Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

AI’s social sciences deficit

To create less harmful technologies and ignite positive social change, AI engineers need to enlist ideas and expertise from a broad range of social science disciplines, including those embracing qualitative methods, say Mona Sloane and Emanuel Moss.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Eubanks, V. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St Martin’s, 2018).

  2. 2.

    Noble, S. U. Algorithms of Oppression: How Search Engines Reinforce Racism (New York Univ. Press, 2018).

  3. 3.

    Buolamwini, J. & Gebru, T. Proc. Mach. Learn. Res. 81, 77–91 (2018).

    Google Scholar 

  4. 4.

    Wilson, B., Hoffman, J. & Morgenstern, J. Preprint at https://arxiv.org/abs/1902.11097 (2019).

  5. 5.

    Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Preprint https://arxiv.org/abs/1606.06121 (2016).

  6. 6.

    Keyes, O. in Proc. ACM on Human-Computer Interaction 2, 88 (ACM, 2018).

  7. 7.

    Amodei, D. et al. Preprint at https://arxiv.org/abs/1606.06565 (2016).

  8. 8.

    Greene, D., Hoffmann, A. L. & Stark, L. in Proc. 52nd Hawaii International Conference on System Sciences 2122–2131 (HICSS, 2019).

  9. 9.

    Sloane, M. in Proc. Weizenbaum Conference 2019 ‘Challenges of Digital Inequality - Digital Education, Digital Work, Digital Life’ https://doi.org/10.34669/wi.cp/2.9 (2019).

  10. 10.

    Metcalf, J., Moss, E. & boyd, d. Soc. Res. 86, 449–476 (2019).

    Google Scholar 

  11. 11.

    Awad, E. et al. Nature 563, 59–64 (2018).

    Article  Google Scholar 

  12. 12.

    Irving, G. & Askell, A. Distill https://doi.org/10.23915/distill.00014 (2019).

  13. 13.

    Katz, Y. Preprint at https://doi.org/10.2139/ssrn.3078224 (2017).

  14. 14.

    Stark, L. Soc. Stud. Sci. 48, 204–231 (2018).

    Article  Google Scholar 

  15. 15.

    boyd, d. & Crawford, K. Inform. Commun. Soc. 15, 662–679 (2012).

    Article  Google Scholar 

  16. 16.

    Elish, M. C. & boyd, d Commun. Monogr. 85, 57–80 (2017).

    Article  Google Scholar 

  17. 17.

    Benthall, S. & Haynes, B. D. in Proc. ACM Fairness, Accountability, and Transparency Conference (FAT*) 289–298 (ACM, 2019).

  18. 18.

    Bowker, G. C. & Star, S. L. Sorting Things Out: Classification and Its Consequences (MIT Press, 2000).

  19. 19.

    Benjamin, R. Race After Technology: Abolitionist Tools for the New Jim Code (Polity Books, 2019).

  20. 20.

    Stark, L. XRDS Crossroads 25, 50–55 (Spring, 2019).

  21. 21.

    Daniels, J., Nkonde, M. & Mir, D. Advancing Racial Literacy in Tech: Why Ethics, Diversity in Hiring and Implicit Bias Trainings Aren’t Enough (Data & Society’s Fellowship Program, 2019).

  22. 22.

    Wagner, C., Garcia, D., Jadidi, M. & Strohmaier, M. in The International AAAI Conference on Web and Social Media 454–463 (AAAI, 2015).

  23. 23.

    Richardson, R., Schultz, J. & Crawford, K. NYU Law Rev. 94, 192–233 (2019).

    Google Scholar 

  24. 24.

    Metcalf, J. et al. Medium https://medium.com/pervade-team/the-study-has-been-approved-by-the-irb-gayface-ai-research-hype-and-the-pervasive-data-ethics-ed76171b882c (2017).

  25. 25.

    Back, L. The Art of Listening (Berg, 2007).

  26. 26.

    Nature 562, 7 (2018).

  27. 27.

    Howard, D. & Irani, L. in Proc. 2019 CHI Conference on Human Factors in Computing Systems 97 (ACM, 2019).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mona Sloane.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sloane, M., Moss, E. AI’s social sciences deficit. Nat Mach Intell 1, 330–331 (2019). https://doi.org/10.1038/s42256-019-0084-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing