Classic theories of reinforcement learning and neuromodulation rely on reward prediction errors. A new machine learning technique relies on neuromodulatory signals that are optimized for specific tasks, which may lead to better AI and better explanations of neuroscience data.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuron 95, 245–258 (2017).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).
Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. in Int. Conf. Learning Representations (ICLR, 2019).
Sutton, R. S. & Barto, A. G. Psychol. Rev. 88, 135–170 (1981).
Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H., & Prokasy, W. F.) 64–99 (Appleton-Century-Crofts, 1972).
Silver, D. et al. Nature 529, 484–489 (2016).
Mnih, V. et al. Nature 518, 529–533 (2015).
Iversen, S. D. & Iversen, L. L. Trends Neurosci. 30, 188–193 (2007).
Schultz, W., Dayan, P. & Montague, P. R. Science 275, 1593–1599 (1997).
Brzosko, Z., Schultz, W. & Paulsen, O. eLife 4, e09685 (2015).
Roelfsema, P. R. & Holtmaat, A. Nat. Rev. Neurosci. 19, 166–180 (2018).
Frémaux, N. & Gerstner, W. Front. Neural Circuits 9, 85 (2016).
Sharpe, M. J. et al. Nat. Neurosci. 20, 735–742 (2017).
Takahashi, Y. K. et al. Neuron 95, 1395–1405 (2017).
Coddington, L. T. & Dudman, J. T. Nat. Neurosci. 21, 1563–1573 (2018).
Andrychowicz, M. et al. in 30th Conf. Neural Information Processing Systems 3981–3989 (NIPS, 2016).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Richards, B.A. Moving beyond reward prediction errors. Nat Mach Intell 1, 204–205 (2019). https://doi.org/10.1038/s42256-019-0053-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-019-0053-0