Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robustness and resilience of complex networks

Abstract

Complex networks are ubiquitous: a cell, the human brain, a group of people and the Internet are all examples of interconnected many-body systems characterized by macroscopic properties that cannot be trivially deduced from those of their microscopic constituents. Such systems are exposed to both internal, localized, failures and external disturbances or perturbations. Owing to their interconnected structure, complex systems might be severely degraded, to the point of disintegration or systemic dysfunction. Examples include cascading failures, triggered by an initially localized overload in power systems, and the critical slowing downs of ecosystems which can be driven towards extinction. In recent years, this general phenomenon has been investigated by framing localized and systemic failures in terms of perturbations that can alter the function of a system. We capitalize on this mathematical framework to review theoretical and computational approaches to characterize robustness and resilience of complex networks. We discuss recent approaches to mitigate the impact of perturbations in terms of designing robustness, identifying early-warning signals and adapting responses. In terms of applications, we compare the performance of the state-of-the-art dismantling techniques, highlighting their optimal range of applicability for practical problems, and provide a repository with ready-to-use scripts, a much-needed tool set.

Key points

  • A variety of biological, social and engineering complex systems can be defined in terms of units that exchange information through interaction networks, exhibiting diverse structural patterns such as heterogeneity, modularity and hierarchy.

  • Owing to their interconnected nature, complex networks can amplify minor disruptions to a system-wide level, making it essential to understand their robustness against both external perturbations and internal failures.

  • The study of complex networks’ robustness and resilience involves investigating phase transitions that usually depend on features such as degree connectivity, spatial embedding, interdependence and coupled dynamics.

  • Network science offers a wide range of theoretical and computational methods for quantifying system robustness against perturbations, as well as grounded approaches to design robustness, identify early-warning signals and devise adaptive responses.

  • These methods find application across a multitude of disciplines, including systems biology, systems neuroscience, engineering, and social and behavioural sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Percolation as static approach to network robustness.
Fig. 2: Comparison of state-of-the-art dismantling methods.
Fig. 3: Evolving failures on networks.
Fig. 4: Preventing and reacting to network collapse.

Similar content being viewed by others

Code availability

The code used for the performance comparisons can be found in the repository https://github.com/NetworkDismantling/review.

References

  1. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  2. Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  5. Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Gerlach, M. & Altmann, E. G. Testing statistical laws in complex systems. Phys. Rev. Lett. 122, 168301 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D. Scale-free networks well done. Phys. Rev. Res. 1, 033034 (2019).

    Article  CAS  Google Scholar 

  8. Serafino, M. et al. True scale-free networks hidden by finite size effects. Proc. Natl Acad. Sci. USA 118, e2013825118 (2021).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  9. Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newman, M. E. Communities, modules and large-scale structure in networks. Nat. Phys. 8, 25–31 (2012).

    Article  CAS  Google Scholar 

  11. Fortunato, S. & Hric, D. Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. Peixoto, T. P. & Rosvall, M. Modelling sequences and temporal networks with dynamic community structures. Nat. Commun. 8, 582 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Fortunato, S. & Newman, M. E. 20 years of network community detection. Nat. Phys. 18, 848–850 (2022).

    Article  CAS  Google Scholar 

  14. Ravasz, E. & Barabási, A.-L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003).

    Article  ADS  Google Scholar 

  15. Clauset, A., Moore, C. & Newman, M. E. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Peixoto, T. P. Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014).

    Google Scholar 

  17. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).

    Article  CAS  Google Scholar 

  20. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  21. Artime, O. et al. Multilayer Network Science: From Cells to Societies. Elements in Structure and Dynamics of Complex Networks (Cambridge Univ. Press, 2022).

  22. Domenico, M. D. More is different in real-world multilayer networks. Nat. Phys. 19, 1247–1262 (2023).

    Article  Google Scholar 

  23. Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  CAS  Google Scholar 

  25. Bianconi, G. Higher Order Networks: an Introduction to Simplicial Complexes (Cambridge Univ. Press, 2021).

  26. De Domenico, M. Diffusion geometry unravels the emergence of functional clusters in collective phenomena. Phys. Rev. Lett. 118, 168301 (2017).

    Article  ADS  PubMed  Google Scholar 

  27. García-Pérez, G., Boguñá, M. & Serrano, M. Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018).

    Article  Google Scholar 

  28. Boguna, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).

    Article  Google Scholar 

  29. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Motter, A. E. & Lai, Y.-C. Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002).

    Article  ADS  Google Scholar 

  31. Motter, A. E. Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701 (2004).

    Article  ADS  PubMed  Google Scholar 

  32. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008).

    Article  ADS  Google Scholar 

  33. Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  34. Bashan, A., Berezin, Y., Buldyrev, S. V. & Havlin, S. The extreme vulnerability of interdependent spatially embedded networks. Nat. Phys. 9, 667–672 (2013).

    Article  CAS  Google Scholar 

  35. Zhao, J., Li, D., Sanhedrai, H., Cohen, R. & Havlin, S. Spatio-temporal propagation of cascading overload failures in spatially embedded networks. Nat. Commun. 7, 10094 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Radicchi, F. & Bianconi, G. Redundant interdependencies boost the robustness of multiplex networks. Phys. Rev. X 7, 011013 (2017).

    Google Scholar 

  37. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  38. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  39. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 12, 901–906 (2016).

    Article  Google Scholar 

  40. O’Keeffe, K. P., Hong, H. & Strogatz, S. H. Oscillators that sync and swarm. Nat. Commun. 8, 1–13 (2017).

    Article  Google Scholar 

  41. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Smart, A. G., Amaral, L. A. & Ottino, J. M. Cascading failure and robustness in metabolic networks. Proc. Natl Acad. Sci. USA 105, 13223–13228 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zitnik, M., Sosič, R., Feldman, M. W. & Leskovec, J. Evolution of resilience in protein interactomes across the tree of life. Proc. Natl Acad. Sci. USA 116, 4426–4433 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Siegel, J. S. et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Natl Acad. Sci. USA 113, E4367–E4376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Holling, C. S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 1–23 (1973).

  49. Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  ADS  Google Scholar 

  50. Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1781–1787 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baggio, J. A. et al. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proc. Natl Acad. Sci. USA 113, 13708–13713 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gai, P. & Kapadia, S. Contagion in financial networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2401–2423 (2010).

    ADS  MathSciNet  Google Scholar 

  54. Cimini, G., Squartini, T., Garlaschelli, D. & Gabrielli, A. Systemic risk analysis on reconstructed economic and financial networks. Sci. Rep. 5, 15758 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bardoscia, M. et al. The physics of financial networks. Nat. Rev. Phys. 3, 490–507 (2021).

    Article  Google Scholar 

  56. Grassia, M., Mangioni, G., Schiavo, S. & Traverso, S. Insights into countries’ exposure and vulnerability to food trade shocks from network-based simulations. Sci. Rep. 12, 4644 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carreras, B. A., Lynch, V. E., Dobson, I. & Newman, D. E. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos 12, 985–994 (2002).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  58. Yang, Y., Nishikawa, T. & Motter, A. E. Small vulnerable sets determine large network cascades in power grids. Science 358, eaan3184 (2017).

    Article  PubMed  Google Scholar 

  59. Crucitti, P., Latora, V., Marchiori, M. & Rapisarda, A. Efficiency of scale-free networks: error and attack tolerance. Phys. A Stat. Mech. Appl. 320, 622–642 (2003).

    Article  Google Scholar 

  60. Bertagnolli, G., Gallotti, R. & De Domenico, M. Quantifying efficient information exchange in real network flows. Commun. Phys. 4, 125 (2021).

    Article  Google Scholar 

  61. Doyle, J. C. et al. The “robust yet fragile” nature of the internet. Proc. Natl Acad. Sci. USA 102, 14497–14502 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. De Domenico, M. & Arenas, A. Modeling structure and resilience of the dark network. Phys. Rev. E 95, 022313 (2017).

    Article  ADS  PubMed  Google Scholar 

  63. Scott, D. M., Novak, D. C., Aultman-Hall, L. & Guo, F. Network robustness index: a new method for identifying critical links and evaluating the performance of transportation networks. J. Transp. Geogr. 14, 215–227 (2006).

    Article  Google Scholar 

  64. Clusella, P., Grassberger, P., Pérez-Reche, F. J. & Politi, A. Immunization and targeted destruction of networks using explosive percolation. Phys. Rev. Lett. 117, 208301 (2016).

    Article  ADS  PubMed  Google Scholar 

  65. Ribeiro, H. V., Alves, L. G. A., Martins, A. F., Lenzi, E. K. & Perc, M. The dynamical structure of political corruption networks. J. Complex Netw. 6, 989–1003 (2018).

    Article  MathSciNet  Google Scholar 

  66. Ren, X.-L., Gleinig, N., Helbing, D. & Antulov-Fantulin, N. Generalized network dismantling. Proc. Natl Acad. Sci. USA 116, 6554–6559 (2019).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matke, C., Medjroubi, W. & Kleinhans, D. SciGRID — an open source reference model for the European Transmission Network (v0.2). http://www.scigrid.de (2016).

  68. Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling and early-warning signals of disintegration in complex systems. Nat. Commun. 12, 5190 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Braunstein, A., Dall’Asta, L., Semerjian, G. & Zdeborová, L. Network dismantling. Proc. Natl Acad. Sci. USA 113, 12368–12373 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S. & Herrmann, H. J. Mitigation of malicious attacks on networks. Proc. Natl Acad. Sci. USA 108, 3838–3841 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kinney, R., Crucitti, P., Albert, R. & Latora, V. Modeling cascading failures in the North American power grid. Eur. Phys. J. B 46, 101–107 (2005).

    Article  ADS  CAS  Google Scholar 

  72. Alves, L. G. et al. The nested structural organization of the worldwide trade multi-layer network. Sci. Rep. 9, 2866 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Cormen, T., Leiserson, C., Rivest, R. & Stein, C. Introduction to Algorithms 4th edn (MIT Press, 2022).

  75. Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    Article  CAS  Google Scholar 

  76. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (CRC, 2018).

  77. Broadbent, S. R. & Hammersley, J. M. Percolation processes: I. crystals and mazes. Math. Proc. Camb. Philos. Soc. 53, 629–641 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  78. Isichenko, M. B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  79. Sahimi, M. Applications of Percolation Theory (CRC, 1994).

  80. Araújo, N., Grassberger, P., Kahng, B., Schrenk, K. & Ziff, R. M. Recent advances and open challenges in percolation. Eur. Phys. J. Spec. Top. 223, 2307–2321 (2014).

    Article  Google Scholar 

  81. Rodrigues, F. A. in Network Centrality: an Introduction 177–196 (Springer, 2019).

  82. Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002).

    Article  ADS  Google Scholar 

  83. Artime, O. & De Domenico, M. Percolation on feature-enriched interconnected systems. Nat. Commun. 12, 2478 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Molloy, M. & Reed, B. A critical point for random graphs with a given degree sequence. Random Struct. Algor. 6, 161–180 (1995).

    Article  MathSciNet  Google Scholar 

  85. Cohen, R., Ben-Avraham, D. & Havlin, S. Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002).

    Article  ADS  Google Scholar 

  86. Gordon, M. Good’s theory of cascade processes applied to the statistics of polymer distributions. Proc. R. S. Lond. A Math. Phys. Sci. 268, 240–256 (1962).

    ADS  CAS  Google Scholar 

  87. Newman, M. E., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

    Article  ADS  CAS  Google Scholar 

  88. Callaway, D. S., Newman, M. E., Strogatz, S. H. & Watts, D. J. Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Gross, T. & Barth, L. Network robustness revisited. Front. Phys. 10, 823564 (2022).

    Article  Google Scholar 

  90. Moore, C. & Newman, M. E. Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 62, 7059 (2000).

    Article  ADS  CAS  Google Scholar 

  91. Goltsev, A. V., Dorogovtsev, S. N. & Mendes, J. F. Percolation on correlated networks. Phys. Rev. E 78, 051105 (2008).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  92. Newman, M. Networks (Oxford Univ. Press, 2018).

  93. Li, M. et al. Percolation on complex networks: theory and application. Phys. Rep. 907, 1–68 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  94. Radicchi, F. & Castellano, C. Breaking of the site-bond percolation universality in networks. Nat. Commun. 6, 10196 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Shiraki, Y. & Kabashima, Y. Cavity analysis on the robustness of random networks against targeted attacks: influences of degree-degree correlations. Phys. Rev. E 82, 036101 (2010).

    Article  ADS  Google Scholar 

  96. Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hamilton, K. E. & Pryadko, L. P. Tight lower bound for percolation threshold on an infinite graph. Phys. Rev. Lett. 113, 208701 (2014).

    Article  ADS  PubMed  Google Scholar 

  98. Karrer, B., Newman, M. E. & Zdeborová, L. Percolation on sparse networks. Phys. Rev. Lett. 113, 208702 (2014).

    Article  ADS  PubMed  Google Scholar 

  99. Radicchi, F. Percolation in real interdependent networks. Nat. Phys. 11, 597–602 (2015).

    Article  CAS  Google Scholar 

  100. Newman, M. Message passing methods on complex networks. Proc. R. Soc. A 479, 20220774 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  101. Radicchi, F. Predicting percolation thresholds in networks. Phys. Rev. E 91, 010801 (2015).

    Article  ADS  Google Scholar 

  102. Radicchi, F. & Castellano, C. Beyond the locally treelike approximation for percolation on real networks. Phys. Rev. E 93, 030302 (2016).

    Article  ADS  PubMed  Google Scholar 

  103. Newman, M. E. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Newman, M. E. Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  105. Serrano, M. Á. & Boguná, M. Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett. 97, 088701 (2006).

    Article  ADS  PubMed  Google Scholar 

  106. Serrano, M. Á. & Boguná, M. Clustering in complex networks. II. Percolation properties. Phys. Rev. E 74, 056115 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  107. Berchenko, Y., Artzy-Randrup, Y., Teicher, M. & Stone, L. Emergence and size of the giant component in clustered random graphs with a given degree distribution. Phys. Rev. Lett. 102, 138701 (2009).

    Article  ADS  PubMed  Google Scholar 

  108. Newman, M. E. Random graphs with clustering. Phys. Rev. Lett. 103, 058701 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Rombach, M. P., Porter, M. A., Fowler, J. H. & Mucha, P. J. Core-periphery structure in networks. SIAM J. Appl. Math. 74, 167–190 (2014).

    Article  MathSciNet  Google Scholar 

  110. Colomer-de Simón, P. & Boguñá, M. Double percolation phase transition in clustered complex networks. Phys. Rev. X 4, 041020 (2014).

    Google Scholar 

  111. Allard, A., Althouse, B. M., Scarpino, S. V. & Hébert-Dufresne, L. Asymmetric percolation drives a double transition in sexual contact networks. Proc. Natl Acad. Sci. USA 114, 8969–8973 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hébert-Dufresne, L. & Allard, A. Smeared phase transitions in percolation on real complex networks. Phys. Rev. Res. 1, 013009 (2019).

    Article  Google Scholar 

  113. Derényi, I., Palla, G. & Vicsek, T. Clique percolation in random networks. Phys. Rev. Lett. 94, 160202 (2005).

    Article  ADS  PubMed  Google Scholar 

  114. Claessens, S., Dell’Ariccia, G., Igan, D. & Laeven, L. Cross-country experiences and policy implications from the global financial crisis. Econ. Policy 25, 267–293 (2010).

    Article  Google Scholar 

  115. Fernandes, N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy IESE Business School Working Paper No. WP-1240-E (ECGI 2020).

  116. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. k-core organization of complex networks. Phys. Rev. Lett. 96, 040601 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Baxter, G. J., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. Bootstrap percolation on complex networks. Phys. Rev. E 82, 011103 (2010).

    Article  ADS  CAS  Google Scholar 

  118. Bohman, T. & Frieze, A. Avoiding a giant component. Random Struct. Algor. 19, 75–85 (2001).

    Article  MathSciNet  Google Scholar 

  119. Spencer, J. & Wormald, N. Birth control for giants. Combinatorica 27, 587–628 (2007).

    Article  MathSciNet  Google Scholar 

  120. Beveridge, A., Bohman, T., Frieze, A. & Pikhurko, O. Product rule wins a competitive game. Proc. Am. Math. Soc. 135, 3061–3071 (2007).

    Article  MathSciNet  Google Scholar 

  121. Krivelevich, M., Lubetzky, E. & Sudakov, B. Hamiltonicity thresholds in Achlioptas processes. Random Struct. Algor. 37, 1–24 (2010).

    Article  MathSciNet  Google Scholar 

  122. Achlioptas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  123. Riordan, O. & Warnke, L. Explosive percolation is continuous. Science 333, 322–324 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  124. da Costa, R. A., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Explosive percolation transition is actually continuous. Phys. Rev. Lett. 105, 255701 (2010).

    Article  ADS  PubMed  Google Scholar 

  125. Grassberger, P., Christensen, C., Bizhani, G., Son, S.-W. & Paczuski, M. Explosive percolation is continuous, but with unusual finite size behavior. Phys. Rev. Lett. 106, 225701 (2011).

    Article  ADS  PubMed  Google Scholar 

  126. D’Souza, R. M., Gómez-Gardenes, J., Nagler, J. & Arenas, A. Explosive phenomena in complex networks. Adv. Phys. 68, 123–223 (2019).

    Article  ADS  Google Scholar 

  127. Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P. & Paczuski, M. Percolation theory on interdependent networks based on epidemic spreading. EPL (Europhys. Lett.) 97, 16006 (2012).

    Article  ADS  Google Scholar 

  128. Morone, F. & Makse, H. A. Influence maximization in complex networks through optimal percolation. Nature 524, 65–68 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).

    Article  Google Scholar 

  130. Kempe, D., Kleinberg, J. & Tardos, É. Maximizing the spread of influence through a social network. In Proc. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 137–146 (ACM, 2003).

  131. Morone, F., Min, B., Bo, L., Mari, R. & Makse, H. Collective influence algorithm to find influencers via optimal percolation in massively large social media. Sci. Rep. 6, 30062 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, J. R. & Zecchina, R. Containing epidemic outbreaks by message-passing techniques. Phys. Rev. X 4, 021024 (2014).

    Google Scholar 

  133. Altarelli, F., Braunstein, A., Dall’Asta, L. & Zecchina, R. Optimizing spread dynamics on graphs by message passing. J. Stat. Mech. Theory Exp. 2013, 09011 (2013).

    Article  MathSciNet  Google Scholar 

  134. Mugisha, S. & Zhou, H.-J. Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305 (2016).

    Article  ADS  PubMed  Google Scholar 

  135. Zdeborová, L., Zhang, P. & Zhou, H.-J. Fast and simple decycling and dismantling of networks. Sci. Rep. https://doi.org/10.1038/srep37954 (2016).

  136. Ren, X.-L. & Antulov-Fantulin, N. in Complex Networks and Their Applications VIII (eds Cherifi, H. et al.) 783–793 (Springer, 2020).

  137. Fan, C., Zeng, L., Sun, Y. & Liu, Y.-Y. Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2, 317–324 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Grassia, M. & Mangioni, G. in Complex Networks XIV (eds Teixeira, A. S. et al.) 86–94 (Springer Nature, 2023).

  139. Osat, S., Papadopoulos, F., Teixeira, A. S. & Radicchi, F. Embedding-aided network dismantling. Phys. Rev. Res. 5, 013076 (2023).

    Article  CAS  Google Scholar 

  140. Osat, S., Faqeeh, A. & Radicchi, F. Optimal percolation on multiplex networks. Nat. Commun. 8, 1540 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  141. Szolnoki, A. & Perc, M. Collective influence in evolutionary social dilemmas. EPL (Europhys. Lett.) 113, 58004 (2016).

    Article  ADS  Google Scholar 

  142. Chen, B.-L. et al. Influence blocking maximization on networks: models, methods and applications. Phys. Rep. 976, 1–54 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  143. Radicchi, F. & Castellano, C. Fundamental difference between superblockers and superspreaders in networks. Phys. Rev. E 95, 012318 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  144. Makse, H. A. The Science of Influencers and Superspreaders (Springer Nature, 2023).

  145. De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).

    Google Scholar 

  146. Ghavasieh, A., Stella, M., Biamonte, J. & De Domenico, M. Unraveling the effects of multiscale network entanglement on empirical systems. Commun. Phys. 4, 129 (2021).

    Article  Google Scholar 

  147. Ghavasieh, A., Bertagnolli, G. & De Domenico, M. Dismantling the information flow in complex interconnected systems. Phys. Rev. Res. 5, 013084 (2023).

    Article  CAS  Google Scholar 

  148. Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008).

    Article  ADS  Google Scholar 

  149. Strogatz, S. et al. Fifty years of ‘More is different’. Nat. Rev. Phys. 4, 508–510 (2022).

    Article  Google Scholar 

  150. Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).

    Article  Google Scholar 

  151. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bianconi, G. Multilayer Networks: Structure and Function (Oxford Univ. Press, 2018).

  153. Kenett, D. Y., Perc, M. & Boccaletti, S. Networks of networks — an introduction. Chaos Solitons Fractals 80, 1–6 (2015).

    Article  ADS  Google Scholar 

  154. Gao, J., Bashan, A., Shekhtman, L. & Havlin, S. Introduction to Networks of Networks (IOP, 2022).

  155. Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011).

    Article  ADS  PubMed  Google Scholar 

  156. Parshani, R., Buldyrev, S. V. & Havlin, S. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010).

    Article  ADS  PubMed  Google Scholar 

  157. Schneider, C. M., Yazdani, N., Araújo, N. A., Havlin, S. & Herrmann, H. J. Towards designing robust coupled networks. Sci. Rep. 3, 1–7 (2013).

    Article  Google Scholar 

  158. Chen, S., Gao, Y., Liu, X., Gao, J. & Havlin, S. Robustness of interdependent networks based on bond percolation. EPL (Europhys. Lett.) 130, 38003 (2020).

    Article  ADS  CAS  Google Scholar 

  159. Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C. & Havlin, S. Inter-similarity between coupled networks. EPL (Europhys. Lett.) 92, 68002 (2011).

    Article  ADS  Google Scholar 

  160. Buldyrev, S. V., Shere, N. W. & Cwilich, G. A. Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E 83, 016112 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  161. Reis, S. D. et al. Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10, 762–767 (2014).

    Article  CAS  Google Scholar 

  162. Shekhtman, L. M., Danziger, M. M. & Havlin, S. Recent advances on failure and recovery in networks of networks. Chaos Solitons Fractals 90, 28–36 (2016).

    Article  ADS  Google Scholar 

  163. Valdez, L. D. et al. Cascading failures in complex networks. J. Complex Netw. 8, cnaa013 (2020).

    Article  Google Scholar 

  164. Schelling, T. C. Hockey helmets, concealed weapons, and daylight saving: a study of binary choices with externalities. J. Confl. Resolut. 17, 381–428 (1973).

    Article  Google Scholar 

  165. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  166. Easley, D. & Kleinberg, J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge Univ. Press, 2010).

  167. Gallotti, R., Valle, F., Castaldo, N., Sacco, P. & De Domenico, M. Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nat. Hum. Behav. 4, 1285–1293 (2020).

    Article  PubMed  Google Scholar 

  168. Watts, D. J., Rothschild, D. M. & Mobius, M. Measuring the news and its impact on democracy. Proc. Natl Acad. Sci. USA 118, e1912443118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Valente, T. W. Network models and methods for studying the diffusion of innovations. Model Methods Soc. Netw. Anal. 28, 98–116 (2005).

    Article  Google Scholar 

  170. Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gleeson, J. P. & Cahalane, D. J. Seed size strongly affects cascades on random networks. Phys. Rev. E 75, 056103 (2007).

    Article  ADS  Google Scholar 

  172. Liu, R.-R., Wang, W.-X., Lai, Y.-C. & Wang, B.-H. Cascading dynamics on random networks: crossover in phase transition. Phys. Rev. E 85, 026110 (2012).

    Article  ADS  Google Scholar 

  173. Centola, D., Eguíluz, V. M. & Macy, M. W. Cascade dynamics of complex propagation. Phys. A Stat. Mech. Appl. 374, 449–456 (2007).

    Article  Google Scholar 

  174. Gleeson, J. P. Cascades on correlated and modular random networks. Phys. Rev. E 77, 046117 (2008).

    Article  ADS  Google Scholar 

  175. Dodds, P. S. & Payne, J. L. Analysis of a threshold model of social contagion on degree-correlated networks. Phys. Rev. E 79, 066115 (2009).

    Article  ADS  Google Scholar 

  176. Hackett, A., Melnik, S. & Gleeson, J. P. Cascades on a class of clustered random networks. Phys. Rev. E 83, 056107 (2011).

    Article  ADS  Google Scholar 

  177. Snyder, J., Cai, W. & D’Souza, R. M. Degree-targeted cascades in modular, degree-heterogeneous networks. Phys. Rev. Res. 4, 013040 (2022).

    Article  CAS  Google Scholar 

  178. Karimi, F. & Holme, P. Threshold model of cascades in empirical temporal networks. Phys. A Stat. Mech. Appl. 392, 3476–3483 (2013).

    Article  Google Scholar 

  179. Backlund, V.-P., Saramäki, J. & Pan, R. K. Effects of temporal correlations on cascades: threshold models on temporal networks. Phys. Rev. E 89, 062815 (2014).

    Article  ADS  Google Scholar 

  180. Brummitt, C. D., Lee, K.-M. & Goh, K.-I. Multiplexity-facilitated cascades in networks. Phys. Rev. E 85, 045102 (2012).

    Article  ADS  Google Scholar 

  181. Yu, Y. et al. System crash as dynamics of complex networks. Proc. Natl Acad. Sci. USA 113, 11726–11731 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  182. Galstyan, A. & Cohen, P. Cascading dynamics in modular networks. Phys. Rev. E 75, 036109 (2007).

    Article  ADS  Google Scholar 

  183. Dodds, P. S. & Watts, D. J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004).

    Article  ADS  PubMed  Google Scholar 

  184. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  185. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 38, 364 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  186. Bonabeau, E. Sandpile dynamics on random graphs. J. Phys. Soc. Japan 64, 327–328 (1995).

    Article  ADS  CAS  Google Scholar 

  187. Lise, S. & Paczuski, M. Nonconservative earthquake model of self-organized criticality on a random graph. Phys. Rev. Lett. 88, 228301 (2002).

    Article  ADS  PubMed  Google Scholar 

  188. Goh, K.-I., Lee, D.-S., Kahng, B. & Kim, D. Sandpile on scale-free networks. Phys. Rev. Lett. 91, 148701 (2003).

    Article  ADS  PubMed  Google Scholar 

  189. Lee, D.-S., Goh, K.-I., Kahng, B. & Kim, D. Sandpile avalanche dynamics on scale-free networks. Phys. A Stat. Mech. Appl. 338, 84–91 (2004).

    Article  Google Scholar 

  190. Brummitt, C. D., D’Souza, R. M. & Leicht, E. A. Suppressing cascades of load in interdependent networks. Proc. Natl Acad. Sci. USA 109, E680–E689 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mikaberidze, G. & D’Souza, R. M. Sandpile cascades on oscillator networks: the BTW model meets Kuramoto. Chaos 32, 053121 (2022).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  192. Daqing, L., Yinan, J., Rui, K. & Havlin, S. Spatial correlation analysis of cascading failures: congestions and blackouts. Sci. Rep. 4, 5381 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  193. Hines, P. D., Dobson, I. & Rezaei, P. Cascading power outages propagate locally in an influence graph that is not the actual grid topology. IEEE Trans. Power Syst. 32, 958–967 (2016).

    Google Scholar 

  194. Schäfer, B., Witthaut, D., Timme, M. & Latora, V. Dynamically induced cascading failures in power grids. Nat. Commun. 9, 1975 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  195. Valente, A., De Domenico, M. & Artime, O. Non-Markovian random walks characterize network robustness to nonlocal cascades. Phys. Rev. E 105, 044126 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  196. Barthelemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004).

    Article  ADS  CAS  Google Scholar 

  197. Kornbluth, Y. et al. Network overload due to massive attacks. Phys. Rev. E 97, 052309 (2018).

    Article  ADS  PubMed  Google Scholar 

  198. Artime, O. & De Domenico, M. Abrupt transition due to non-local cascade propagation in multiplex systems. New J. Phys. 22, 093035 (2020).

    Article  ADS  Google Scholar 

  199. Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. EPL (Europhys. Lett.) 62, 292 (2003).

    Article  ADS  CAS  Google Scholar 

  200. Lai, Y.-C., Motter, A. E. & Nishikawa, T. Attacks and cascades in complex networks. Complex Netw. 650, 299–310 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  201. Wang, W.-X. & Chen, G. Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 77, 026101 (2008).

    Article  ADS  Google Scholar 

  202. Cao, X.-B., Hong, C., Du, W.-B. & Zhang, J. Improving the network robustness against cascading failures by adding links. Chaos Solitons Fractals 57, 35–40 (2013).

    Article  ADS  Google Scholar 

  203. Pahwa, S., Scoglio, C. & Scala, A. Abruptness of cascade failures in power grids. Sci. Rep. 4, 3694 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Paul, G., Tanizawa, T., Havlin, S. & Stanley, H. E. Optimization of robustness of complex networks. Eur. Phys. J. B 38, 187–191 (2004).

    Article  ADS  CAS  Google Scholar 

  205. Latora, V. & Marchiori, M. Vulnerability and protection of infrastructure networks. Phys. Rev. E 71, 015103 (2005).

    Article  ADS  Google Scholar 

  206. Reis, S. D. S. et al. Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10, 762–767 (2014).

    Article  CAS  Google Scholar 

  207. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. Network robustness improvement via long-range links. Comput. Soc. Netw. 6, 12 (2019).

    Article  Google Scholar 

  208. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M. & Mangioni, G. in Internet and Distributed Computing Systems (eds Xiang, Y. et al.) 270–277 (Springer, 2018).

  209. Chen, L., Liu, R., Liu, Z.-P., Li, M. & Aihara, K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Squartini, T., Van Lelyveld, I. & Garlaschelli, D. Early-warning signals of topological collapse in interbank networks. Sci. Rep. 3, 3357 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Suweis, S. & D’Odorico, P. Early warning signs in social-ecological networks. PLoS ONE 9, e101851 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  212. Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kuehn, C., Zschaler, G. & Gross, T. Early warning signs for saddle-escape transitions in complex networks. Sci. Rep. 5, 13190 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bauch, C. T., Sigdel, R., Pharaon, J. & Anand, M. Early warning signals of regime shifts in coupled human–environment systems. Proc. Natl Acad. Sci. USA 113, 14560–14567 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  215. Majdandzic, A. et al. Multiple tipping points and optimal repairing in interacting networks. Nat. Commun. 7, 10850 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sun, E. D., Michaels, T. C. T. & Mahadevan, L. Optimal control of aging in complex networks. Proc. Natl Acad. Sci. USA 117, 20404–20410 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sanhedrai, H. et al. Reviving a failed network through microscopic interventions. Nat. Phys. 18, 338–349 (2022).

    Article  CAS  Google Scholar 

  218. Majdandzic, A. et al. Spontaneous recovery in dynamical networks. Nat. Phys. 10, 34–38 (2014).

    Article  CAS  Google Scholar 

  219. Lin, Z.-H. et al. Non-Markovian recovery makes complex networks more resilient against large-scale failures. Nat. Commun. 11, 2490 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhou, D. & Elmokashfi, A. Network recovery based on system crash early warning in a cascading failure model. Sci. Rep. 8, 7443 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  221. Pan, X. & Wang, H. Resilience of and recovery strategies for weighted networks. PLoS ONE 13, e0203894 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Smith, A. M. et al. Competitive percolation strategies for network recovery. Sci. Rep. 9, 11843 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  223. Pasqualetti, F., Zhao, S., Favaretto, C. & Zampieri, S. Fragility limits performance in complex networks. Sci. Rep. 10, 1774 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  224. Di Muro, M. A., La Rocca, C. E., Stanley, H. E., Havlin, S. & Braunstein, L. A. Recovery of interdependent networks. Sci. Rep. 6, 1–11 (2016).

    Google Scholar 

  225. Artime, O., d’Andrea, V., Gallotti, R., Sacco, P. L. & De Domenico, M. Effectiveness of dismantling strategies on moderated vs. unmoderated online social platforms. Sci. Rep. 10, 14392 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  226. De Domenico, M., Lima, A., Mougel, P. & Musolesi, M. The anatomy of a scientific rumor. Sci. Rep. 3, 1–9 (2013).

    Article  Google Scholar 

  227. Liu, R., Chen, P., Aihara, K. & Chen, L. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci. Rep. 5, 17501 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

O.A. acknowledges financial support from the Spanish Ministry of Universities through the Recovery, Transformation and Resilience Plan funded by the European Union (Next Generation EU) and the University of the Balearic Island. M.D.D. acknowledges partial financial support from the University of Padua (PRD-BIRD 2022), from the INFN grant ‘LINCOLN’, from the EU funding within the MUR PNRR ‘National Center for HPC, Big Data and Quantum Computing’ (project number CN00000013 CN1) and from the University of Padua (PRD-BIRD 2022). J.P.G. is partly funded by Science Foundation Ireland grant numbers 16/IA/4470 and 12/RC/2289 P2. H.A.M. was supported by NSF-HNDS Award 2214217. G.M. acknowledges financial support from PNRR MUR project PE0000013-FAIR. M.P. was supported by the Slovenian Research and Innovation Agency (grant numbers P1-0403, J1-2457 and N1-0232). F.R. acknowledges support from the Army Research Office, award number W911NF-21-1-0194, and the Air Force Office of Scientific Research, award number FA9550-21-1-0446.

Author information

Authors and Affiliations

Authors

Contributions

M.D.D. and G.M. decided the scope of the Review. M.G. performed benchmarking. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Manlio De Domenico or Giuseppe Mangioni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Xiao-Long Ren, Yi-Cheng Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artime, O., Grassia, M., De Domenico, M. et al. Robustness and resilience of complex networks. Nat Rev Phys 6, 114–131 (2024). https://doi.org/10.1038/s42254-023-00676-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00676-y

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics