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Multimodal data fusion for cancer biomarker 
discovery with deep learning
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Technological advances have made it possible to study a patient from 
multiple angles with high-dimensional, high-throughput multiscale 
biomedical data. In oncology, massive amounts of data are being generated, 
ranging from molecular, histopathology, radiology to clinical records. 
The introduction of deep learning has greatly advanced the analysis of 
biomedical data. However, most approaches focus on single data modalities, 
leading to slow progress in methods to integrate complementary data 
types. Development of effective multimodal fusion approaches is becoming 
increasingly important as a single modality might not be consistent and 
sufficient to capture the heterogeneity of complex diseases to tailor 
medical care and improve personalized medicine. Many initiatives now 
focus on integrating these disparate modalities to unravel the biological 
processes involved in multifactorial diseases such as cancer. However, many 
obstacles remain, including lack of usable data as well as methods for clinical 
validation and interpretation. Here, we cover these current challenges and 
reflect on opportunities through deep learning to tackle data sparsity and 
scarcity, multimodal interpretability and standardization of datasets.

Over recent decades, technological innovations have transformed the 
healthcare domain with the ever-growing availability of clinical data 
supporting diagnosis and care. Medicine is moving towards gather-
ing multimodal patient data, especially in the context of age-related 
chronic diseases such as cancer1,2. Integrating different data modalities 
can enhance our understanding of cancer3,4, and paves the way for pre-
cision medicine, which promises individualized diagnosis, prognosis, 
treatment and care1,5,6.

Increasingly, we are moving from the traditional one-size-fits-all 
approach to more targeted testing and treatment. Although molecular 
pathology revolutionized precision oncology, the first Food and Drug 
Administration (FDA)-cleared companion diagnostic assays relied 
on simpler molecular methods, and most assays focused on a single 
gene of interest7,8. However, advances in next-generation sequencing 
(NGS) now allow for multitarget companion diagnostic assays, which 
are becoming more prevalent8,9. The continuing cost reduction makes 
it possible to simultaneously profile thousands of genomic regions, 

hinting that multitarget panels could soon be run at a similar price point 
to that of testing five to ten targets individually10. Multitarget tests not 
only conserve time and tissue but also have the potential to identify 
complex genetic interactions, thereby enhancing our understanding of 
tumour biology. While NGS is still in full swing, a third wave of technolo-
gies featuring single-molecule, long-read and real-time sequencing is 
already on the rise. Pacific Biosciences and Oxford Nanopore Technolo-
gies enable the assembly and exploration of genomes at unprecedented 
resolution and speed11. This technology was recently used in a clinical 
setting to diagnose rare genetic diseases with a turnaround rate of 
only eight hours12. As cancer is often multicausal, the area of precision 
oncology greatly benefits from these developments.

At the same time, histopathology and radiology have been criti-
cal tools in clinical decision-making during cancer management13,14. 
Histopathological evaluation enables the study of tissue architecture 
and remains the gold standard for cancer diagnosis15. More recently, 
notable progress in whole-slide imaging (WSI) has led to a transition 
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AI should not only inform about cancer incidence and tumour growth 
but also must identify the optimal treatment path, accounting for 
treatment-related side effects, socioeconomic factors and care goals. 
Precision medicine can therefore be achieved only by merging com-
plex and diverse multimodal data that span space and time. Single 
data modalities can be noisy or incomplete, but when combined with 
redundant signals from other modalities, they can be more sensitive 
and robust to diagnose, prognose and assign treatments. Multimodal 
data are now being collected, providing a resource for biomarker dis-
covery36–39. For cancer, both prognostic and predictive biomarkers are 
of interest. While prognostic biomarkers provide information on the 
patient’s diagnosis and overall outcome, predictive biomarkers inform 
about treatment decisions and response40.

Here, we argue that several sources of routinely collected medi-
cal data are not used to their full potential for diagnosing and treating 
patients with cancer, because they are studied mostly in isolation 
instead of in an integrated fashion. These are: (1) electronic health 
records (EHRs), (2) molecular data, (3) digital pathology and (4) radio-
graphic images. When combined, these data modalities provide a 
wealth of complementary, redundant and harmonious information 
that can be exploited to better stratify patient populations and pro-
vide individualized care (Fig. 1). In the next sections, we discuss both 
challenges and opportunities for multimodal biomarker discovery as 
it applies to patients with cancer. We cover strategies for data fusion 
and examine approaches to address data sparsity and scarcity, data 
orchestration and model interpretability.

The need for multimodal data fusion in oncology
Despite huge investments in cancer research and improved diagno-
sis and treatments, cancer prognosis is still bleak. Predictive models 
based on single modalities offer a limited view of disease heterogeneity 
and might not provide sufficient information to stratify patients and 
capture the full range of events that take place in response to treat-
ments41,42. For example, although immunotherapeutic methods such 
as antibody–drug conjugates and adoptive cell therapy (for example, 
T-cell receptor and chimeric antigen receptor T-cell therapy) have 
shown to be promising, response rates vary markedly depending on 
the tumour subtype43 and the TME44. Various TME elements play a role 
in tumour development and also in the therapeutic response. Further-
more, the cellular composition of the TME dynamically evolves with 
tumour progression and in response to anticancer treatments45,46. The 
increasing application of immunotherapy underlines the need for (1) 
a deeper understanding of the TME and (2) multimodal approaches 
that allow longitudinal TME monitoring during disease progression 
and therapeutic intervention47.

Currently, biomarker discovery is mainly based on molecular 
data48. Increasing implementation of genomics and proteomic tech-
nologies in a clinical setting has led to growing availability, but also 
growing complexity, of molecular data8. Large consortia such as The 
Cancer Genome Atlas (TCGA) and Genomic Data Commons have 
gathered and standardized large datasets, accumulating petabytes 
of genomic, expression and proteomics data37,49,50. Barriers for NGS 
assay development, validation and routine implementation remain 
due to many factors, such as tumour heterogeneity, sampling bias and 
interpretation of the results. Clinically accepted performance require-
ments are also often cancer-specific and depend on where in the care 
trajectory and for what specific purpose (for example, diagnostic, 
stratification, drug response or treatment decision) tests are used51. 
As relevant as molecular data are for precision medicine, they discard 
tissue architecture, spatial and morphological information.

Although lower in resolution than genomic information, both 
WSI and radiographic images potentially harness orthogonal and 
complementary information. Digital pathology with WSIs provides 
data about the cellular and morphological architecture in a visual 
way for pathologists to interpret and can provide key information 

from traditional histopathology methods towards digital pathology16. 
Digital pathology, the process of ‘digitizing’ conventional glass slides 
to virtual images, has many practical advantages over more traditional 
approaches, including speed, more straightforward data storage and 
management, remote access and shareability, and highly accurate, 
objective and consistent readouts. On the other end of the spectrum 
is radiographic imaging, a non-invasive method for detecting and 
classifying cancer lesions. In particular, computed tomography and 
magnetic resonance imaging (MRI) scans are useful for generating 
three-dimensional images of (pre)malignant lesions.

Ongoing improvements in artificial intelligence (AI) and advanced 
machine learning (ML) techniques have had major impacts on these 
cancer-imaging ecosystems, especially in diagnostic and prognostic 
disciplines17. Current annotation of histopathological slides relies on 
specialized pathologists. Leveraging image-based AI applications would 
not only alleviate the pathologists’ workload but also has the potential 
for more efficient, reproducible and accurate spatial analysis capturing 
information beyond visual perception17–19. Radiomics and pathomics 
refer to fields focusing on the quantitative analysis of radiological or 
histopathological digital images, respectively, with the aim of extracting 
quantitative features that can be used for clinical decision-making20. 
This extraction used to be done with standard statistical methods, but 
more advanced deep learning (DL) frameworks such as convolutional 
neural networks, deep autoencoders and vision transformers are now 
available for automated, high-throughput feature extraction21–24. Auto-
matic assessment of deterministic objective features has enabled the 
quantification of tumour microenvironments (TMEs) at unprecedented 
speed and scale. In addition to the quantification of known handcrafted 
salient features without inter-observer variability, DL has the ability to 
discover unknown features and relationships that can provide biological 
insights and improve disease characterization25. A notable radiomics 
study in lung cancer found that DL features captured prognostic signa-
tures, both within and beyond the tumour region, that correlated with 
cell cycle and transcriptional processes26. Despite the diverse capacity 
of DL, one of the main challenges is the need for large datasets to train, 
test and validate its algorithms. But, owing to ethical restrictions and 
the labour intensity to annotate clinical images, most studies have only 
limited access to large cohorts that contain ground-truth-labelled data27.

Under the 21st Century Cures Act28, the FDA set a goal to advance 
precision medicine where the patient is at the centre of care. This act 
defines timelines for discovery, development and delivery, and requires 
the fusion of evidence across modalities, with the provision that this 
must include real-world data and patient experience. Technological 
advances initiated an era where clinical data are being captured from 
multiple sources at unprecedented pace, ranging from medical images 
to genomics data and patient-generated health data. Together with suc-
cesses in AI, this opens the opportunity and necessity to analyse many 
data types with these advanced tools to better inform decision-making 
and improve patient care. So far, the FDA has cleared and approved 
several AI-based software as a medical device29. Together with the pub-
lication of their recent AI/ML white paper30, the FDA wants to highlight 
their intention to develop a regulatory framework for these highly 
iterative, autonomous and continuously learning algorithms as well as 
for the specific data types necessary to assure safety and effectiveness. 
Some proposed considerations for data inclusion are (1) relevance to the 
clinical problem and current clinical practice, (2) data acquisition in a 
consistent, generalizable and clinically relevant manner, (3) appropriate 
definition and separation of training, tuning and test sets, and (4) appro-
priate level of transparency of the algorithm and its output to users.

Integration of AI functionalities in medical applications has 
increased in recent years31. However, so far, most methods have focused 
on only one specific data type at a time, leading to slow progress in 
approaches to integrate complementary data types with many remain-
ing questions about the technical, analytical and clinical aspects of 
multimodal integration32–35. To advance precision oncology, healthcare 
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about the TME’s spatial heterogeneity using image analysis and spatial 
statistics52. Similarly, radiographic images such as MRI or computed 
tomography scans provide visual data of the tissue morphology and 
three-dimensional structure53.

Integration of data modalities that cover different scales of a 
patient has the potential to capture synergistic signals that identify 
both intra- and inter-patient heterogeneity critical for clinical predic-
tions54–56. For example, the 2016 World Health Organization classifica-
tion of tumours of the central nervous system revisited the guidelines 
to classify diffuse gliomas, recommending histopathological diagno-
sis in combination with molecular markers (for example, isocitrate  
dehydrogenase 1 and 2 (IDH1/2) mutation status), as each modality alone 
is insufficient to explain patient outcome variance32,33. Of late, some 
reports also suggest the use of DNA-methylation-based classification 
of central nervous system tumours34,35.

The need for integrative modelling is increasingly emphasized. 
In 2015, a report from Ritchie et al.57 highlighted that “approaches to 
combine multiple data types provide a more comprehensive under-
standing of complex genotype–phenotype associations than analy-
sis of one dataset”. In recent years, there have been several attempts 
to develop multimodal approaches, to a great degree stimulated by 
community-driven competitions, such as DREAM and Kaggle (that 
is, http://dreamchallenges.org/ and https://www.kaggle.com/). But 
more work is needed to integrate routinely collected data modalities 
into clinical decision systems.

Data fusion strategies for multimodal biomarker 
discovery
The age of precision medicine demands powerful computational tech-
niques to handle high-dimensional multimodal patient data. Each data 
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Fig. 1 | Generation and processing of routinely collected biomedical 
modalities in oncology. Before data fusion, different steps are needed to go from 
the raw data to workable data representations for each modality—for example, 
EHRs, molecular data and medical images. Icon credits: microarray, Guillaume 
Paumier, under a Creative Commons licence CC BY-SA 3.0; EHR, data processing, 

DNA and encoder icons, the Noun Project (https://thenounproject.com/);  
DNA sequencer, MRI machine and stethoscope, created with Biorender.com; 
genomic circular circus plot, ref. 166, Cold Spring Harbor Laboratory Press;  
tissue and brain slices, created using TCGA data originally published by the 
National Cancer Institute.
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source has strengths and limitations in its creation, analysis and inter-
pretation that must be addressed.

Medical images, whether two-dimensional in histopathology 
or three-dimensional in radiology, contain dense information that 
is encoded at multiple scales. Importantly, they contain high spa-
tial correlation and any successful approach needs to take this into 
account58. So far, the best performing methods have been based on 
DL, and specifically convolutional neural networks59–61. Continuous 
improvement in detection, segmentation, classification and spatial 
characterization means that these methods are becoming a crucial 
part of cancer biomarker algorithms.

EHRs comprise various data types ranging from structured data 
such as medications, diagnosis codes, vital signs or lab tests, to unstruc-
tured data in the form of clinical notes, patient emails and detailed clini-
cal processes. Natural language processing (NLP) algorithms that can 
extract useful clinical information from structured and unstructured 
EHR data are being developed. A recent study showed the feasibility 
and power of such ML tools in a lung cancer cohort to reliably extract 
important prognostic factors embedded in the EHRs62. Structured EHR 
sources are the easiest to process. Usually, these data are embedded 
into a lower-dimensional vector space and fed as input to a recurrent 
neural network (RNN). Long short-term memory and gated recurrent 
unit are the most popular RNN architectures for this purpose63–65. While 
structured EHR data have obvious value, integration with insights 
from unstructured clinical data has shown to greatly improve clinical 
phenotyping66. Fortunately, advances in NLP now make it possible 
to mine the unstructured narratives of patient records. One way to 
process these data is to convert free text to medical concepts and cre-
ate lower-dimensional ‘concept embeddings’. Older methods such 
as Word2Vec67 and global vectors for word representations (GloVe)68 
have almost been overtaken by ‘contextualized embeddings’ such 
as embeddings from language models (ELMo)69 and bidirectional 
encoder representations from transformers (BERT)70–72. While ELMo 
uses RNNs, BERT is based on transformers, a neural architecture that 
has revolutionized the NLP field since its inception73. To unlock the full 
potential of EHRs, more appropriate techniques are needed combining 
structured and unstructured information, while accounting for the 
noise and inaccuracies that are common to these data74. In this regard, 
the concept of transfer learning for extracting clinical information from 
EHRs has gained a lot of traction75.

Effective fusion methods must integrate high-dimensional 
multimodal biomedical data, ranging from quantitative features to 
images and text76. Representing raw data in a workable format remains 
challenging as ML methods do not readily accept unvectorized data.  
A multimodal representation thus poses many difficulties. Different 
modalities measure distinct unmatched features with different under-
lying distributions and dimensionalities. Also, not all modalities and 
observations have the same level of confidence, noise or information 
quality77. Multimodal fusion often suffers from dealing with wide fea-
ture matrices originating from very few samples with many features 
across modalities. Often, advanced feature extraction methods such as 
kernel-based methods, graphical models or neural networks are needed 
before or as part of the data fusion process to reduce the dimensionality 
while preserving most of the salient biological signals77–80. Meaningful 
feature descriptions are the critical backbone of any model.

A major decision that must be made is at what specific modelling 
stage the data fusion takes place: (1) early, (2) intermediate or (3) late 
(Fig. 2)81–83. Early fusion is characterized by concatenating feature 
vectors of different data modalities and only requires the training of a 
single model (Fig. 2a). In contrast, late fusion is based on developing 
models on each data modality separately and integrating their single 
predictions with specific averaging, weighting or other mechanisms 
(Fig. 2c). Late fusion not only allows the use of a different, often more 
suitable, model for each modality but also makes it more straightfor-
ward to handle situations when some modalities are missing in the data. 

However, fusion at the late stage ignores possible synergies between 
different modalities84.

While both early and late fusion approaches are model agnostic, 
they are not specifically designed to cope with or take full advantage of 
multiple modalities. Anything between early and late fusion is defined 
as intermediate or joint data fusion84. Intermediate fusion does not 
merge input data, nor develop separate models for each modality, but 
instead involves the development of inference algorithms to generate 
a joint multimodal low-level feature representation that retains the 
signal and properties of each individual modality (Fig. 2b). Although 
dedicated inference algorithms must be developed for each model 
type, this approach attempts to exploit the advantages of both early 
and late fusion79,83. One key difference with early fusion is that the loss 
is propagated back to the inference algorithms during training, thus 
creating updated feature representations per training iteration84. 
Although this allows for modeling complex interactions between 
modalities, techniques need to be in place to prevent overfitting on 
the training cohort. Importantly, there is currently no decisive evi-
dence that one fusion strategy is superior, and the choice of a specific 
approach is usually empirically based on the available data and task84.

Advances in multimodal biomarkers for patient 
stratification
Multi-omics data fusion
Although a single omics technology provides insights into the profile 
of a tumour, one technique alone does not fully capture the underly-
ing biology. The increasing collection of large cohorts of multi-omics 
cancer data has spurred several efforts to fuse multi-omics data to 
fully grasp the tumour profile and several models for survival and risk 
prediction have been proposed4,6,56,85–93. The TCGA research network 
has also published numerous papers investigating the integration of 
genomic, transcriptomic, epigenomic and proteomic data for multiple 
cancer types94–96. Additionally, for therapy response and drug combi-
nation predictions, multi-omics ML methods have proved their value 
over traditional unimodal models97–100. Although various multi-omics 
fusion strategies now exist, one single method will not be optimal for all 
research questions and data types, and sometimes adding more omics 
layers can even negatively impact performance101. Each strategy has 
its own strengths and weaknesses, and careful selection of effective 
approaches should be based on the purpose and available data types57.

Multiscale data fusion
Similar efforts as for multi-omics data fusion have been explored for 
multiscale data89,102–107. For example, Cheerla and Gevaert48 used an 
intermediate fusion strategy to integrate histopathology, clinical and 
expression data to predict patient survival for multiple cancer types. 
For each modality, an unsupervised encoder compressed the data 
into a single feature vector per patient. These feature vectors were 
aggregated into a joint representation allowing possible absence of 
one or more modalities48. Similarly, another study proposed a late 
fusion strategy to classify lung cancer. Using RNA sequencing, micro-
RNA sequencing, WSI, copy number variation and DNA methylation, 
they achieved better performance than obtained by each individual 
modality108. A few examples exist that show the potential of radiology 
to further refine patient stratification109–111. However, owing to its high 
dimensionality and computational demands, so far most studies have 
avoided its inclusion112.

Imaging genomics and radiogenomics
When possible, molecular tumour information is nowadays used in can-
cer prognosis and treatment decisions. Interestingly, multiple studies 
have shown that phenotypes derived from medical images can act as 
proxies or biomarkers of molecular phenotypes such as an epidermal 
growth factor receptor (EGFR) mutation in lung cancer113–115. This discov-
ery immediately gave rise to an emerging field called ‘radiogenomics’, 
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the study of directly linking image features to underlying molecular 
properties116. For example, Itakura et al.117 used MRI phenotypes to 
define subtypes of glioblastoma associated with molecular pathway 
activity. Also, for breast cancer, the value of radiogenomics for risk 
prediction and better subtype stratification has been shown118–120.

Current challenges and future directions for 
multimodal data fusion
Use of multimodal data models is probably the only way to advance 
precision oncology, but many challenges exist to realize their full  
potential. Although data availability is the main driver of multimodal 
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data fusion, it also poses the major barrier. DL requires large amounts 
of data, and both data sparsity and scarcity present serious challenges, 
especially for biomedical data. In clinical practice, there are often dif-
ferent types of data missing between patients, as not all patients might 
have all modalities owing to cost, insurance coverage, material avail-
ability and lack of systemic collection procedures, among others. To 
become relevant in an oncology setting, methods need to be able to 
handle different patterns of missing modalities. Fortunately, various 
interpolation, imputation and matrix completion algorithms have 
already been successfully applied for clinical data. These can range 
from basic methods including mean/median substitution, regression, 
k-nearest neighbour and tree-based methods to more advanced algo-
rithms such as multiple imputation, multivariate imputation by chained 
equations or neural networks such as RNNs, long short-term memory 
and generative adversarial networks121–123. Also, with the recent suc-
cesses in DL techniques, dedicated fusion approaches are becoming 
available that allow joint representations that can handle incomplete 
or missing modalities48,124–129.

However, there are two major hurdles to advance these efforts. 
First, the depth of data per patient, that is, many observables per 
patient are routinely generated and stored, but typical cohort sizes of 
patients are relatively small. Emerging evidence highlights that these 
cohorts are often biased, representing patients from higher socioeco-
nomic status with continuous access to care and high levels of patient 
engagement130,131. Limiting analyses to patients with complete data will 
lead to model overfitting, bias and poor generalization. Second, the 
lack of large ‘golden labelled’ cohorts with matched multimodal data, 
mainly due to the intense labour to annotate cancer datasets combined 
with privacy concerns. Luckily, also here DL algorithms are starting 
to be developed. One popular approach is data augmentation132–135, 
which can include basic data transformations as well as generation 
of synthetic data, but other strategies such as semi-supervised learn-
ing136–139, active learning140,141, transfer learning139,142–144 and automated 
annotation145,146 have shown to be promising avenues to overcome 
labelled-data scarcity.

Despite its potential, a critical roadblock for the widespread adop-
tion of DL in a clinical setting is the lack of well-defined methods for 
model interpretation. While DL can extract predictive features from 
complex data, these are usually abstract, and it is not always apparent 
if they are clinically relevant147. To be useful in clinical decision-making, 
models need to undergo extensive testing, be interpretable, and their 
predictions need to be accompanied by confidence or uncertainty 
measures148,149. Only then will they be relevant for and adopted by 
clinical practitioners.

Interpretation of black-box models is a heavily investigated 
topic and some methods for post hoc explanations have been pro-
posed147,150. In histopathology, most work focuses on extracting the 

most informative tiles by selecting those with the highest model con-
fidence or by visualizing tiles that are most relevant to the final predic-
tion (Fig. 3a). For interpreting model predictions at higher resolution, 
the most relevant regions can be highlighted using gradient-based 
interpretation methods such as gradient-weighted class activation 
mapping (Grad-CAM) (Fig. 3b)151. Similarly, for molecular data, predic-
tive features can be determined and visualized via Shapley additive 
explanation (SHAP)-based methods (Fig. 3d,e)150,152–154. Multimodal data 
add additional complexity and need careful evaluation of appropri-
ate methods before scaling to multimodal interpretability. However, 
multimodal approaches are starting to emerge with encouraging solu-
tions not only for interpretability but also for discovery of associations 
between modalities147,150. Note that the aforementioned methods spec-
ify why a model makes a specific decision, but do not explain the used 
features. Additional strategies could be leveraged to further unravel 
biological insights. For example, selected tiles could be overlayed with 
Hover-Net155 to segment and classify nuclei to evaluate predominant 
cell types (Fig. 3c, unpublished results on TCGA data).

Standardization will lead to more uniform and complete datasets, 
which are easier to process and fuse with other sources and will be much 
more interpretable on their own. TCGA is probably the best known 
and most used resource37, but many other initiatives are underway to 
structurally capture clinical, genomics, imaging and pathological data 
for oncology, such as The Cancer Imaging Archive36 and the Genomics 
Pathology Imaging Collection38. Together, these efforts have the shared 
aim to process, analyse and share data using a community-embraced 
standard in a FAIR (findable, accessible, interoperable and reusable) 
way156. This will not only promote reproducibility and transparency 
but also encourage reutilization and optimization of existing work. 
However, the volume and complexity of multimodal biomedical data 
makes it increasingly difficult to produce and share FAIR data and 
current solutions often require specific expertise and resources157. 
Furthermore, some modalities such as EHRs are not only extremely 
difficult to standardize and share but also very expensive to obtain by 
researchers158,159. Efforts such as the Observational Medical Outcomes 
Partnership (OMOP) aim at tackling this issue by harmonizing EHR data 
across institutes and countries160,161. To make progress in multimodal 
studies, there is a dire need for data orchestration platforms157, but also 
appropriate regulatory frameworks to preserve patients’ privacy162.

The importance of biomedical multimodal data fusion becomes 
increasingly apparent as more clinical and experimental data become 
available. To tackle the multimodal-specific obstacles, multiple meth-
ods and frameworks have been proposed and are currently heavily 
explored. While often still problem specific and experimental, the 
field is gaining knowledge to evaluate and define what methods excel 
given specific conditions and data modalities. DL approaches have 
only touched a limited range of potential applications, mainly because 

Fig. 3 | Examples of model interpretability methods for histopathology 
and gene expression. a–c, Histopathology. a, Examples of informative tiles 
for predicting the presence of TP53 mutations from histopathology images in 
prostate cancer (unpublished results on TCGA data). b, Visualization of regions 
within tiles most relevant to the prediction, derived via Grad-CAM151. c, Individual 
cells within informative tiles are segmented and classified by Hover-Net155. For a 
fine-grained interpretation of relevant cells (black annotations), pertinent cells 
within the tile are encircled by calculating the contours from regions highlighted 
by Grad-CAM. d,e, Gene expression. d, Examples of SHAP visualization152 of 
hypothetical gene importance according to a unimodal model (top) and a 
joint multimodal model (bottom) for cancer survival prediction. e, Example of 
pathway importance visualization based on the respective gene SHAP values in 
unimodal (top) versus joint multimodal (bottom) models with respect to cancer 
survival prediction154. SeMet, selenomethionine; Sec, selenocysteine; MeSec, 
methylselenol; H2Se, hydrogen selenide; GLI, glioma-associated oncogene 
family zinc finger 1; HH, hedgehog; TCF, T cell factor; LEF, lymphoid enhancer 

factor; CTNNB1, catenin beta 1; Ras, rat sarcoma; PI3K, phosphatidylinositol 
3-kinase; RUNXC3, runt-related transcription factor 3; Wnt, wingless/integrated; 
TYSND1, trypsin-like peroxisomal matrix peptidase 1; DAG, diacylglycerol; 
EIF2AK1, eukaryotic translation initiation factor 2 alpha kinase 1; HRI, heme-
regulated inhibitor; NGF, nerve growth factor; TRKA, tropomyosin receptor 
kinase A; SLBP, stem-loop binding protein; APEX1, apurinic/apyrimidinic 
endodeoxyribonuclease 1; NTRK2/3, neurotrophic receptor tyrosine kinase 2/3; 
BCL2L11, B cell lymphoma 2-like 11; BIM, B cell lymphoma 2 interacting mediator 
of cell death; SHC, src homology 2 domain containing transforming protein; 
IGF1R, insulin-like growth factor 1 receptor; RAC1, ras-related C3 botulinum 
toxin substrate 1; CDKN1a, cyclin-dependent kinase inhibitor 1A; STAT5, signal 
transducer and activator of transcription 5; PTK6, protein tyrosine kinase 6; 
TNFR1, tumor necrosis factor receptor 1; PP2a, protein phosphatase 2A; GRB7, 
growth factor receptor bound protein 7; ERBB2, v-erb-b2 avian erythroblastic 
leukemia viral oncogene homolog 2; ERK, extracellular signal-regulated kinase.
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of the challenges inherent to the current state of healthcare data as 
discussed above, again emphasizing the need for large collaborative 
data standardization and sharing efforts. In this space, competitions 
such as DREAM and Kaggle have been an effective concept for making 
standardized multimodal data available. Importantly, these initiatives 
also facilitate exchange of ideas and code, reproducibility, innovation 
and unbiased evaluation163,164. It is our expectation that such efforts will 
considerably advance development of robust multimodal approaches.

Ultimately, the goal is to advance precision oncology by rigor-
ous clinical validation of successful models in larger independent 

cohorts to prove any clinical utility. So far, most efforts have focused 
on multimodal cancer biomarkers to refine risk stratification, but 
with dedicated strategies, multimodal data fusion could also assist in 
treatment decision or drug response. However, outcomes in real-world 
patients often lag relative to clinical trials, thereby hindering the evalu-
ation of efficacies due to lack of follow-up data. Fortunately, efforts are 
underway to capture treatment response in automated scalable ways 
using NLP from clinical notes165. With careful study design, ongoing 
improvements in data collection and sharing methods, and decreas-
ing cost and/or availability of disease monitoring technologies, DL 
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algorithms present a promising choice to further accelerate the field 
of precision oncology in this direction.
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