Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Evolving critical oscillators for hearing

Vertebrate hearing uses mechanosensory cells operating near an oscillatory instability. Physics reveals how this mechanism might have evolved from ‘chance and necessity’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hair-cell structure and operation.

References

  1. Hudspeth, A. J. Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci. 15, 600–614 (2014).

    Article  Google Scholar 

  2. Hudspeth, A. J., Julicher, F. & Martin, P. A critique of the critical cochlea: Hopf — a bifurcation — is better than none. J. Neurophysiol. 104, 1219–1229 (2010).

    Article  Google Scholar 

  3. Nadrowski, B., Albert, J. T. & Gopfert, M. C. Transducer-based force generation explains active process in Drosophila hearing. Curr. Biol. 18, 1365–1372 (2008).

    Article  Google Scholar 

  4. Albert, J. T. & Kozlov, A. S. Comparative aspects of hearing in vertebrates and insects with antennal ears. Curr. Biol. 26, 1050–1061 (2016).

    Article  Google Scholar 

  5. Martin, P. & Hudspeth, A. J. Mechanical Frequency Tuning by Sensory Hair Cells, the Receptors and Amplifiers of the Inner Ear. Annu. Rev. Condens. Matter Phys. 12, 29–49 (2021).

    Article  ADS  Google Scholar 

  6. Martin, P., Mehta, A. D. & Hudspeth, A. J. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl Acad. Sci. USA 97, 12026–12031 (2000).

    Article  ADS  Google Scholar 

  7. Barral, J. & Martin, P. Phantom tones and suppressive masking by active nonlinear oscillation of the hair-cell bundle. Proc. Natl Acad. Sci. USA 109, E1344–E1351 (2012).

    Article  ADS  Google Scholar 

  8. Nadrowski, B., Martin, P. & Jülicher, F. Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. Proc. Natl Acad. Sci. USA 101, 12195–12200 (2004).

    Article  ADS  Google Scholar 

  9. Barral, J., Dierkes, K., Lindner, B., Julicher, F. & Martin, P. Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification. Proc. Natl Acad. Sci. USA 107, 8079–8084 (2010).

    Article  ADS  Google Scholar 

  10. Roldán, É., Barral, J., Martin, P., Parrondo, J. M. R. & Jülicher, F. Quantifying entropy production in active fluctuations of the hair-cell bundle from time irreversibility and uncertainty relations. New J. Phys. 23, 083013 (2021).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.J.H. is an Investigator of Howard Hughes Medical Institute. P.M. acknowledges funding from Fondation Pour l’Audition (FPA RD-2020-7) and Labex Cell(n)Scale (ANR-11-LABX-0038 and ANR-10-IDEX-001-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. J. Hudspeth or Pascal Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudspeth, A.J., Martin, P. Evolving critical oscillators for hearing. Nat Rev Phys 6, 210–211 (2024). https://doi.org/10.1038/s42254-023-00672-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00672-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing