An online platform for interactive feedback in biomedical machine learning

Machine learning models have great potential in biomedical applications. A new platform called GradioHub offers an interactive and intuitive way for clinicians and biomedical researchers to try out models and test their reliability on real-world, out-of-training data.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GradioHub workflow and example usage.

Code availability

Users can interact with curated models on GradioHub at https://www.gradiohub.com. The code for the GradioHub Python library is available at https://github.com/gradio-app/gradio-UI, and an additional tutorial on creating interactive interfaces with GradioHub is provided at https://www.gradiohub.com/getting_started.html.

References

  1. 1.

    Lynch, C. J. & Liston, C. Nat. Med. 24, 1304–1305 (2018).

    Article  Google Scholar 

  2. 2.

    Wiens, J. et al. Nat. Med. 25, 1337–1340 (2019).

    Article  Google Scholar 

  3. 3.

    Esteva, A. et al. Nat Med. 25, 24–29 (2019).

    Article  Google Scholar 

  4. 4.

    Shah, N. H., Milstein, A. & Bagley, S. C. J. Am. Med. Assoc. 322, 1351–1352 (2019).

    Article  Google Scholar 

  5. 5.

    Nat. Biomed. Eng. 2, 709–710 (2018).

  6. 6.

    Zou, J. et al. Nat. Genet. 51, 12–18 (2019).

    Article  Google Scholar 

  7. 7.

    Zech, J. R. et al. PLOS Med. 15, e1002683 (2018).

    Article  Google Scholar 

  8. 8.

    Finlayson, S. G. et al. Science 363, 1287–1289 (2019).

  9. 9.

    Holzinger, A., Langs, G., Denk, H., Zatloukal, K. & Müller, H. WIRes Data Min. Knowl. Discov. 9, e1312 (2019).

    Google Scholar 

  10. 10.

    Holzinger, A. et al. Appl. Intell. 49, 2401–2414 (2019).

    Article  Google Scholar 

  11. 11.

    Xu, K. et al. in Proc. 2018 CHI Conference on Human Factors in Computing Systems 663 (ACM, 2018).

  12. 12.

    Muthukrishna, D., Parkinson, D. & Tucker, B. E. Astrophys. J. 885, 85 (2019).

    Article  Google Scholar 

  13. 13.

    Klemm, S., Scherzinger, A., Drees, D. & Jiang, X. Preprint at https://arxiv.org/abs/1802.04626 (2018).

  14. 14.

    Ghorbani, A. et al. Preprint at https://doi.org/10.1101/681676 (2019).

  15. 15.

    Shen, L. et al. Sci. Rep. 9, 12495 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Ouyang, A. Ghorbani and A. Pampari for feedback. J.Z. is supported by the National Science Foundation grant CCF 1763191, and National Institutes of Health grants R21 MD012867-01 and P30AG059307, and grants from the Silicon Valley Foundation and the Chan Zuckerberg Initiative.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Abubakar Abid or James Zou.

Ethics declarations

Competing interests

The first five authors are affiliated with Gradio Labs.

Supplementary infomation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abid, A., Abdalla, A., Abid, A. et al. An online platform for interactive feedback in biomedical machine learning. Nat Mach Intell 2, 86–88 (2020). https://doi.org/10.1038/s42256-020-0147-8

Download citation