. & Thomson, J. W.) 455–460 (Cambridge Univ. Press, 1991).

  128. 128.

    Sepúlveda, F. A., Palma-Heldt, S., Hervé, F. & Fanning, C. M. Permian depositional age of metaturbidites of the Duque de York Complex, southern Chile: U-Pb SHRIMP data and palynology. Andean Geol. 37, 375–397 (2010).

    Google Scholar 

  129. 129.

    Campbell, M. J., Rosenbaum, G., Allen, C. M. & Mortimer, N. Origin of dispersed Permian–Triassic fore-arc basin terranes in New Zealand: insights from zircon petrochronology. Gondwana Res. 78, 210–227 (2019).

    Article  Google Scholar 

  130. 130.

    Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M., Horstwood, M. S. A. & Fanning, C. M. The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib. Mineral. Petrol. 151, 751–768 (2006).

    Article  Google Scholar 

  131. 131.

    Willan, R. C. R. Provenance of Triassic-Cretaceous sandstones in the Antarctic Peninsula: implications for terrane models during Gondwana breakup. J. Sediment. Res. 73, 1062–1077 (2003).

    Article  Google Scholar 

  132. 132.

    Mortimer, N. New Zealand’s geological foundations. Gondwana Res. 7, 261–272 (2004).

    Article  Google Scholar 

  133. 133.

    Pankhurst, R. J. et al. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. J. Volcanol. Geotherm. Res. 81, 113–136 (1998).

    Article  Google Scholar 

  134. 134.

    Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J. Petrol. 41, 605–625 (2000). Gives ages and interpretation of the key Jurassic silicic volcanic large igneous province, which developed owing to crustal melting associated with arc extension and potential interaction with the margins of a mantle plume.

    Article  Google Scholar 

  135. 135.

    Riley, T. R. & Knight, K. B. Age of pre-break-up Gondwana magmatism. Antarctic Sci. 13, 99–110 (2001).

    Article  Google Scholar 

  136. 136.

    Riley, T. R. et al. Early Jurassic magmatism on the Antarctic Peninsula and potential correlation with the Subcordilleran plutonic belt of Patagonia. J. Geol. Soc. 174, 365–376 (2017).

    Article  Google Scholar 

  137. 137.

    Rapela, C. W., Pankhurst, R. J., Fanning, C. M. & Hervé, F. Pacific subduction coeval with the Karoo mantle plume: the Early Jurasssic Subcordilleran belt of northwestern Patagonia. Geol. Soc. London Spl. Publ. 246, 217–239 (2005).

    Google Scholar 

  138. 138.

    Hathway, B. Continental rift to back-arc basin: Jurassic–Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. J. Geol. Soc. Lond. 157, 417–432 (2000).

    Article  Google Scholar 

  139. 139.

    Willan, R. C. R. & Hunter, M. A. Basin evolution during the transition from continental rifting to subduction: evidence from the lithofacies and modal petrology of the Jurassic Latady Group, Antarctic Peninsula. J. South. Am. Earth Sci. 20, 171–191 (2005).

    Article  Google Scholar 

  140. 140.

    Hunter, M. A. & Cantrill, D. J. A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 2, Latady Group and basin evolution. Geol. Mag. 143, 797–819 (2006).

    Article  Google Scholar 

  141. 141.

    Riley, T. R., Curtis, M. L., Flowerdew, M. J. & Whitehouse, M. J. Evolution of the Antarctic Peninsula lithosphere: evidence from Mesozoic mafic rocks. Lithos 244, 59–73 (2016).

    Article  Google Scholar 

  142. 142.

    Butterworth, P. J., Crame, J. A., Howlett, P. J. & Macdonald, D. I. M. Lithostratigraphy of Upper Jurassic-Lower Cretaceous strata of eastern Alexander Island, Antarctica. Cretac. Res. 9, 249–264 (1988).

    Article  Google Scholar 

  143. 143.

    Riley, T. R., Burton-Johnson, A., Flowerdew, M. J. & Whitehouse, M. J. Episodicity within a mid-Cretaceous magmatic flare-up in West Antarctica: U-Pb ages of the Lassiter Coast intrusive suite, Antarctic Peninsula, and correlations along the Gondwana margin. Geol. Soc. Am. Bull. 130, 1177–1196 (2018). Uses U-Pb dating to reveal the pattern of Cretaceous magmatic flare-ups along the Antarctic Peninsula.

    Article  Google Scholar 

  144. 144.

    Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).

    Article  Google Scholar 

  145. 145.

    Kipf, A. et al. Granitoids and dykes of the Pine Island Bay region, West Antarctica. Antarctic Sci. 24, 473–484 (2012).

    Article  Google Scholar 

  146. 146.

    Leat, P. T. et al. Zircon U-Pb dating of Mesozoic volcanic and tectonic events in north-west Palmer Land and south-west Graham Land, Antarctica. Antarctic Sci. 21, 633–641 (2009).

    Article  Google Scholar 

  147. 147.

    Leat, P. T. & Riley, T. R. in Antarctic Volcanism (eds Smellie, J. L. & Panter, K. S.) (Geological Society of London Memoirs, 2020).

  148. 148.

    Vaughan, A. P. M., Eagles, G. & Flowerdew, M. J. Evidence for a two-phase Palmer Land event from crosscutting structural relationships and emplacement timing of the Lassiter Coast Intrusive Suite, Antarctic Peninsula: implications for mid-Cretaceous Southern Ocean plate configuration. Tectonics 31, TC1010 (2012).

    Article  Google Scholar 

  149. 149.

    Ferraccioli, F., Jones, P. C., Vaughan, A. P. M. & Leat, P. T. New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle. Geophys. Res. Lett. 33, L05310 (2006).

    Article  Google Scholar 

  150. 150.

    Hathway, B. & Lomas, S. A. The Jurassic–Lower Cretaceous Byers Group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations. Cretaceous Res. 19, 43–67 (1998).

    Google Scholar 

  151. 151.

    Larter, R. D. & Barker, P. F. Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: forces on a young subducting plate. J. Geophys. Res. 96, 19583–19607 (1991).

    Article  Google Scholar 

  152. 152.

    Fretzdorff, S. et al. Magmatism in the Bransfield Basin: rifting of the South Shetland Arc? J. Geophys. Res. 109, B12208 (2004).

    Article  Google Scholar 

  153. 153.

    Eagles, G., Livermore, R. & Morris, P. Small basins in the Scotia Sea: the Eocene Drake passage gateway. Earth Planet. Sci. Lett. 242, 343–353 (2006).

    Article  Google Scholar 

  154. 154.

    Smellie, J. L. et al. Six million years of glacial history recorded in the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 122–148 (2008).

    Article  Google Scholar 

  155. 155.

    Hole, M. J., Saunders, A. D., Rogers, G. & Sykes, M. A. The relationship between alkaline magmatism, lithospheric extension and slab window formation along continental destructive plate margins. Geol. Soc. London Spl. Publ. 81, 265–285 (1994).

    Google Scholar 

  156. 156.

    Davey, F. J. et al. Synchronous oceanic spreading and continental rifting in West Antarctica. Geophys. Res. Lett. 43, 6162–6169 (2016).

    Article  Google Scholar 

  157. 157.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  158. 158.

    Golynsky, A. V. & Aleshkova, N. D. Regional magnetic anomalies of the Weddell Sea Region and their geological significance. Polarforschung 67, 101–117 (1997).

    Google Scholar 

  159. 159.

    Garrett, S. W. Interpretation of reconnaissance gravity and aeromagnetic surveys of the Antarctic Peninsula. J. Geophys. Res. 95, 6759–6777 (1990).

    Article  Google Scholar 

  160. 160.

    Behrendt, J. C. et al. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys. Tectonics 15, 660–676 (1996).

    Article  Google Scholar 

  161. 161.

    Riley, T. R., Flowerdew, M. J., Hunter, M. A. & Whitehouse, M. J. Middle Jurassic rhyolite volcanism of eastern Graham Land, Antarctic Peninsula: age correlations and stratigraphic relationships. Geol. Mag. 147, 581–595 (2010).

    Article  Google Scholar 

  162. 162.

    Cox S. C., Smith Lyttle B. & the GeoMAP team. Geological dataset of Antarctica, GeoMAP.v.201907. GNS Science (2019).

  163. 163.

    König, M. & Jokat, W. The Mesozoic breakup of the Weddell Sea. J. Geophys. Res. 111, B12102 (2006).

    Article  Google Scholar 

  164. 164.

    Lamb, S., Mortimer, N., Smith, E. & Turner, G. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand’s Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion. Geochem. Geophys. Geosyst. 17, 1197–1213 (2016).

    Article  Google Scholar 

Download references


This paper was supported by the British Antarctic Survey Geology and Geophysics team (T.A.J. and T.R.R.), NSF Antarctic Integrated System Science award 1443497 and the Geology Department of Colorado College (C.S.S.).

Reviewer information

Nature Reviews Earth & Environment thanks John Bradshaw, Sergio Rocchi and Simon Harley for their contribution to the peer review of this work.

Author information




The Weddell Sea province section was led by T.A.J., the Marie Byrd Land and West Antarctic rift system section was led by C.S.S. and the Antarctic Peninsula and Thurston Island section was led by T.R.R.

Corresponding author

Correspondence to Tom A. Jordan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



An isolated rock outcrop standing proud of the surrounding ice sheet, often used as a descriptive Antarctic place name.


The mountain-building event ~1,000 million years ago, seen in continents around the world, which led to the assembly of the supercontinent of Rodinia.


(Hafnium). A geologically useful isotope, as its value is strongly controlled by its magmatic source, which is linked to tectonic setting.


Highly resistant silicate minerals formed by igneous and metamorphic processes; the isotopes they contain and/or exclude make them ideal for radiometric dating and geochemical analysis.

Mantle extraction ages

Isotopically determined ages when the minerals making up a crustal rock were first extracted from the underlying mantle.


Referring to a large continental craton, which, today, forms the core of North America, but which was likely positioned close to Antarctica within the supercontinent of Rodinia.

Paleomagnetic data

The preserved orientation of magnetic minerals in rocks, which can be used to reconstruct where the rock was formed.

U-Pb dating

Use of the relative abundances of isotopes of uranium (U) and lead (Pb) to determine the age that crystals formed within a magma or metamorphic rock.

Nd isotopic data

The use of samarium–neodymium (Sm–Nd) isotope decay system to determine the age of formation and evolution of the continental crust.


Granites with a high proportion of light-coloured minerals compared with darker-coloured minerals; they are typically formed in continental collision settings.


The formation of intrusive magmatic rocks beneath the Earth’s surface, in contrast to volcanism, where magmas are erupted onto the Earth’s surface.


Magmas that are typically hydrous and oxidized, and are generally found in arcs above subduction zones.


A metamorphic rock where significant partial melting has begun.


Poorly sorted terrestrial and shallow marine deposits associated with erosion from a nearby active orogenic belt.


Being in a position overlying the subducting slab in a subduction zone system.


Having undergone simultaneous strike–slip and compressive deformation.


Volcaniclastic breccia emplaced in a submarine or subglacial setting.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jordan, T.A., Riley, T.R. & Siddoway, C.S. The geological history and evolution of West Antarctica. Nat Rev Earth Environ 1, 117–133 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing