Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A soft robot that adapts to environments through shape change

A preprint version of the article is available at arXiv.


Many organisms, including various species of spiders and caterpillars, change their shape to switch gaits and adapt to different environments. Recent technological advances, ranging from stretchable circuits to highly deformable soft robots, have begun to make shape-changing robots a possibility. However, it is currently unclear how and when shape change should occur, and what capabilities could be gained, leading to a wide range of unsolved design and control problems. To begin addressing these questions, here we simulate, design and build a soft robot that utilizes shape change to achieve locomotion over both a flat and inclined surface. Modelling this robot in simulation, we explore its capabilities in two environments and demonstrate the automated discovery of environment-specific shapes and gaits that successfully transfer to the physical hardware. We found that the shape-changing robot traverses these environments better than an equivalent but non-morphing robot, in simulation and reality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Shape change can result in faster locomotion speeds than control adaptation, when a robot must operate in multiple environments.
Fig. 2: Simulation revealed successful shapes and controllers, which we attempted to realize in hardware.
Fig. 3: Automated search discovered increasingly successful gaits in both environments.
Fig. 4: Optimal orientation and pressure found in simulation, as a function of the angle of incline.
Fig. 5: Shape change allowed the physical robot to operate in previously inaccessible environments.
Fig. 6: The variable-friction feet change their frictional properties when inflated.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

A public repository at contains the code necessary to reproduce the soft-robot simulations.


  1. 1.

    Jager, P. Cebrennus Simon, 1880 (Araneae: Sparassidae): a revisionary up-date with the description of four new species and an updated identification key for all species. Zootaxa 3790, 319–356 (2014).

    Article  Google Scholar 

  2. 2.

    Bhanoo, S. N. A desert spider with astonishing moves. The New York Times D4 (2014).

  3. 3.

    Armour, R. H. & Vincent, J. F. V. Rolling in nature and robotics: a review. J. Bionic Eng. 3, 195–208 (2006).

    Article  Google Scholar 

  4. 4.

    Lin, H.-T., Leisk, G. G. & Trimmer, B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6, 026007 (2011).

    Article  Google Scholar 

  5. 5.

    Christensen, D. J. Evolution of shape-changing and self-repairing control for the atron self-reconfigurable robot. In Proc. 2006 IEEE International Conference on Robotics and Automation (ICRA) 2539–2545 (IEEE, 2006).

  6. 6.

    Yim, M. et al. Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14, 43–52 (2007).

    Article  Google Scholar 

  7. 7.

    Parrott, C., Dodd, T. J. & Groß, R. HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot and its Extensions. In Distributed Autonomous Robotic Systems (eds. Groß, R. et al.) 401–414 (Springer, 2018).

  8. 8.

    Paul, C., Valero-Cuevas, F. J. & Lipson, H. Design and control of tensegrity robots for locomotion. IEEE Trans. Robot. 22, 944–957 (2006).

    Article  Google Scholar 

  9. 9.

    Sabelhaus, A. P. et al. System design and locomotion of superball, an untethered tensegrity robot. In 2015 IEEE International Conference on Robotics and Automation (ICRA) 2867–2873 (IEEE, 2015).

  10. 10.

    Sadeghi, A., Mondini, A. & Mazzolai, B. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4, 211–223 (2017).

    Article  Google Scholar 

  11. 11.

    Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. & Rus, D. An untethered miniature origami robot that self-folds, walks, swims, and degrades. In 2015 IEEE International Conference on Robotics and Automation (ICRA) 1490–1496 (IEEE, 2015).

  12. 12.

    Rus, D. & Tolley, M. T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3, 101–112 (2018).

    Article  Google Scholar 

  13. 13.

    Pfeifer, R., Lungarella, M. & Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007).

    Article  Google Scholar 

  14. 14.

    Saranli, U., Buehler, M. & Koditschek, D. E. Rhex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20, 616–631 (2001).

    Article  Google Scholar 

  15. 15.

    Raibert, M., Blankespoor, K., Nelson, G. & Playter, R. BigDog, the rough-terrain quadruped robot. IFAC Proc. Vol. 41, 10822–10825 (2008).

    Article  Google Scholar 

  16. 16.

    Kuindersma, S. et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robot. 40, 429–455 (2016).

    Article  Google Scholar 

  17. 17.

    Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

    Article  Google Scholar 

  18. 18.

    Li, M., Guo, S., Hirata, H. & Ishihara, H. Design and performance evaluation of an amphibious spherical robot. Robot. Auton. Syst. 64, 21–34 (2015).

    Article  Google Scholar 

  19. 19.

    Myeong, W. C., Jung, K. Y., Jung, S. W., Jung, Y. & Myung, H. Development of a drone-type wall-sticking and climbing robot. In 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) 386–389 (IEEE, 2015).

  20. 20.

    Bachmann, R. J., Boria, F. J., Vaidyanathan, R., Ifju, P. G. & Quinn, R. D. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech. Mach. Theory 44, 513–526 (2009).

    Article  Google Scholar 

  21. 21.

    Roderick, W. R., Cutkosky, M. R. & Lentink, D. Touchdown to take-off: at the interface of flight and surface locomotion. Interface Focus 7, 20160094 (2017).

    Article  Google Scholar 

  22. 22.

    Korayem, M. H., Tourajizadeh, H. & Bamdad, M. Dynamic load carrying capacity of flexible cable suspended robot: robust feedback linearization control approach. J. Intell. Robot. Syst. 60, 341–363 (2010).

    Article  Google Scholar 

  23. 23.

    Li, J., Ma, H., Yang, C. & Fu, M. Discrete-time adaptive control of robot manipulator with payload uncertainties. In 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) 1971–1976 (IEEE, 2015).

  24. 24.

    Bongard, J., Zykov, V. & Lipson, H. Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006).

    Article  Google Scholar 

  25. 25.

    Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    Article  Google Scholar 

  26. 26.

    Chatzilygeroudis, K., Vassiliades, V. & Mouret, J.-B. Reset-free trial-and-error learning for robot damage recovery. Robot. Auton. Syst. 100, 236–250 (2018).

    Article  Google Scholar 

  27. 27.

    Rosendo, A., von Atzigen, M. & Iida, F. The trade-off between morphology and control in the co-optimized design of robots. PLoS ONE 12, e0186107 (2017).

    Article  Google Scholar 

  28. 28.

    Garrad, M., Rossiter, J. & Hauser, H. Shaping behavior with adaptive morphology. IEEE Robot. Autom. Lett. 3, 2056–2062 (2018).

    Article  Google Scholar 

  29. 29.

    Hauser, H. Resilient machines through adaptive morphology. Nat. Mach. Intell. 1, 338–339 (2019).

    Article  Google Scholar 

  30. 30.

    Yim, S. & Sitti, M. Shape-programmable soft capsule robots for semi-implantable drug delivery. IEEE Trans. Robot. 28, 1198–1202 (2012).

    Article  Google Scholar 

  31. 31.

    Shah, D. S., Yuen, M. C.-S., Tilton, L. G., Yang, E. J. & Kramer-Bottiglio, R. Morphing robots using robotic skins that sculpt clay. IEEE Robot. Autom. Lett. 4, 2204–2211 (2019).

    Article  Google Scholar 

  32. 32.

    Lee, D.-Y., Kim, S.-R., Kim, J.-S., Park, J.-J. & Cho, K.-J. Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure. Soft Robot. 4, 163–180 (2017).

    Article  Google Scholar 

  33. 33.

    Kriegman, S. et al. Automated shapeshifting for function recovery in damaged robots. In Proc. Robotics: Science and Systems (2019).

  34. 34.

    Hiller, J. & Lipson, H. Dynamic simulation of soft multimaterial 3D-printed objects. Soft Robot. 1, 88–101 (2014).

    Article  Google Scholar 

  35. 35.

    Jakobi, N., Husbands, P. & Harvey, I. Noise and the reality gap: the use of simulation in evolutionary robotics. In European Conference on Artificial Life (eds. Morán, F. et al.) 704–720 (Springer, 1995).

  36. 36.

    Lipson, H. & Pollack, J. B. Automatic design and manufacture of robotic lifeforms. Nature 406, 974 (2000).

    Article  Google Scholar 

  37. 37.

    Koos, S., Mouret, J.-B. & Doncieux, S. The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17, 122–145 (2013).

    Article  Google Scholar 

  38. 38.

    Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    Article  Google Scholar 

  39. 39.

    Rusu, A. A. et al. Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning 262–270 (PMLR, 2017).

  40. 40.

    Chebotar, Y. et al. Closing the sim-to-real loop: adapting simulation randomization with real world experience. In 2019 International Conference on Robotics and Automation (ICRA) 8973–8979 (2019).

  41. 41.

    Peng, X. B., Andrychowicz, M., Zaremba, W. & Abbeel, P. Sim-to-real transfer of robotic control with dynamics randomization. In 2018 IEEE International Conference on Robotics and Automation (ICRA) 1–8 (IEEE, 2018).

  42. 42.

    Hwangbo, J. et al. Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4, eaau5872 (2019).

    Article  Google Scholar 

  43. 43.

    Hiller, J. & Lipson, H. Automatic design and manufacture of soft robots. IEEE Trans. Robot. 28, 457–466 (2012).

    Article  Google Scholar 

  44. 44.

    Mitchell, M., Holland, J. H. & Forrest, S. in Advances in Neural Information Processing Systems 6 (eds Cowan, J. D. et al.) 51–58 (Morgan-Kaufmann, 1994).

  45. 45.

    Booth, J. W. et al. OmniSkins: robotic skins that turn inanimate objects into multifunctional robots. Sci. Robot. 3, eaat1853 (2018).

    Article  Google Scholar 

  46. 46.

    Felton, S. M., Tolley, M. T., Onal, C. D., Rus, D. & Wood, R. J. Robot self-assembly by folding: a printed inchworm robot. In 2013 IEEE International Conference on Robotics and Automation 277–282 (IEEE, 2013).

  47. 47.

    Lee, D., Kim, S., Park, Y. & Wood, R. J. Design of centimeter-scale inchworm robots with bidirectional claws. In 2011 IEEE International Conference on Robotics and Automation 3197–3204 (IEEE, 2011).

  48. 48.

    Fukushima, N., Nagata, Y., Kobayashi, S. & Ono, I. Proposal of distance-weighted exponential natural evolution strategies. In 2011 IEEE Congress of Evolutionary Computation (CEC) 164–171 (IEEE, 2011).

  49. 49.

    Booth, J. W., Case, J. C., White, E. L., Shah, D. S. & Kramer-Bottiglio, R. An addressable pneumatic regulator for distributed control of soft robots. In 2018 IEEE International Conference on Soft Robotics (RoboSoft) 25–30 (IEEE, 2018).

  50. 50.

    Kim, S. Y. et al. Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 10, 3464 (2019).

    Article  Google Scholar 

  51. 51.

    Howard, D. et al. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 1, 12–19 (2019).

    Article  Google Scholar 

  52. 52.

    Soter, G., Conn, A., Hauser, H. & Rossiter, J. Bodily aware soft robots: integration of proprioceptive and exteroceptive sensors. In 2018 IEEE International Conference on Robotics and Automation (ICRA) 2448–2453 (IEEE, 2018).

  53. 53.

    Umedachi, T., Kano, T., Ishiguro, A. & Trimmer, B. A. Gait control in a soft robot by sensing interactions with the environment using self-deformation. Open Sci. 3, 160766 (2016).

    Google Scholar 

  54. 54.

    Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J. & Laschi, C. Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Robot. 5, 475–495 (2018).

    Article  Google Scholar 

  55. 55.

    Baines, R., Freeman, S., Fish, F. & Kramer, R. Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations. Bioinspir. Biomim. 15, 025002 (2020).

    Article  Google Scholar 

Download references


This work was supported by NSF EFRI award 1830870. D.S.S. was supported by a NASA Space Technology Research Fellowship (80NSSC17K0164). J.P.P. was supported by the Vermont Space Grant Consortium under NASA Cooperative Agreement NNX15AP86H.

Author information




J.B., R.K.-B., S.K., D.S.S. and J.P.P. conceived the project and planned the experiments. J.P.P. coded the simulation and ran the evolutionary algorithm experiments. D.S.S. and L.G.T. manufactured the robot and performed the hardware experiments. D.S.S., J.P.P., L.G.T., S.K., J.B. and R.K.-B. drafted and edited the manuscript. All authors contributed to, and agree with, the content of the final version of the manuscript.

Corresponding author

Correspondence to Rebecca Kramer-Bottiglio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Machine Intelligence thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Text 1.

Reporting Summary

Supplementary Video 1

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, D.S., Powers, J.P., Tilton, L.G. et al. A soft robot that adapts to environments through shape change. Nat Mach Intell 3, 51–59 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing