Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How multiscale curvature couples forces to cellular functions

Abstract

Among the physicochemical cues in the cellular microenvironment that orchestrate cell processes, the different levels of curvature in the extracellular matrix and intrinsic to the tissues play a pivotal role in the spatiotemporal control of key cellular functions. Curvature influences multicellular organization and contributes to the onset of specific human diseases. This Review outlines how physical parameters used to describe the balance of forces in cells and tissues shed light on the mechanism of curvature sensing of cells across different length scales. We provide a summary of progress in delineating the fundamental mechanobiological characteristics of curvature sensing across various scales, emphasizing key challenges in the field. Additionally, we explore the potential of vertex model approaches to uncover critical physical elements involved in the mechanical regulation of curved tissues and the construction of functional architectures at the collective level. Finally, we examine how changes in curvature can influence transcriptional regulation through a reorganization of cytoskeletal forces acting on the nucleus, thereby facilitating the development of specific human diseases.

Key points

  • Cells interact with the curved surfaces of many organs and, at a lower scale, with the rounded features of the extracellular matrix, which inherently links geometric form and biological function.

  • The curvature of the extracellular matrix influences vital cellular processes by defining physical boundary conditions across multiple scales.

  • Multicellular tissues are active materials, and curved patterns in tissues emerge from stress fields generated by intrinsic forces coupled with extrinsic constraints.

  • The regulation of cellular shape and tension by curvatures at various length scales activates specific mechanotransduction pathways that synergistically determine downstream cellular functions.

  • Changes in the balance of cellular forces required to adapt to curved environments can have dramatic consequences, promoting the emergence of various human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Forces acting at the tissue scale.
Fig. 2: Mechanisms of tissue curvature generation and vertex models.
Fig. 3: In-plane curvature at cellular and tissue scales.
Fig. 4: Multiscale out-of-plane curvatures.
Fig. 5: Nuclear curvosensing on concave and convex substrates.

Similar content being viewed by others

References

  1. Procès, A., Luciano, M., Kalukula, Y., Ris, L. & Gabriele, S. Multiscale mechanobiology in brain physiology and diseases. Front. Cell Dev. Biol. 10, 823857 (2022).

    Article  Google Scholar 

  2. Lantoine, J. et al. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures. Biomaterials 89, 14–24 (2016).

    Article  Google Scholar 

  3. Riaz, M., Versaevel, M., Mohammed, D., Glinel, K. & Gabriele, S. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement. Sci. Rep. 6, 34141 (2016).

    Article  ADS  Google Scholar 

  4. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023).

    Article  Google Scholar 

  5. Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017).

  6. Mohammed, D. et al. Substrate area confinement is a key determinant of cell velocity in collective migration. Nat. Phys. 15, 858–866 (2019).

    Article  Google Scholar 

  7. Lomakin, A. J. et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370, eaba2894 (2020).

    Article  Google Scholar 

  8. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  ADS  Google Scholar 

  9. Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023).

    Article  Google Scholar 

  10. Elosegui-Artola, A. et al. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat. Mater. 22, 117–127 (2023).

    Article  ADS  Google Scholar 

  11. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    Article  ADS  Google Scholar 

  12. Bruyère, C. et al. Actomyosin contractility scales with myoblast elongation and enhances differentiation through YAP nuclear export. Sci. Rep. 9, 15565 (2019).

    Article  ADS  Google Scholar 

  13. Martino, F., Perestrelo, A. R., Vinarský, V., Pagliari, S. & Forte, G. Cellular mechanotransduction: from tension to function. Front. Physiol. 9, 824 (2018).

    Article  Google Scholar 

  14. Lantoine, J. et al. Inflammatory molecules released by mechanically injured astrocytes trigger presynaptic loss in cortical neuronal networks. ACS Chem. Neurosci. 12, 3885–3897 (2021).

    Article  Google Scholar 

  15. Fleszar, A. J., Walker, A., Kreeger, P. K. & Notbohm, J. Substrate curvature induces fallopian tube epithelial cell invasion via cell–cell tension in a model of ovarian cortical inclusion cysts. Integr. Biol. 11, 342–352 (2019).

    Article  Google Scholar 

  16. Maechler, F. A., Allier, C., Roux, A. & Tomba, C. Curvature-dependent constraints drive remodeling of epithelia. J. Cell Sci. 132, jcs222372 (2019).

    Google Scholar 

  17. Mandrycky, C., Hadland, B. & Zheng, Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci. Adv. 6, eabb3629 (2020).

    Article  ADS  Google Scholar 

  18. Werner, M. et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 4, 1600347 (2017).

    Article  Google Scholar 

  19. Messal, H. A. et al. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 566, 126–130 (2019).

    Article  ADS  Google Scholar 

  20. Luciano, M. et al. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. Biophys. Rev. 3, 011305 (2022).

    Article  Google Scholar 

  21. Mohammed, D. et al. Innovative tools for mechanobiology: unravelling outside-in and inside-out mechanotransduction. Front. Bioeng. Biotechnol. 7, 162 (2019).

    Article  MathSciNet  Google Scholar 

  22. Basu, R., Munteanu, E. L. & Chang, F. Role of turgor pressure in endocytosis in fission yeast. Mol. Biol. Cell 25, 549–727 (2014).

    Article  Google Scholar 

  23. Roffay, C. et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proc. Natl Acad. Sci. USA 118, e2103228118 (2021).

    Article  Google Scholar 

  24. Latorre, E. et al. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563, 203–208 (2018).

    Article  ADS  Google Scholar 

  25. Jentsch, T. J., Lutter, D., Planells-Cases, R., Ullrich, F. & Voss, F. K. VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflug. Arch. Eur. J. Physiol. 468, 385–393 (2016).

    Article  Google Scholar 

  26. Houdusse, A. & Sweeney, H. L. How myosin generates force on actin filaments. Trends Biochem. Sci. 41, 989–997 (2016).

    Article  Google Scholar 

  27. Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly–disassembly. Int. Rev. Cytol. 78, 1–125 (1982).

    Article  Google Scholar 

  28. Molodtsov, M. I., Grishchuk, E. L., Efremov, A. K., McIntosh, J. R. & Ataullakhanov, F. I. Force production by depolymerizing microtubules: a theoretical study. Proc. Natl Acad. Sci. USA 102, 4353–4358 (2005).

    Article  ADS  Google Scholar 

  29. Matis, M. The mechanical role of microtubules in tissue remodeling. BioEssays 42, 1900244 (2020).

    Article  Google Scholar 

  30. Kozlov, M. M. & Chernomordik, L. V. Membrane tension and membrane fusion. Curr. Opin. Struct. Biol. 33, 61–67 (2015).

    Article  Google Scholar 

  31. Gibbs, J. W. The Scientific Papers of J. Willard Gibbs (Dover Publications, Inc., 1961).

  32. De Belly, H. et al. Actin-driven protrusions generate rapid long-range membrane tension propagation in cells. Preprint at bioRxiv https://doi.org/10.1101/2022.09.07.507005 (2022).

  33. Lieber, A. D., Yehudai-Resheff, S., Barnhart, E. L., Theriot, J. A. & Keren, K. Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr. Biol. 23, 1409–1417 (2013).

    Article  Google Scholar 

  34. Mueller, J. et al. Load adaptation of lamellipodial actin networks. Cell 171, 188–200.e16 (2017).

    Article  Google Scholar 

  35. Hetmanski, J. H. R. et al. Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev. Cell 51, 460–475.e10 (2019).

    Article  Google Scholar 

  36. Taubenberger, A. V., Baum, B. & Matthews, H. K. The mechanics of mitotic cell rounding. Front. Cell Dev. Biol. 8, 687 (2020).

    Article  Google Scholar 

  37. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    Article  ADS  Google Scholar 

  38. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  ADS  Google Scholar 

  39. Kruse, K., Joanny, J. F., Jülicher, F., Prost, J. & Sekimoto, K. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E 16, 5–16 (2005).

    Article  Google Scholar 

  40. Berezney, J., Goode, B. L., Fraden, S. & Dogic, Z. Extensile to contractile transition in active microtubule–actin composites generates layered asters with programmable lifetimes. Proc. Natl Acad. Sci. USA 119, e2115895119 (2022).

    Article  Google Scholar 

  41. Saw, T. B. et al. Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017).

    Article  ADS  Google Scholar 

  42. Blanch-Mercader, C., Guillamat, P., Roux, A. & Kruse, K. Quantifying material properties of cell monolayers by analyzing integer topological defects. Phys. Rev. Lett. 126, 028101 (2021).

    Article  ADS  Google Scholar 

  43. Blanch-Mercader, C., Guillamat, P., Roux, A. & Kruse, K. Integer topological defects of cell monolayers: mechanics and flows. Phys. Rev. E 103, 012405 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  44. Balasubramaniam, L. et al. Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. Nat. Mater. 20, 1156–1166 (2021).

    Article  ADS  Google Scholar 

  45. Dumortier, J. G. et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365, 465–468 (2019).

    Article  ADS  Google Scholar 

  46. Kosmalska, A. J. et al. Physical principles of membrane remodelling during cell mechanoadaptation. Nat. Commun. 6, 7292 (2015).

    Article  ADS  Google Scholar 

  47. Dietrich, J.-E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    Article  Google Scholar 

  48. Rhumbler, L. Zur Mechanik des Gastrulationsvorganges insbesondere der Invagination: Eine entwickelungsmechanische Studie. Arch. Für. Entwickl. Org. 14, 401–476 (1902).

    Article  Google Scholar 

  49. Moore, A. R. & Burt, A. S. On the locus and nature of the forces causing gastrulation in the embryos of Dendraster excentricus. J. Exp. Zool. 82, 159–171 (1939).

    Article  Google Scholar 

  50. Martin, A. C. & Goldstein, B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141, 1987–1998 (2014).

    Article  Google Scholar 

  51. Gilmour, D., Rembold, M. & Leptin, M. From morphogen to morphogenesis and back. Nature 541, 311–320 (2017).

    Article  ADS  Google Scholar 

  52. Pérez-González, C. et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23, 745–757 (2021).

    Article  Google Scholar 

  53. Yang, Q. et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23, 733–744 (2021).

    Article  Google Scholar 

  54. Haas, P. A. & Goldstein, R. E. Morphoelasticity of large bending deformations of cell sheets during development. Phys. Rev. E 103, 022411 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  55. Höhn, S., Honerkamp-Smith, A. R., Haas, P. A., Trong, P. K. & Goldstein, R. E. Dynamics of a Volvox embryo turning itself inside out. Phys. Rev. Lett. 114, 178101 (2015).

    Article  ADS  Google Scholar 

  56. Collinet, C. & Lecuit, T. Programmed and self-organized flow of information during morphogenesis. Nat. Rev. Mol. Cell Biol. 22, 245–265 (2021).

    Article  Google Scholar 

  57. Münster, S. et al. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature 568, 395–399 (2019).

    Article  ADS  Google Scholar 

  58. Merzouki, A., Malaspinas, O., Trushko, A., Roux, A. & Chopard, B. Influence of cell mechanics and proliferation on the buckling of simulated tissues using a vertex model. Nat. Comput. 17, 511–519 (2018).

    Article  MathSciNet  Google Scholar 

  59. Rauzi, M., Hočevar Brezavšček, A., Ziherl, P. & Leptin, M. Physical models of mesoderm invagination in Drosophila embryo. Biophys. J. 105, 3–10 (2013).

    Article  ADS  Google Scholar 

  60. Hannezo, E., Prost, J. & Joanny, J.-F. Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys. Rev. Lett. 107, 078104 (2011).

    Article  ADS  Google Scholar 

  61. Trushko, A. et al. Buckling of an epithelium growing under spherical confinement. Dev. Cell 54, 655–668.e6 (2020).

    Article  Google Scholar 

  62. Tozluoǧlu, M. et al. Planar differential growth rates initiate precise fold positions in complex epithelia. Dev. Cell 51, 299–312.e4 (2019).

    Article  Google Scholar 

  63. Hughes, A. J. et al. Engineered tissue folding by mechanical compaction of the mesenchyme. Dev. Cell 44, 165–178 (2018).

    Article  Google Scholar 

  64. Jain, S. et al. The role of single-cell mechanical behaviour and polarity in driving collective cell migration. Nat. Phys. 16, 802–809 (2020).

    Article  Google Scholar 

  65. Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K. & Roux, A. Integer topological defects organize stresses driving tissue morphogenesis. Nat. Mater. 21, 588–597 (2022).

    Article  ADS  Google Scholar 

  66. Bell, S., Lin, S.-Z., Rupprecht, J.-F. & Prost, J. Active nematic flows over curved surfaces. Phys. Rev. Lett. 129, 118001 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  67. Fouchard, J. et al. Curling of epithelial monolayers reveals coupling between active bending and tissue tension. Proc. Natl Acad. Sci. USA 117, 9377–9383 (2020).

    Article  ADS  Google Scholar 

  68. Blonski, S. et al. Direction of epithelial folding defines impact of mechanical forces on epithelial state. Dev. Cell 56, 3222–3234.e6 (2021).

    Article  Google Scholar 

  69. Tomba, C., Luchnikov, V., Barberi, L., Blanch-Mercader, C. & Roux, A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Dev. Cell 57, 1257–1270.e5 (2022).

    Article  Google Scholar 

  70. Gómez-González, M., Latorre, E., Arroyo, M. & Trepat, X. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2, 300–317 (2020).

    Article  Google Scholar 

  71. Mehlenbacher, R. D., Kolbl, R., Lay, A. & Dionne, J. A. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2018).

    Article  ADS  Google Scholar 

  72. Tambe, D. T. et al. Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS ONE 8, e55172 (2013).

    Article  ADS  Google Scholar 

  73. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009).

    Article  Google Scholar 

  74. Ng, M. R., Besser, A., Brugge, J. S. & Danuser, G. Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters. eLife 3, e03282 (2014).

    Article  Google Scholar 

  75. Vercruysse, E. et al. Geometry-driven migration efficiency of autonomous epithelial cell clusters. Preprint at bioRxiv https://doi.org/10.1101/2022.07.17.500364 (2022).

  76. Marín-Llauradó, A. et al. Mapping mechanical stress in curved epithelia of designed size and shape. Nat. Commun. 14, 4014 (2023).

    Article  ADS  Google Scholar 

  77. Mughal, A., Cox, S. J., Weaire, D., Burke, S. R. & Hutzler, S. Demonstration and interpretation of ‘scutoid’ cells formed in a quasi-2D soap froth. Philos. Mag. Lett. 98, 358–364 (2018).

    Article  ADS  Google Scholar 

  78. Gómez-Gálvez, P., Vicente-Munuera, P., Anbari, S., Buceta, J. & Escudero, L. M. The complex three-dimensional organization of epithelial tissues. Development 148, dev195669 (2021).

    Article  Google Scholar 

  79. Gómez-Gálvez, P. et al. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat. Commun. 9, 2960 (2018).

    Article  ADS  Google Scholar 

  80. Gómez, H. F., Dumond, M. S., Hodel, L., Vetter, R. & Iber, D. 3D cell neighbour dynamics in growing pseudostratified epithelia. eLife 10, e68135 (2021).

    Article  Google Scholar 

  81. Rupprecht, J.-F. et al. Geometric constraints alter cell arrangements within curved epithelial tissues. MBoC 28, 3582–3594 (2017).

    Article  Google Scholar 

  82. Lou, Y., Rupprecht, J.-F., Theis, S., Hiraiwa, T. & Saunders, T. E. Curvature-induced cell rearrangements in biological tissues. Phys. Rev. Lett. 130, 108401 (2023).

    Article  ADS  Google Scholar 

  83. Hannezo, E., Prost, J. & Joanny, J.-F. Theory of epithelial sheet morphology in three dimensions. Proc. Natl Acad. Sci. USA 111, 27–32 (2014).

    Article  ADS  Google Scholar 

  84. Luciano, M. et al. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nat. Phys. 17, 1382–1390 (2021).

    Article  Google Scholar 

  85. Odell, G. M., Oster, G., Alberch, P. & Burnside, B. The mechanical basis of morphogenesis. Dev. Biol. 85, 446–462 (1981).

    Article  Google Scholar 

  86. Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014).

    Article  ADS  Google Scholar 

  87. Honda, H. & Eguchi, G. How much does the cell boundary contract in a monolayered cell sheet? J. Theor. Biol. 84, 575–588 (1980).

    Article  ADS  Google Scholar 

  88. Nagai, T. & Honda, H. A dynamic cell model for the formation of epithelial tissues. Philos. Mag. Pt B 81, 699–719 (2001).

    Article  ADS  Google Scholar 

  89. Farhadifar, R., Röper, J.-C., Aigouy, B., Eaton, S. & Jülicher, F. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  Google Scholar 

  90. Hočevar Brezavšček, A., Rauzi, M., Leptin, M. & Ziherl, P. A model of epithelial invagination driven by collective mechanics of identical cells. Biophys. J. 103, 1069–1077 (2012).

    Article  ADS  Google Scholar 

  91. Sumi, A. et al. Adherens junction length during tissue contraction is controlled by the mechanosensitive activity of actomyosin and junctional recycling. Dev. Cell 47, 453–463.e3 (2018).

    Article  Google Scholar 

  92. Théry, M., Pépin, A., Dressaire, E., Chen, Y. & Bornens, M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil. Cytoskelet. 63, 341–355 (2006).

    Article  Google Scholar 

  93. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425 (1997).

    Article  Google Scholar 

  94. Thery, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).

    Article  ADS  Google Scholar 

  95. Parker, K. K. et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16, 1195–1204 (2002).

    Article  Google Scholar 

  96. Versaevel, M., Grevesse, T. & Gabriele, S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012).

    Article  ADS  Google Scholar 

  97. Senger, F. et al. Spatial integration of mechanical forces by α-actinin establishes actin network symmetry. J. Cell Sci. 132, jcs236604 (2019).

    Article  Google Scholar 

  98. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    Article  ADS  Google Scholar 

  99. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  Google Scholar 

  100. Bischofs, I. B., Klein, F., Lehnert, D., Bastmeyer, M. & Schwarz, U. S. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J. 95, 3488–3496 (2008).

    Article  ADS  Google Scholar 

  101. Schakenraad, K. et al. Mechanical interplay between cell shape and actin cytoskeleton organization. Soft Matter 16, 6328–6343 (2020).

    Article  ADS  Google Scholar 

  102. James, J., Goluch, E. D., Hu, H., Liu, C. & Mrksich, M. Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil. Cytoskelet. 65, 841–852 (2008).

    Article  Google Scholar 

  103. Vignaud, T., Blanchoin, L. & Théry, M. Directed cytoskeleton self-organization. Trends Cell Biol. 22, 671–682 (2012).

    Article  Google Scholar 

  104. Ladoux, B., Mège, R.-M. & Trepat, X. Front–rear polarization by mechanical cues: from single cells to tissues. Trends Cell Biol. 26, 420–433 (2016).

    Article  Google Scholar 

  105. Lam, N. T., Muldoon, T. J., Quinn, K. P., Rajaram, N. & Balachandran, K. Valve interstitial cell contractile strength and metabolic state are dependent on its shape. Integr. Biol. 8, 1079–1089 (2016).

    Article  Google Scholar 

  106. Gupta, S. K., Li, Y. & Guo, M. Anisotropic mechanics and dynamics of a living mammalian cytoplasm. Soft Matter 15, 190–199 (2019).

    Article  ADS  Google Scholar 

  107. Chen, T. et al. Large-scale curvature sensing by directional actin flow drives cellular migration mode switching. Nat. Phys. 15, 393–402 (2019).

    Article  Google Scholar 

  108. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).

    Article  ADS  Google Scholar 

  109. Begnaud, S., Chen, T., Delacour, D., Mège, R.-M. & Ladoux, B. Mechanics of epithelial tissues during gap closure. Curr. Opin. Cell Biol. 42, 52–62 (2016).

    Article  Google Scholar 

  110. Ravasio, A. et al. Gap geometry dictates epithelial closure efficiency. Nat. Commun. 6, 7683 (2015).

    Article  ADS  Google Scholar 

  111. Sandu, G. et al. Kinked silicon nanowires: superstructures by metal-assisted chemical etching. Nano Lett. 19, 7681–7690 (2019).

    Article  ADS  Google Scholar 

  112. Huang, J. et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 9, 1111–1116 (2009).

    Article  ADS  Google Scholar 

  113. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5, 383–388 (2004).

    Article  Google Scholar 

  114. Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017).

    Article  ADS  Google Scholar 

  115. Schaumann, E. N. & Tian, B. Actin-packed topography: cytoskeletal response to curvature. Proc. Natl Acad. Sci. USA 116, 22897–22898 (2019).

    Article  ADS  Google Scholar 

  116. Carey, S. P. et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr. Biol. 8, 821–835 (2016).

    Article  Google Scholar 

  117. Kennedy, K. M., Bhaw-Luximon, A. & Jhurry, D. Cell–matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance. Acta Biomater. 50, 41–55 (2017).

    Article  Google Scholar 

  118. Koons, B. et al. Cancer protrusions on a tightrope: nanofiber curvature contrast quantitates single protrusion dynamics. ACS Nano 11, 12037–12048 (2017).

    Article  Google Scholar 

  119. Mukherjee, A., Behkam, B. & Nain, A. S. Cancer cells sense fibers by coiling on them in a curvature-dependent manner. iScience 19, 905–915 (2019).

    Article  ADS  Google Scholar 

  120. Zhang, W. et al. Curved adhesions mediate cell attachment to soft matrix fibres in three dimensions. Nat. Cell Biol. 25, 1453–1464 (2023).

    Article  Google Scholar 

  121. Weiss, P. Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization. J. Exp. Zool. 100, 353–386 (1945).

    Article  Google Scholar 

  122. Dunn, G. A. & Heath, J. P. A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101, 1–14 (1976).

    Article  ADS  Google Scholar 

  123. Bade, N. D., Kamien, R. D., Assoian, R. K. & Stebe, K. J. Curvature and Rho activation differentially control the alignment of cells and stress fibers. Sci. Adv. 3, e1700150 (2017).

    Article  ADS  Google Scholar 

  124. Iruela-Arispe, M. L. & Davis, G. E. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell 16, 222–231 (2009).

    Article  Google Scholar 

  125. Sims, D. E. The pericyte — a review. Tissue Cell 18, 153–174 (1986).

    Article  Google Scholar 

  126. O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, K. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).

    Article  ADS  Google Scholar 

  127. Yu, S.-M. Substrate curvature affects the shape, orientation, and polarization of renal epithelial cells. Acta Biomater. 77, 311–321 (2018).

    Article  ADS  Google Scholar 

  128. Biton, Y. Y. & Safran, S. A. The cellular response to curvature-induced stress. Phys. Biol. 6, 046010 (2009).

    Article  ADS  Google Scholar 

  129. Bade, N. D., Xu, T., Kamien, R. D., Assoian, R. K. & Stebe, K. J. Gaussian curvature directs stress fiber orientation and cell migration. Biophys. J. 114, 1467–1476 (2018).

    Article  ADS  Google Scholar 

  130. Kemkemer, R., Teichgräber, V., Schrank-Kaufmann, S., Kaufmann, D. & Gruler, H. Nematic order–disorder state transition in a liquid crystal analogue formed by oriented and migrating amoeboid cells. Eur. Phys. J. E 3, 101–110 (2000).

    Article  Google Scholar 

  131. Duclos, G., Garcia, S., Yevick, H. G. & Silberzan, P. Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10, 2346–2353 (2014).

    Article  ADS  Google Scholar 

  132. Harmand, N., Huang, A. & Hénon, S. 3D shape of epithelial cells on curved substrates. Phys. Rev. X 11, 031028 (2021).

    Google Scholar 

  133. Harmand, N., Dervaux, J., Poulard, C. & Hénon, S. Thickness of epithelia on wavy substrates: measurements and continuous models. Eur. Phys. J. E 45, 53 (2022).

    Article  Google Scholar 

  134. Werner, M., Kurniawan, N. A., Korus, G., Bouten, C. V. C. & Petersen, A. Mesoscale substrate curvature overrules nanoscale contact guidance to direct bone marrow stromal cell migration. J. R. Soc. Interface 15, 20180162 (2018).

    Article  Google Scholar 

  135. Asano, N., Sugihara, S., Suye, S. & Fujita, S. Electrospun porous nanofibers with imprinted patterns induced by phase separation of immiscible polymer blends. ACS Omega 7, 19997–20005 (2022).

    Article  Google Scholar 

  136. Kumbar, S. G., Nukavarapu, S. P., James, R., Nair, L. S. & Laurencin, C. T. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29, 4100–4107 (2008).

    Article  Google Scholar 

  137. Bowers, D. T. & Brown, J. L. Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity. Integr. Biol. 13, 295–308 (2021).

    Article  Google Scholar 

  138. Qu, J. et al. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells. Appl. Surf. Sci. 261, 320–326 (2012).

    Article  ADS  Google Scholar 

  139. DiMilla, P., Stone, J., Quinn, J., Albelda, S. & Lauffenburger, D. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993).

    Article  Google Scholar 

  140. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  Google Scholar 

  141. Schreiber, C., Amiri, B., Heyn, J. C. J., Rädler, J. O. & Falcke, M. On the adhesion–velocity relation and length adaptation of motile cells on stepped fibronectin lanes. Proc. Natl Acad. Sci. USA 118, e2009959118 (2021).

    Article  Google Scholar 

  142. Badami, A. S., Kreke, M. R., Thompson, M. S., Riffle, J. S. & Goldstein, A. S. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27, 596–606 (2006).

    Article  Google Scholar 

  143. Tian, F. et al. Quantitative analysis of cell adhesion on aligned micro‐ and nanofibers. J. Biomed. Mater. Res. 84A, 291–299 (2008).

    Article  Google Scholar 

  144. Noriega, S. E., Hasanova, G. I., Schneider, M. J., Larsen, G. F. & Subramanian, A. Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cell Tissues Organs 195, 207–221 (2012).

    Article  Google Scholar 

  145. Pieuchot, L. et al. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nat. Commun. 9, 3995 (2018).

    Article  ADS  Google Scholar 

  146. Werner, M., Petersen, A., Kurniawan, N. A. & Bouten, C. V. C. Cell-perceived substrate curvature dynamically coordinates the direction, speed, and persistence of stromal cell migration. Adv. Biosys. 3, 1900080 (2019).

    Article  Google Scholar 

  147. He, X. & Jiang, Y. Substrate curvature regulates cell migration. Phys. Biol. 14, 035006 (2017).

    Article  ADS  Google Scholar 

  148. Hegarty-Cremer, S. G. D., Simpson, M. J., Andersen, T. L. & Buenzli, P. R. Modelling cell guidance and curvature control in evolving biological tissues. J. Theor. Biol. 520, 110658 (2021).

    Article  MathSciNet  Google Scholar 

  149. Yevick, H. G., Duclos, G., Bonnet, I. & Silberzan, P. Architecture and migration of an epithelium on a cylindrical wire. Proc. Natl Acad. Sci. USA 112, 5944–5949 (2015).

    Article  ADS  Google Scholar 

  150. Xi, W., Sonam, S., Lim, C. T. & Ladoux, B. Tubular microscaffolds for studying collective cell migration. in Methods in Cell Biology Vol. 146, 3–21 (Elsevier, 2018).

  151. Ye, M. et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci. Rep. 4, 4681 (2014).

    Article  Google Scholar 

  152. Rougerie, P. et al. Topographical curvature is sufficient to control epithelium elongation. Sci. Rep. 10, 14784 (2020).

    Article  ADS  Google Scholar 

  153. Bidan, C. M. et al. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7, e36336 (2012).

    Article  ADS  Google Scholar 

  154. Ehrig, S. et al. Surface tension determines tissue shape and growth kinetics. Sci. Adv. 5, 7 (2019).

    Article  Google Scholar 

  155. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011).

    Article  ADS  Google Scholar 

  156. Glentis, A. et al. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. Sci. Adv. 8, eabn5406 (2022).

    Article  Google Scholar 

  157. Brandstätter, T. Curvature induces active velocity waves in rotating spherical tissues. Nat. Commun. 14, (2023).

  158. Luciano, M., Versaevel, M., Kalukula, Y. & Gabriele, S. Mechanoresponse of curved epithelial monolayers lining bowl‐shaped 3D microwells. Adv. Healthc. Mater. 13, 2203377 (2024).

    Article  Google Scholar 

  159. Shellard, A. & Mayor, R. Durotaxis: the hard path from in vitro to in vivo. Dev. Cell 56, 227–239 (2021).

    Article  Google Scholar 

  160. Christopherson, G. T., Song, H. & Mao, H.-Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30, 556–564 (2009).

    Article  Google Scholar 

  161. Di Meglio, I. et al. Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement. Cell Rep. 40, 111227 (2022).

    Article  Google Scholar 

  162. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 (2017).

    Article  Google Scholar 

  163. Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).

    Article  Google Scholar 

  164. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).

    Article  Google Scholar 

  165. Andreu, I. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat. Cell Biol. 24, 896–905 (2022).

    Article  Google Scholar 

  166. Ruiz, S. A. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cell 26, 2921–2927 (2008).

    Article  Google Scholar 

  167. Yang, Y. et al. Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc. Natl Acad. Sci. USA 119, e2206684119 (2022).

    Article  Google Scholar 

  168. Van der Putten, C., van den Broek, D. & Kurniawan, N. A. Myofibroblast transdifferentiation of keratocytes results in slower migration and lower sensitivity to mesoscale curvatures. Front. Cell Dev. Biol. 10, 930373 (2022).

    Article  Google Scholar 

  169. Connon, C. J. & Gouveia, R. M. Milliscale substrate curvature promotes myoblast self‐organization and differentiation. Adv. Biol. 5, e2000280 (2021).

    Article  Google Scholar 

  170. Xu, X. et al. Histone modification of osteogenesis related genes triggered by substrate topography promotes human mesenchymal stem cell differentiation. ACS Appl. Mater. Interfaces 15, 29752–29766 (2023).

    Article  Google Scholar 

  171. Lee, J., Nishikawa, R. M., Reiser, I., Boone, J. M. & Lindfors, K. K. Local curvature analysis for classifying breast tumors: preliminary analysis in dedicated breast CT: local curvature analysis for classifying breast tumors. Med. Phys. 42, 5479–5489 (2015).

    Article  Google Scholar 

  172. Tan, S. et al. Adaptive region-growing with maximum curvature strategy for tumor segmentation in 18 F-FDG PET. Phys. Med. Biol. 62, 5383–5402 (2017).

    Article  Google Scholar 

  173. Arvanitis, C., Khuon, S., Spann, R., Ridge, K. M. & Chew, T.-L. Structure and biomechanics of the endothelial transcellular circumferential invasion array in tumor invasion. PLoS ONE 9, e89758 (2014).

    Article  ADS  Google Scholar 

  174. Zhu, P. et al. Biomechanical microenvironment regulates fusogenicity of breast cancer cells. ACS Biomater. Sci. Eng. 5, 3817–3827 (2019).

    Article  Google Scholar 

  175. Wullkopf, L. et al. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell 29, 2378–2385 (2018).

    Article  Google Scholar 

  176. Nemec, S. et al. Interfacial curvature in confined coculture directs stromal cell activity with spatial corralling of pancreatic cancer cells. Adv. Biol. 5, 2000525 (2021).

    Article  Google Scholar 

  177. Lee, J., Abdeen, A. A., Wycislo, K. L., Fan, T. M. & Kilian, K. A. Interfacial geometry dictates cancer cell tumorigenicity. Nat. Mater. 15, 856–862 (2016).

    Article  ADS  Google Scholar 

  178. Franklin, J. M. Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat. Rev. Cancer 23, 512–525 (2023).

    Article  Google Scholar 

  179. Fierling, J. et al. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation. Nat. Commun. 13, 3348 (2022).

    Article  ADS  Google Scholar 

  180. Villedieu, A. et al. Homeotic compartment curvature and tension control spatiotemporal folding dynamics. Nat. Commun. 14, 594 (2023).

    Article  ADS  Google Scholar 

  181. Wang, T., Dai, Z., Potier-Ferry, M. & Xu, F. Curvature-regulated multiphase patterns in tori. Phys. Rev. Lett. 130, 048201 (2023).

    Article  ADS  Google Scholar 

  182. Hirashima, T. & Matsuda, M. ERK-mediated curvature feedback regulates branch. Morphogene. Lung Epithel. Tissue https://doi.org/10.1101/2021.07.11.451982 (2021).

    Article  Google Scholar 

  183. Huang, C.-K., Yong, X., She, D. T. & Teck, C. Surface curvature and basal hydraulic stress induce spatial bias in cell extrusion. https://doi.org/10.1101/2022.04.01.486717 (2022).

  184. Roy, A. et al. Programmable tissue folding patterns in structured hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202300017 (2023).

  185. Kalukula, Y., Luciano, M. & Gabriele, S. Translating cell mechanobiology and nuclear deformations to the clinic. Clin. Trans. Med. 12, e1000 (2022).

    Article  Google Scholar 

  186. Doostmohammadi, A. & Ladoux, B. Physics of liquid crystals in cell biology. Trends Cell Biol. 32, 140–150 (2022).

    Article  Google Scholar 

  187. Lou, H.-Y. et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc. Natl Acad. Sci. USA 116, 23143–23151 (2019).

    Article  ADS  Google Scholar 

  188. Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor cortices. PLoS Biol. 18, e3000678 (2020).

    Article  Google Scholar 

  189. Conrad, L. et al. The biomechanical basis of biased epithelial tube elongation in lung and kidney development. Development 148, dev194209 (2021).

    Article  Google Scholar 

  190. Mederacke, M., Conrad, L., Vetter, R. & Iber, D. Geometric effects position renal vesicles during kidney development. Cell Rep. https://doi.org/10.1101/2022.08.30.505859 (2022).

  191. Peurla, M. et al. Morphometric analysis of the terminal ductal lobular unit architecture in human breast. Preprint at bioRxiv https://doi.org/10.1101/2023.03.12.532249v1.full.pdf (2023).

  192. Sung, J. H., Yu, J., Luo, D., Shuler, M. L. & March, J. C. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab. Chip 11, 389–392 (2011).

    Article  Google Scholar 

  193. Silver, F. H., Freeman, J. W. & Seehra, G. P. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529–1553 (2003).

    Article  Google Scholar 

  194. Wershof, E. et al. Matrix feedback enables diverse higher-order patterning of the extracellular matrix. PLoS Comput. Biol. 15, e1007251 (2019).

    Article  Google Scholar 

  195. Park, D. et al. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19, 227–238 (2020).

    Article  ADS  Google Scholar 

  196. Reznikov, N., Shahar, R. & Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 10, 3815–3826 (2014).

    Article  Google Scholar 

  197. Sartori, P., Geyer, V. F., Howard, J. & Jülicher, F. Curvature regulation of the ciliary beat through axonemal twist. Phys. Rev. E 94, 042426 (2016).

    Article  ADS  Google Scholar 

  198. Chabanon, M. & Rangamani, P. Geometric coupling of helicoidal ramps and curvature-inducing proteins in organelle membranes. J. R. Soc. Interface 16, 20190354 (2019).

    Article  Google Scholar 

  199. Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008).

    Article  ADS  Google Scholar 

  200. Collado, J. et al. Tricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrity. Dev. Cell 51, 476–487.e7 (2019).

    Article  Google Scholar 

  201. Tozluoǧlu, M. & Mao, Y. On folding morphogenesis, a mechanical problem. Philos. Trans. R. Soc. B 375, 20190564 (2020).

    Article  Google Scholar 

  202. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009).

    Article  ADS  Google Scholar 

  203. Storgel, N., Krajnc, M., Mrak, P., Štrus, J. & Ziherl, P. Quantitative morphology of epithelial folds. Biophys. J. 110, 269–277 (2016).

    Article  ADS  Google Scholar 

  204. Sui, L. et al. Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nat. Commun. 9, 4620 (2018).

    Article  ADS  Google Scholar 

  205. Wang, Y. et al. A microengineered collagen scaffold for generating a polarized crypt–villus architecture of human small intestinal epithelium. Biomaterials 128, 44–55 (2017).

    Article  Google Scholar 

  206. Savin, T. et al. On the growth and form of the gut. Nature 476, 57–62 (2011).

    Article  ADS  Google Scholar 

  207. Huycke, T. R. et al. Genetic and mechanical regulation of intestinal smooth muscle development. Cell 179, 90–105.e21 (2019).

    Article  Google Scholar 

  208. Garcia, K. E., Kroenke, C. D. & Bayly, P. V. Mechanics of cortical folding: stress, growth and stability. Philos. Trans. R. Soc. B 373, 20170321 (2018).

    Article  Google Scholar 

  209. Callens, S. J. P. & Zadpoor, A. A. From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors apologize to all authors whose work could not be included owing to space constraints. S.G. acknowledges funding from FEDER Prostem Research Project no. 1510614 (Wallonia DG06), the F.R.S.-FNRS Epiforce Project no. T.0092.21, the F.R.S.-FNRS Cellsqueezer Project no. J.0061.23, the F.R.S.-FNRS Optopattern Project no. U.NO26.22, Programme Wallon d’Investissement Région Wallone pour les instruments d’imagerie (INSTIMAG UMONS #1910169) and the Interreg MAT(T)ISSE project, which is financially supported by Interreg France-Wallonie-Vlaanderen (Fonds Européen de Développement Régional, FEDER-ERDF). M.L. is financially supported by a WBI.World Scholarship Fellowship from the Wallonia-Brussels International (WBI) Excellence Grants Programme. A.R. acknowledges funding from the Swiss National Fund for Research Grants nos 31003A_149975, 31003A_173087 and 31003A_200793, and the European Research Council Synergy Grant no. 951324_R2-TENSION. The authors want to thank the NCCR Chemical Biology for constant support during this project. C.T. acknowledges support from the French National Research Agency, Grant no. ANR-22-CE13-0015-01 for the project ‘CurvEDyn’.

Author information

Authors and Affiliations

Authors

Contributions

M.L., C.T., A.R. and S.G. conceptualized the article. Figure designs were generated by all authors and further edited by M.L. and S.G. All authors contributed substantially to the writing, the discussion of the content and approved the final content.

Corresponding author

Correspondence to Sylvain Gabriele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Krisopher Kilian, Tsuyoshi Hirashima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adherens junction

Component of the cell–cell junction in multicellular organisms in which cadherin receptors bridge neighbouring plasma membranes via their homophilic interactions. Adherens junction provides strong mechanical attachment between neighbouring cells through the linkage of their cytoplasmic face to the actin cytoskeleton.

BAR-domain protein

Highly conserved protein dimerization domains that occur in many proteins involved in membrane dynamics and act as connecting links between actin dynamics and membrane rearrangements in all eukaryotes. BAR domains preferentially bind to curved membrane regions.

Chromatin

Complex of genomic DNA with proteins called histones that forms chromosomes within the nucleus of eukaryotic cells.

Durotaxis

Guidance of cell migration by rigidity gradients, which arise from differential structural properties of the extracellular matrix. Most cells migrate up rigidity gradients (that is, in the direction of greater stiffness) but some cell types have been reported to migrate down rigidity gradients (known as negative durotaxis).

Epithelial tissues

Single-cell monolayers that separate tissues or cavities from their environment.

Filopodia

Slender and finger-like projections that extend from the leading edge of migrating cells. They are filled with bundled actin filaments and are involved in cell migration, cell–cell communication and sensing the environment.

Focal adhesions

Multiprotein site within cells that mechanically interact the extracellular matrix (cell outside) with the actin cytoskeleton (cell inside).

Gene transcription

Process of copying a segment of DNA sequence into an RNA molecule. This process can be divided in three steps: initiation, elongation and termination.

Histone

Family of positively charged proteins that associate with DNA and help condense it into chromatin.

Hypotonic shocks

Refer to an environmental medium that has a lower concentration of solutes than the cytoplasm, inducing a flow of water into the cell and a sudden modification of its osmotic pressure.

Lamellipodia

Thin projection that extends from the leading edge of a migrating cell and contains a quasi-2D actin mesh. These projections on the leading edge are involved in cell migration and exploration of the environment.

Laplace law

The pressure of a bubble with fixed surface tension varies inversely with its radius of curvature.

Manifold

A topological space M for which every point x has a neighbourhood homeomorphic to Euclidean space. In simple terms, it is a mathematical concept describing a space that appears flat similar to ordinary Euclidean space when you zoom in close enough but can have a more complicated overall shape such as a curved shaped.

Mechanosensing

Molecular process through which cells or cellular components translate mechanical forces or deformations into biochemical signals.

Mechanotransduction

Cellular responses to changes in the mechanical environment, including forces, deformations or mechanical properties.

Membrane tension

Local characteristic of the membrane, delineating the stretching–compression elastic stresses at each point along the membrane surface. This involves examining an infinitesimal element of the membrane plane, isolated by an imaginary boundary. Mechanical tension is the force exerted on the unit length of this imaginary boundary by the surrounding membrane, acting tangentially to the membrane plane.

Mesenchymal stem cells (MSCs)

Type of multipotent stromal cell that can differentiate into various cell types, such as osteoblasts (bone cells), chondrocytes (cartilage cells) and adipocytes (fat cells).

Microvilli

Finger-like projections of ~1–2 µm in length that extend from the surface of epithelial cells lining, for instance, the small intestine, kidney tubules and the inner ear. Microvilli are filled with bundled actin filaments and are involved in a wide variety of functions, including absorption, secretion, cellular adhesion and mechanotransduction.

Molecular clutch model

Concept that describes the flexible transmission of forces generated by the flow of actin filaments to adhesion sites, allowing cells to exert a spatially and temporally regulated grip on the substrate. It has a crucial role in the mechanical connection between the actin flow and cell adhesion complexes during cell migration.

Nematic order

Refers to a state of molecular alignment observed in cellular populations such as fibroblasts, akin to the alignment seen in liquid crystals. In this state, molecular entities exhibit a preferred directionality without long-range positional order.

Osmotic pressure

Pressure caused by a difference in the amounts of solutes (or molecules) between solutions (or fluids) separated by a semipermeable membrane.

Second harmonic generation microscopy

A second-order coherent process is employed, up-converting two lower energy photons precisely to twice the incident frequency (half the wavelength) of an excitation laser. This nonlinear imaging technique has proven effective in the specific and sensitive visualization of endogenous extracellular matrix components, such as collagen fibres, across diverse sample types.

Signal transduction

Process by which cells receive, interpret and respond to extracellular forces and signals. This intricate communication system involves the transmission of molecular signals through a series of events, ultimately leading to a cellular response or change in behaviour.

Tessellation

Repeating pattern that covers a 2D surface without overlaps or gaps using one or more geometric shapes, called tiles, with no overlaps and no gaps.

Transcription

Process by which the information in a strand of DNA is copied into a new molecule of messenger RNA.

Vertex models

A class of mathematical models that treat cells as individual objects, represented by polygons in two dimensions and polyhedra in three dimensions. Epithelial tissues are modelled as a connected mesh of these polygons or polyhedral elements, and mechanical forces are applied to the vertices of these geometric structures.

Villus and crypt domains

Two distinct regions of the intestinal epithelium, which play important roles in nutrient uptake and tissue regeneration, respectively. The villus is a finger-like projection lined with absorptive enterocytes, secretory enteroendocrine cells and goblet cells. The crypt is a pocket-like invagination located at the base of the villus that houses the intestinal stem cell niche.

Viscoelasticity

Rheological property of biological tissues and materials that present elastic properties and viscous properties, which allow for timescale-dependent deformation when subjected to mechanical stress.

Yes-associated protein

Yes-associated protein, also known as YAP, is a mechanosensitive transcriptional co-activator protein that associates with several DNA-binding proteins to drive gene transcription. YAP activity is regulated by many kinase cascade pathways and proteins through phosphorylation. Phosphorylated YAP can be sequestered in the cytoplasm and then degraded by the ubiquitin–proteasome system, whereas unphosphorylated YAP translocates to the nucleus, where it performs a series of functions. YAP and its paralogue, transcriptional co-activator with PDZ-binding motif (TAZ), are the major downstream effectors of the Hippo pathway.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luciano, M., Tomba, C., Roux, A. et al. How multiscale curvature couples forces to cellular functions. Nat Rev Phys 6, 246–268 (2024). https://doi.org/10.1038/s42254-024-00700-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00700-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing