Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling water waves with artificial structures

Abstract

Because of analogies between the 2D Maxwell equations and water wave equations, methods for manipulating electromagnetic waves based on photonic crystals and metamaterials can be extended to manipulate water waves. Doing so provides new opportunities to investigate the interaction of water waves with structures. In this Review, we introduce the research progress of controlling water waves with water wave crystals and metamaterials and summarize the basic theory and calculation methods for water waves. The working principles and design methods for water wave crystals and metamaterials are described, and their properties and applications are presented. We also discuss the current challenges in this field and future directions.

Key points

  • Artificial water wave structures, including water wave crystals and water wave metamaterials, provide an efficient way to control water waves by extending the methods for controlling electromagnetic waves with photonic crystals and electromagnetic metamaterials.

  • By engineering the band structures of water wave crystals, interesting phenomenon such as Bloch states, superlensing effect, self-collimating phenomenon and Anderson localization can be observed directly in water waves.

  • The band structures of water wave crystals can be calculated by different methods, such as plane-wave expansion method, multiple scattering method, transfer matrix method and finite element method.

  • Equivalent material parameters need to be pre-calculated before designing water wave metamaterials with special functionality, and effective medium theory can be used because the water wavelength is much larger than the period of water wave metamaterials.

  • Water wave metamaterials have potential applications such as anisotropy of water waves, water wave cloaks, concentration of water waves, isolation and unidirectional propagation of water waves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures for manipulating water waves.
Fig. 2: A typical periodic structure in water with corresponding band structures and transmittance results.
Fig. 3: Phenomena based on band structures in water waves.
Fig. 4: Equivalent parameters of metamaterials in water waves.
Fig. 5: Water wave metamaterials with anisotropic water depth.
Fig. 6: Water wave cloaks and superscatters.
Fig. 7: Water wave lens and concentrators.
Fig. 8: Isolation and unidirectional propagation of water waves.

Similar content being viewed by others

References

  1. Lamb, H. Hydrodynamics (Dover, 1932).

  2. Mei, C.-C. The Applied Dynamics of Ocean Surface Waves (World Scientific, 1989).

  3. Scruggs, J. & Jacob, P. Harvesting ocean wave energy. Science 323, 1176–1178 (2009).

    Article  Google Scholar 

  4. Martinelli, L., Ruol, P. & Zanuttigh, B. Wave basin experiments on floating breakwaters with different layouts. Appl. Ocean Res. 30, 199–207 (2008).

    Article  Google Scholar 

  5. Faltinsen, O. M. Wave loads on offshore structures. Annu. Rev. Fluid Mech. 22, 35–56 (1990).

    Article  ADS  Google Scholar 

  6. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  7. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  8. Sigalas, M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993).

    Article  ADS  Google Scholar 

  9. Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993).

    Article  ADS  Google Scholar 

  10. Knight, J. C., Birks, T. A., Russell, P. S. & Atkin, D. M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    Article  ADS  Google Scholar 

  11. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  12. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    Article  ADS  Google Scholar 

  13. Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003).

    Article  ADS  Google Scholar 

  14. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  15. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  16. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  17. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  18. Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photon. 11, 149–158 (2017).

    Article  ADS  Google Scholar 

  19. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Article  ADS  Google Scholar 

  20. Xi, S. et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 103, 194801 (2009).

    Article  ADS  Google Scholar 

  21. Chen, H. & Chen, M. Flipping photons backward: reversed Cherenkov radiation. Mater. Today 14, 34–41 (2011).

    Article  Google Scholar 

  22. Xiao, S. S. & Qiu, M. Doppler effects in a left-handed material: a first-principles theoretical study. Microw. Opt. Technol. Lett. 47, 76–79 (2005).

    Article  Google Scholar 

  23. Lee, S. H., Park, C. M., Seo, Y. M. & Kim, C. K. Reversed Doppler effect in double negative metamaterials. Phys. Rev. B 81, 241102 (2010).

    Article  ADS  Google Scholar 

  24. Zhang, X. & Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008).

    Article  ADS  Google Scholar 

  25. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  27. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  28. Shin, D. et al. Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun. 3, 1213 (2012).

    Article  ADS  Google Scholar 

  29. Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010).

    Article  ADS  Google Scholar 

  30. Chen, H. & Chan, C. T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. https://doi.org/10.1063/1.2748302 (2007).

  31. Chen, H. et al. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys. Rev. Lett. 102, 183903 (2009).

    Article  ADS  Google Scholar 

  32. Lai, Y. et al. Illusion optics: the optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009).

    Article  ADS  Google Scholar 

  33. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  ADS  Google Scholar 

  34. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Article  ADS  Google Scholar 

  35. Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016).

    Article  ADS  Google Scholar 

  36. Ma, Y., Liu, Y., Raza, M., Wang, Y. & He, S. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014).

    Article  ADS  Google Scholar 

  37. Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).

    Article  ADS  Google Scholar 

  38. Park, J., Youn, J. R. & Song, Y. S. Hydrodynamic metamaterial cloak for drag-free flow. Phys. Rev. Lett. 123, 074502 (2019).

    Article  ADS  Google Scholar 

  39. Mei, C. C., Stiassnie, M. & Yue, D. K. P. Theory and Applications of Ocean Surface Waves (World Scientific, 2005).

  40. Ye, Z. Water wave propagation and scattering over topographical bottoms. Phys. Rev. E 67, 036623 (2003).

    Article  ADS  Google Scholar 

  41. Han, L., Chen, S. & Chen, H. Water wave polaritons. Phys. Rev. Lett. 128, 204501 (2022). This work proposes the concept of effective negative water depth and experimentally realizes unidirectional water wave polaritons.

    Article  ADS  Google Scholar 

  42. Bampi, F. & Morro, A. Gravity waves in water of variable depth. Il Nuovo Cim. C 1, 377–388 (1978).

    Article  ADS  Google Scholar 

  43. Bampi, F. & Morro, A. Water wave theories and variational principles. Il Nuovo Cim. C 2, 352–366 (1979).

    Article  ADS  Google Scholar 

  44. Provis, D. G., Radok, R. & Wu, T. Y. Waves on water of variable depth — lecture notes in physics, Vol. 64. J. Appl. Mech. 45, 705–706 (1978).

    Article  ADS  Google Scholar 

  45. Hu, X., Chan, C. T., Ho, K. M. & Zi, J. Negative effective gravity in water waves by periodic resonator arrays. Phys. Rev. Lett. 106, 174501 (2011). This work theoretically predicts the realization of effective negative gravitational acceleration in water waves.

    Article  ADS  Google Scholar 

  46. Hu, X., Yang, J., Zi, J., Chan, C. T. & Ho, K. M. Experimental observation of negative effective gravity in water waves. Sci. Rep. 3, 1916 (2013).

    Article  ADS  Google Scholar 

  47. Heathershaw, A. D. Seabed-wave resonance and sand-bar growth. Nature 296, 343–345 (1982).

    Article  ADS  Google Scholar 

  48. Kirby, J. T. & Dalrymple, R. A. Propagation of obliquely incident water waves over a trench. J. Fluid Mech. 133, 47–63 (2006).

    Article  ADS  Google Scholar 

  49. Mei, C. C. Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315–335 (2006).

    Article  ADS  Google Scholar 

  50. Miles, J. W. Surface-wave scattering matrix for a shelf. J. Fluid Mech. 28, 755–767 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  51. Agnon, Y. Linear and nonlinear refraction and Bragg scattering of water waves. Phys. Rev. E 59, R1319–R1322 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  52. Chou, T. Liquid surface wave band structure instabilities. Phys. Rev. Lett. 79, 4802–4805 (1997).

    Article  ADS  Google Scholar 

  53. Torres, M., Adrados, J. P., Montero de Espinosa, F. R., Garcia-Pablos, D. & Fayos, J. Parametric Bragg resonances in waves on a shallow fluid over a periodically drilled bottom. Phys. Rev. E 63, 011204 (2001).

    Article  ADS  Google Scholar 

  54. Chen, L. S. & Ye, Z. Frozen water waves over rough topographical bottoms. Phys. Rev. E 70, 036312 (2004).

    Article  ADS  Google Scholar 

  55. McIver, P. Water-wave propagation through an infinite array of cylindrical structures. J. Fluid Mech. 424, 101–125 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  56. Chen, L. S., Kuo, C. H., Ye, Z. & Sun, X. Band gaps in the propagation and scattering of surface water waves over cylindrical steps. Phys. Rev. E 69, 066308 (2004). This work studies the propagation properties of a periodic array of bottom-mounted cylindrical steps.

    Article  ADS  Google Scholar 

  57. Jeong, T. S., Kim, J. E., Park, H. Y. & Lee, I. W. Experimental measurement of water wave band gaps. Appl. Phys. Lett. 85, 1645–1647 (2004).

    Article  ADS  Google Scholar 

  58. Hu, X., Shen, Y., Liu, X., Fu, R. & Zi, J. Complete band gaps for liquid surface waves propagating over a periodically drilled bottom. Phys. Rev. E 68, 066308 (2003).

    Article  ADS  Google Scholar 

  59. Tang, Y. et al. Omnidirectional total reflection for liquid surface waves propagating over a bottom with one-dimensional periodic undulations. Phys. Rev. E 73, 035302 (2006).

    Article  ADS  Google Scholar 

  60. Wu, S. Q. & Mei, J. Double Dirac cones and zero-refractive-index media in water waves. EPL https://doi.org/10.1209/0295-5075/123/59001 (2018).

  61. Shi, X., Sun, Y., Xue, C. H. & Hu, X. H. Prediction of interface states in liquid surface waves with one-dimensional modulation. Phys. Lett. A 383, 2106–2109 (2019).

    Article  ADS  Google Scholar 

  62. Linton, C. M. & Evans, D. V. The interaction of waves with arrays of vertical circular cylinders. J. Fluid Mech. 215, 549–569 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  63. Porter, R. & Evans, D. V. Wave scattering by periodic arrays of breakwaters. Wave Motion 23, 95–120 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  64. Ha, Y. K., Kim, J. E., Park, H. Y. & Lee, I. W. Propagation of water waves through finite periodic arrays of vertical cylinders. Appl. Phys. Lett. 81, 1341–1343 (2002).

    Article  ADS  Google Scholar 

  65. Dupont, G. et al. Type of dike using C-shaped vertical cylinders. Phys. Rev. B 96, 180302 (2017).

    Article  Google Scholar 

  66. Carter, B. G. & McIver, P. Water-wave propagation through an infinite array of floating structures. J. Eng. Math. 81, 9–45 (2013).

    Article  MathSciNet  Google Scholar 

  67. Zhao, X., Hu, X. & Zi, J. Fast water waves in stationary surface disk arrays. Phys. Rev. Lett. 127, 254501 (2021). This work reveals the occurrence of the phenomenon of fast water waves experimentally.

    Article  ADS  MathSciNet  Google Scholar 

  68. Zeng, J., Zhao, X., Sun, X. & Hu, X. Achieving complete band gaps of water waves with shallow-draft cylinder arrays. Phys. Rev. Appl. 19, 044058 (2023).

    Article  ADS  Google Scholar 

  69. Hu, X. et al. Band structures and band gaps of liquid surface waves propagating through an infinite array of cylinders. Phys. Rev. E 68, 037301 (2003).

    Article  ADS  Google Scholar 

  70. Liu, X. et al. Propagation of liquid surface waves over finite graphene structured arrays of cylinders. Theor. Appl. Mech. Lett. 1, 052007 (2011).

    Article  Google Scholar 

  71. Torres, M., Adrados, J. P. & Espinosa, F. R. M. D. Visualization of Bloch waves and domain walls. Nature 398, 114 (1999). This work observes the extended Bloch state when water waves propagate through a bottom with periodically drilled holes.

    Article  ADS  Google Scholar 

  72. Torres, M., Adrados, J. P., Aragon, J. L., Cobo, P. & Tehuacanero, S. Quasiperiodic Bloch-like states in a surface-wave experiment. Phys. Rev. Lett. 90, 114501 (2003).

    Article  ADS  Google Scholar 

  73. Hu, X., Shen, Y., Liu, X., Fu, R. & Zi, J. Superlensing effect in liquid surface waves. Phys. Rev. E 69, 030201 (2004).

    Article  ADS  Google Scholar 

  74. Farhat, M., Guenneau, S., Enoch, S. & Movchan, A. All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2D phononic crystals. J. Comput. Appl. Math. 234, 2011–2019 (2010).

    Article  MathSciNet  Google Scholar 

  75. Shen, Y., Chen, K., Chen, Y., Liu, X. & Zi, J. Self-collimation in liquid surface waves propagating over a bottom with periodically drilled holes. Phys. Rev. E 71, 036301 (2005).

    Article  ADS  Google Scholar 

  76. An, Z. & Ye, Z. Band gaps and localization of water waves over one-dimensional topographical bottoms. Appl. Phys. Lett. 84, 2952–2954 (2004).

    Article  ADS  Google Scholar 

  77. Huang, M. J., Kuo, C. H. & Ye, Z. Gravity waves over topographical bottoms: comparison with experiment. Phys. Rev. E 71, 011201 (2005).

    Article  ADS  Google Scholar 

  78. Zhang, Y. et al. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations. Phys. Rev. E 85, 066319 (2012).

    Article  ADS  Google Scholar 

  79. Mei, J., Qiu, C. Y., Shi, J. & Liu, Z. Y. Highly directional liquid surface wave source based on resonant cavity. Phys. Lett. A 373, 2948–2952 (2009).

    Article  ADS  Google Scholar 

  80. Mei, J., Qiu, C. Y., Shi, J. & Liu, Z. Y. Enhanced and directional water wave emission by embedded sources. Wave Motion 47, 131–138 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  81. Wang, Z. Y., Zhang, P., Zhang, Y. Q. & Nie, X. F. Experimental verification of directional liquid surface wave emission at band edge frequencies. Phys. B 431, 75–79 (2013).

    Article  ADS  Google Scholar 

  82. Hu, X. & Chan, C. T. Refraction of water waves by periodic cylinder arrays. Phys. Rev. Lett. 95, 154501 (2005). This work demonstrates the effective depth and effective gravity for water waves passing through an array of bottom-mounted vertical cylinders in the long wavelength limit.

    Article  ADS  Google Scholar 

  83. Choy, T. C. Effective Medium Theory: Principles and Applications (Oxford Univ. Press, 2015).

  84. Chen, H. Y. & Chan, C. T. Electromagnetic wave manipulation by layered systems using the transformation media concept. Phys. Rev. B 78, 054204 (2008).

    Article  ADS  Google Scholar 

  85. Huang, Y., Feng, Y. & Jiang, T. Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt. Expr. 15, 11133–11141 (2007).

    Article  ADS  Google Scholar 

  86. Wood, B., Pendry, J. B. & Tsai, D. P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006).

    Article  ADS  Google Scholar 

  87. Chen, H. Y., Yang, J., Zi, J. & Chan, C. T. Transformation media for linear liquid surface waves. EPL 85, 24004 (2009). This work first proposes the concept of anisotropic water depth.

    Article  ADS  Google Scholar 

  88. Berraquero, C. P., Maurel, A., Petitjeans, P. & Pagneux, V. Experimental realization of a water-wave metamaterial shifter. Phys. Rev. E 88, 051002 (2013).

    Article  ADS  Google Scholar 

  89. Maurel, A., Marigo, J. J., Cobelli, P., Petitjeans, P. & Pagneux, V. Revisiting the anisotropy of metamaterials for water waves. Phys. Rev. B 96, 134310 (2017).

    Article  ADS  Google Scholar 

  90. Euvé, L.-P., Pham, K. & Maurel, A. Negative refraction of water waves by hyperbolic metamaterials. J. Fluid Mech. 961, A16 (2023).

    Article  MathSciNet  Google Scholar 

  91. Rosales, R. R. & Papanicolaou, G. C. Gravity waves in a channel with a rough bottom. Stud. Appl. Math. 68, 89–102 (1983).

    Article  MathSciNet  Google Scholar 

  92. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).

    Article  ADS  Google Scholar 

  93. Xu, L. & Chen, H. Conformal transformation optics. Nat. Photon. 9, 15–23 (2015).

    Article  ADS  Google Scholar 

  94. Xu, L. & Chen, H. Transformation metamaterials. Adv. Mater. 33, e2005489 (2021).

    Article  Google Scholar 

  95. Porter, R. Cloaking in water waves. In World Scientific Series in Nanoscience and Nanotechnology Vol. 2, 387–425 (World Scientific, 2017).

  96. Iida, T. & Kashiwagi, M. Small water channel network for designing wave fields in shallow water. J. Fluid Mech. 849, 90–110 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  97. Farhat, M., Enoch, S., Guenneau, S. & Movchan, A. B. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008). This work experimentally realizes a cloak for linear surface waves.

    Article  ADS  Google Scholar 

  98. Wang, Z., Li, C., Zatianina, R., Zhang, P. & Zhang, Y. Carpet cloak for water waves. Phys. Rev. E 96, 053107 (2017). This work experimentally realizes a carpet cloak for water waves by using the method from transformation optics.

    Article  ADS  Google Scholar 

  99. Yang, Y., Wang, H., Yu, F., Xu, Z. & Chen, H. A metasurface carpet cloak for electromagnetic, acoustic and water waves. Sci. Rep. 6, 20219 (2016).

    Article  ADS  Google Scholar 

  100. Dupont, G., Kimmoun, O., Molin, B., Guenneau, S. & Enoch, S. Numerical and experimental study of an invisibility carpet in a water channel. Phys. Rev. E 91, 023010 (2015).

    Article  ADS  Google Scholar 

  101. Gu, C. et al. A broadband polarization-insensitive cloak based on mode conversion. Sci. Rep. 5, 12106 (2015).

    Article  ADS  Google Scholar 

  102. Zou, S. et al. Broadband waveguide cloak for water waves. Phys. Rev. Lett. 123, 074501 (2019). This work realizes broad waveguide cloaks for water waves based on the theory of mode evolution.

    Article  ADS  Google Scholar 

  103. Alam, M. R. Broadband cloaking in stratified seas. Phys. Rev. Lett. 108, 084502 (2012).

    Article  ADS  Google Scholar 

  104. Porter, R. & Newman, J. N. Cloaking of a vertical cylinder in waves using variable bathymetry. J. Fluid Mech. 750, 124–143 (2014). This work introduces the design of a water wave cloak with variable bathymetry by using the scattering cancellation method.

    Article  ADS  Google Scholar 

  105. Newman, J. N. Cloaking a circular cylinder in deep water. In The 28th International Workshop on Water Waves and Floating Bodies 1–4 (Elsevier, 2013).

  106. Newman, J. N. Cloaking a circular cylinder in water waves. Eur. J. Mech. B-Fluid 47, 145–150 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  107. Read, R. W., Bingham, H. B. & Newman, J. N. Measurements of cloaking produced by an array of circular cylinders. Int. J. Offshore Polar Eng. 28, 128–134 (2016).

    Article  Google Scholar 

  108. Zhang, Z., He, G. & Wang, Z. Real-coded genetic algorithm optimization in reduction of wave drift forces on an array of truncated cylinders. J. Mar. Sci. Technol. 24, 930–947 (2019).

    Article  Google Scholar 

  109. Zhang, Z. G. et al. Numerical and experimental studies on cloaked arrays of truncated cylinders under different wave directions. Ocean Eng. 183, 305–317 (2019).

    Article  ADS  Google Scholar 

  110. Zhang, Z., He, G., Kashiwagi, M. & Wang, Z. A quasi-cloaking phenomenon to reduce the wave drift force on an array of adjacent floating bodies. Appl. Ocean Res. 71, 1–10 (2018).

    Article  Google Scholar 

  111. Zhang, Z. G., He, G. H., Wang, W., Liu, S. & Wang, Z. K. Reduction of wave drift force on a truncated cylinder in a wide frequency band using the defect effects on cloaking phenomenon. Ocean Eng. 203, 107241 (2020).

    Article  Google Scholar 

  112. Zhang, Z. G., He, G. H., Wang, W., Liu, S. & Wang, Z. K. Broadband cloaking of multiple truncated cylinders in water waves using the arrangement defects. Phys. Fluids 32, 067111 (2020).

    Article  ADS  Google Scholar 

  113. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photon. 15, 77–90 (2021).

    Article  ADS  Google Scholar 

  114. Hua, Y. F., Qian, C., Chen, H. S. & Wang, H. P. Experimental topology-optimized cloak for water waves. Mater. Today Phys. 27, 100754 (2022). This work realizes a water wave cloak by artificial intelligence.

    Article  Google Scholar 

  115. Yang, T., Chen, H., Luo, X. & Ma, H. Superscatterer: enhancement of scattering with complementary media. Opt. Expr. 16, 18545–18550 (2008).

    Article  ADS  Google Scholar 

  116. Ruan, Z. & Fan, S. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 105, 013901 (2010).

    Article  ADS  Google Scholar 

  117. Qin, Z. et al. Superscattering of water waves. Natl Sci. Rev. 10, nwac255 (2023). This work realizes a water wave superscatter by artificial intelligence.

    Article  Google Scholar 

  118. Brooke, J. Wave Energy Conversion (Elsevier, 2003).

  119. McCormick, M. E. Ocean Wave Energy Conversion (Courier Corporation, 2013).

  120. Stamnes, J. J. et al. Nonlinear focusing of surface waves by a lens — theory and experiment. J. Fluid Mech. 135, 71–94 (1983).

    Article  ADS  Google Scholar 

  121. Kudo, K., Tsuzuku, T., Imai, K. & Akiyama, Y. Study on wave focusing by a horizontally submerged plate. J. Soc. Nav. Archit. Jpn. 1986, 217–225 (1986).

    Article  Google Scholar 

  122. Murashige, S. & Kinoshita, T. An ideal ocean wave focusing lens and its shape. Appl. Ocean Res. 14, 275–290 (1992).

    Article  Google Scholar 

  123. Griffiths, L. S. & Porter, R. Focusing of surface waves by variable bathymetry. Appl. Ocean Res. 34, 150–163 (2012).

    Article  Google Scholar 

  124. Ertekin, R. C. & Monopolis, G. M. in Hydrodynamics of Ocean Wave-Energy Utilization (eds David, V. E. & de Falcão António, F. O.) 433–443 (Springer, 1985).

  125. Ren, J., Jin, P., Liu, Y. & Zang, J. Wave attenuation and focusing by a parabolic arc pontoon breakwater. Energy 217, 119405 (2021).

    Article  Google Scholar 

  126. Li, C. Y., Shih, R. S. & Weng, W. K. Investigation of ocean-wave-focusing characteristics induced by a submerged crescent-shaped plate for long-crested waves. Water 12, 509 (2020).

    Article  ADS  Google Scholar 

  127. Mustapa, M. A. et al. Wave energy device and breakwater integration: a review. Renew. Sust. Energ. Rev. 77, 43–58 (2017).

    Article  Google Scholar 

  128. Yang, J. et al. Observation of the focusing of liquid surface waves. Appl. Phys. Lett. 95, 094106 (2009).

    Article  ADS  Google Scholar 

  129. Wang, Z. Y., Zhang, P., Nie, X. F. & Zhang, Y. Q. Focusing of liquid surface waves by gradient index lens. EPL 108, 24003 (2014).

    Article  ADS  Google Scholar 

  130. Wang, Z., Zhang, P., Nie, X. & Zhang, Y. Manipulating water wave propagation via gradient index media. Sci. Rep. 5, 16846 (2015).

    Article  ADS  Google Scholar 

  131. Kinsler, P., Tan, J. J., Thio, T. C. Y., Trant, C. & Kandapper, N. Maxwell’s fishpond. Eur. J. Phys. 33, 1737–1750 (2012).

    Article  Google Scholar 

  132. Maxwell, J. C. Problems. Camb. Dublin Math. J. 8, 188 (1854).

    Google Scholar 

  133. Zhang, C., Chan, C. T. & Hu, X. Broadband focusing and collimation of water waves by zero refractive index. Sci. Rep. 4, 6979 (2014).

    Article  ADS  Google Scholar 

  134. Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 6, 1701292 (2018).

    Article  Google Scholar 

  135. Bobinski, T., Eddi, A., Petitjeans, P., Maurel, A. & Pagneux, V. Experimental demonstration of epsilon-near-zero water waves focusing. Appl. Phys. Lett. 107, 014101 (2015).

    Article  ADS  Google Scholar 

  136. Elandt, R. B., Shakeri, M. & Alam, M. R. Surface gravity-wave lensing. Phys. Rev. E Stat. Nonli. Soft Matter Phys. 89, 023012 (2014).

    Article  ADS  Google Scholar 

  137. Sadeghi, M. M., Li, S., Xu, L., Hou, B. & Chen, H. Transformation optics with Fabry–Pérot resonances. Sci. Rep. 5, 8680 (2015).

    Article  ADS  Google Scholar 

  138. Li, C. et al. Concentrators for water waves. Phys. Rev. Lett. 121, 104501 (2018). This work realizes concentrators for water waves based on Fabry–Pérot resonance.

    Article  ADS  Google Scholar 

  139. Zhang, Z. G., Liu, S., Luan, Z. X., Wang, Z. K. & He, G. H. Invisibility concentrator for water waves. Phys. Fluids 32, 081701 (2020). This work experimentally realizes a water wave concentrator by using cylindrical discs arranged in circular columns.

    Article  ADS  Google Scholar 

  140. Zhang, Z. et al. Numerical and experimental studies on a self-protected energy concentrator for water waves. Ocean Eng. 268, 113312 (2023).

    Article  ADS  Google Scholar 

  141. Tsakmakidis, K. L., Boardman, A. D. & Hess, O. ‘Trapped rainbow’ storage of light in metamaterials. Nature 450, 397–401 (2007).

    Article  ADS  Google Scholar 

  142. Gan, Q., Ding, Y. J. & Bartoli, F. J. ‘Rainbow’ trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett. 102, 056801 (2009).

    Article  ADS  Google Scholar 

  143. Bennetts, L. G., Peter, M. A. & Craster, R. V. Graded resonator arrays for spatial frequency separation and amplification of water waves. J. Fluid Mech. https://doi.org/10.1017/jfm.2018.648 (2018).

  144. Archer, A. J. et al. Experimental realization of broadband control of water-wave-energy amplification in chirped arrays. Phys. Rev. Fluids 5, 062801 (2020).

    Article  ADS  Google Scholar 

  145. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955).

    Article  ADS  Google Scholar 

  146. Euvé, L. P. et al. Perfect resonant absorption of guided water waves by Autler–Townes splitting. Phys. Rev. Lett. 131, 204002 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  147. Chen, S. M., Zhou, Y. Y., Wang, Z. Y. & Chen, H. Y. Metagrating in ancient Luoyang Bridge. EPL 132, 24003 (2020).

    Article  Google Scholar 

  148. Wang, Z. Y., Nie, X. F. & Zhang, P. Unidirectional transmission of water waves through a one-dimensional combination immersed system. Phys. Scr. 89, 095201 (2014).

    Article  ADS  Google Scholar 

  149. Wang, L.-G. et al. Unidirectional transmission of surface water waves based on evanescent wave modes. J. Appl. Phys. 132, 215103 (2022).

    Article  ADS  Google Scholar 

  150. Meng, Y., Hao, Y. R., Guenneau, S., Wang, S. B. & Li, J. Willis coupling in water waves. N. J. Phys. 23, 073004 (2021).

    Article  MathSciNet  Google Scholar 

  151. Han, L. et al. Control water waves by metagratings. Preprint at https://arXiv.org/abs/2311.15795 (2023).

  152. Peregrine, D. H., Skyner, D., Stiassnie, M. & Dodd, N. Nonlinear effects on focussed water waves. Coastal Eng. 1988, 732–742 (2015).

  153. Baldock, T. E., Swan, C., Taylor, P. H. & Smith, F. T. A laboratory study of nonlinear surface waves on water. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 354, 649–676 (1997).

    ADS  Google Scholar 

  154. Engsig-Karup, A. P., Bingham, H. B. & Lindberg, O. An efficient flexible-order model for 3D nonlinear water waves. J. Comput. Phys. 228, 2100–2118 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  155. He, Y., Slunyaev, A., Mori, N. & Chabchoub, A. Experimental evidence of nonlinear focusing in standing water waves. Phys. Rev. Lett. 129, 144502 (2022).

    Article  ADS  Google Scholar 

  156. Przadka, A. et al. Time reversal of water waves. Phys. Rev. Lett. 109, 064501 (2012).

    Article  ADS  Google Scholar 

  157. Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    Article  Google Scholar 

  158. Mathias, F. & Claire, P. Acoustic time-reversal mirrors. Inverse Probl. 17, R1 (2001).

    Article  Google Scholar 

  159. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    Article  ADS  Google Scholar 

  160. Wang, Q. et al. Acoustic asymmetric transmission based on time-dependent dynamical scattering. Sci. Rep. 5, 10880 (2015).

    Article  ADS  Google Scholar 

  161. Gaxiola-Luna, J. G., Halevi, P., Gaxiola-Luna, J. G. & Halevi, P. Temporal photonic (time) crystal with a square profile of both permittivity ɛ(t) and permeability μ(t). Phys. Rev. B 103, 144306 (2021).

    Article  ADS  Google Scholar 

  162. Xu, Y. D., Fu, Y. Y. & Chen, H. Y. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).

    Article  ADS  Google Scholar 

  163. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

    Article  ADS  Google Scholar 

  164. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  165. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  166. Xu, Y., Fu, Y. & Chen, H. Steering light by a sub-wavelength metallic grating from transformation optics. Sci. Rep. 5, 12219 (2015).

    Article  ADS  Google Scholar 

  167. Ra’di, Y., Sounas, D. L. & Alù, A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett. 119, 067404 (2017).

    Article  ADS  Google Scholar 

  168. Fu, Y. et al. Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun. 10, 2326 (2019).

    Article  ADS  Google Scholar 

  169. Sun, H.-T., Cheng, Y., Wang, J.-S. & Liu, X.-J. Wavefront modulation of water surface wave by a metasurface. Chin. Phys. B 24, 104302 (2015).

    Article  ADS  Google Scholar 

  170. Lin, Z.-K. et al. Topological phenomena at defects in acoustic, photonic and solid-state lattices. Nat. Rev. Phys. 5, 483–495 (2023).

    Article  Google Scholar 

  171. Yang, Z., Gao, F. & Zhang, B. Topological water wave states in a one-dimensional structure. Sci. Rep. 6, 29202 (2016).

    Article  ADS  Google Scholar 

  172. Wang, L. G., Liu, T., Peng, S. J., Fan, Y. X. & Tao, Z. Y. Topological interface states of surface water waves in a channel with heterojunctions. Phys. Lett. A 446, 128279 (2022).

    Article  Google Scholar 

  173. Wu, S. Q., Wu, Y. & Mei, J. Topological helical edge states in water waves over a topographical bottom. N. J. Phys. https://doi.org/10.1088/1367-2630/aa9cdb (2018).

  174. Laforge, N. et al. Observation of topological gravity-capillary waves in a water wave crystal. N. J. Phys. 21, 083031 (2019).

    Article  Google Scholar 

  175. Makwana, M. P. et al. Experimental observations of topologically guided water waves within non-hexagonal structures. Appl. Phys. Lett. 116, 131603 (2020).

    Article  ADS  Google Scholar 

  176. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  177. von Neumann, J. & Wigner, E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 30, 465–467 (1929).

    Google Scholar 

  178. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    Article  ADS  Google Scholar 

  179. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    Article  ADS  Google Scholar 

  180. Lyapina, A. A., Maksimov, D. N., Pilipchuk, A. S. & Sadreev, A. F. Bound states in the continuum in open acoustic resonators. J. Fluid Mech. 780, 370–387 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  181. Tong, H., Liu, S., Zhao, M. & Fang, K. Observation of phonon trapping in the continuum with topological charges. Nat. Commun. 11, 5216 (2020).

    Article  ADS  Google Scholar 

  182. McIver, P. & McIver, M. Trapped modes in an axisymmetric water-wave problem. Q. J. Mech. Appl. Math. 50, 165–178 (1997).

    Article  MathSciNet  Google Scholar 

  183. Kuznetsov, N., McIver, P. & Linton, C. M. On uniqueness and trapped modes in the water-wave problem for vertical barriers. Wave Motion 33, 283–307 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  184. McIver, P. & McIver, M. Trapped modes in the water-wave problem for a freely floating structure. J. Fluid Mech. 558, 53–67 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  185. Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. Experimental observation of trapped modes in a water wave channel. EPL 88, 20006 (2009).

    Article  ADS  Google Scholar 

  186. Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. Experimental study on water-wave trapped modes. J. Fluid Mech. 666, 445–476 (2011).

    Article  ADS  Google Scholar 

  187. Uhlenbeck, G. E. & Goudsmit, S. Spinning electrons and the structure of spectra. Nature 117, 264–265 (1926).

    Article  ADS  Google Scholar 

  188. Poynting, J. H. The wave-motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly-polarized light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    Article  ADS  Google Scholar 

  189. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  ADS  Google Scholar 

  190. Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99, 174310 (2019).

    Article  ADS  Google Scholar 

  191. Shi, C. et al. Observation of acoustic spin. Natl Sci. Rev. 6, 707–712 (2019).

    Article  ADS  Google Scholar 

  192. Long, Y., Ren, J. & Chen, H. Intrinsic spin of elastic waves. Proc. Natl Acad. Sci. USA 115, 9951–9955 (2018).

    Article  ADS  Google Scholar 

  193. Bliokh, K. Y., Punzmann, H., Xia, H., Nori, F. & Shats, M. Field theory spin and momentum in water waves. Sci. Adv. 8, eabm1295 (2022).

    Article  ADS  Google Scholar 

  194. Filatov, S. V. et al. Nonlinear generation of vorticity by surface waves. Phys. Rev. Lett. 116, 054501 (2016).

    Article  ADS  Google Scholar 

  195. Francois, N., Xia, H., Punzmann, H., Fontana, P. W. & Shats, M. Wave-based liquid-interface metamaterials. Nat. Commun. 8, 14325 (2017).

    Article  ADS  Google Scholar 

  196. Dai, G. & Wang, J. Transformation hydrodynamic metamaterials: rigorous arguments on form invariance and structural design with spatial variance. Phys. Rev. E 107, 055108 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  197. Chen, M., Shen, X. & Xu, L. Hydrodynamic metamaterials: principles, experiments, and applications. Droplet 2, e79 (2023).

    Article  Google Scholar 

  198. Morton, K. J. et al. Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc. Natl Acad. Sci. USA 105, 7434–7438 (2008).

    Article  ADS  Google Scholar 

  199. Boyko, E. et al. Microscale hydrodynamic cloaking and shielding via electro-osmosis. Phys. Rev. Lett. 126, 184502 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  200. Park, J., Youn, J. R. & Song, Y. S. Metamaterial hydrodynamic flow concentrator. Extrem. Mech. Lett. 42, 101061 (2021).

    Article  Google Scholar 

  201. Park, J., Youn, J. R. & Song, Y. S. Fluid-flow rotator based on hydrodynamic metamaterial. Phys. Rev. Appl. 12, 061002 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Grant No. 12374410), National Key Research and Development Program of China (Grant Nos 2023YFA1406901 and 2023YFA1407100) and Fundamental Research Funds for the Central Universities (Grant No. 20720220033).

Author information

Authors and Affiliations

Authors

Contributions

S.Z., X.Z. and L.H. researched data for the article. S.Z., X.Z., L.H., X.H. and H.C. contributed substantially to discussion of the content. S.Z., X.Z. and L.H. wrote the article. X.H. and H.C. conceived and supervised the whole project. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Xinhua Hu or Huanyang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Guanghua He and Jun Mei for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhao, X., Han, L. et al. Controlling water waves with artificial structures. Nat Rev Phys 6, 231–245 (2024). https://doi.org/10.1038/s42254-024-00701-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00701-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing