A challenge for multiscale simulations is how to link the macroscopic and microscopic length scales effectively. A new machine-learning-based sampling approach enables full exploration of macro configurations while retaining the precision of a microscale model.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Bhatia, H. et al. Nat. Mach. Intell. https://doi.org/10.1038/s42256-021-00327-w (2021).
Karr, J. R. et al. Cell 150, 389–401 (2012).
Amaro, R. & Mulholland, A. Nat. Rev. Chem. 2, 0148 (2018).
Mennucci, B. & Corni, S. Nat. Rev. Chem. 3, 315–330 (2019).
Peñalba, J. V. & Wolf, J. B. W. Nat. Rev. Genet. 21, 476–492 (2020).
Weinan, E. Principles of Multiscale Modeling (Cambridge Univ. Press, 2011).
Alber, M. et al. npj Digit. Med. 2, 115 (2019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Wang, S., Bianco, S. Linking the length scales. Nat Mach Intell 3, 374–375 (2021). https://doi.org/10.1038/s42256-021-00351-w
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-021-00351-w