Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acoustic resonances in non-Hermitian open systems

Abstract

Acoustic resonances in open systems, which are usually associated with resonant modes characterized by complex eigenfrequencies, play a fundamental role in manipulating acoustic wave radiation and propagation. Notably, they are accompanied by considerable field enhancement, boosting interactions between waves and matter, and leading to various exciting applications. In the past two decades, acoustic metamaterials have enabled a high degree of control over tailoring acoustic resonances over a range of frequencies. Here, we provide an overview of recent advances in the area of acoustic resonances in non-Hermitian open systems, including Helmholtz resonators, metamaterials and metasurfaces, and discuss their applications in various acoustic devices, including sound absorbers, acoustic sources, vortex beam generation and imaging. We also discuss bound states in the continuum and their applications in boosting acoustic wave–matter interactions, active phononics and non-Hermitian acoustic resonances, including phononic topological insulators and the acoustic skin effect.

Key points

  • Acoustic resonances in open systems are associated with eigenmodes characterized by complex eigenfrequencies. These resonances arise in various acoustic systems whose features can be precisely engineered, making them promising for advanced sound manipulation with resonant metastructure devices.

  • An emerging class of non-Hermitian resonances is that of acoustic bound states in the continuum, which are exotic resonances with a theoretically unbounded Q-factor, providing a versatile and powerful means of enhancing acoustic wave–matter interactions.

  • By making use of the properties of active metamaterials and metasurfaces, acoustic resonances can be precisely engineered to feature active, nonlinear and non-reciprocal properties, as well as parity–time-symmetric wave phenomena, showing great potential for applications in enhanced acoustic wave control.

  • Non-Hermitian Hamiltonians extend the common Hermitian dispersion to the complex plane, resulting in additional exotic features of the band structure. Among these, exceptional degeneracies and bandgaps with unconventional topologies yield exciting and unusually robust wave phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acoustic resonances in non-Hermitian open systems.
Fig. 2: Types of acoustic resonance.
Fig. 3: Applications of acoustic resonances.
Fig. 4: Acoustic BICs.
Fig. 5: Applications of acoustic BICs.
Fig. 6: Active acoustic and phononic metamaterials.
Fig. 7: Non-Hermitian acoustics and phononics.

Similar content being viewed by others

References

  1. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    ADS  Google Scholar 

  2. Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018).

    ADS  Google Scholar 

  3. Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016).

    ADS  Google Scholar 

  4. Rotter, I. & Sadreev, A. F. Avoided level crossings, diabolic points, and branch points in the complex plane in an open double quantum dot. Phys. Rev. E 71, 36227 (2005).

    ADS  Google Scholar 

  5. Huang, L., Xu, L., Powell, D. A., Padilla, W. J. & Miroshnichenko, A. E. Resonant leaky modes in all-dielectric metasystems: fundamentals and applications. Phys. Rep. 1008, 1–66 (2023).

    ADS  Google Scholar 

  6. Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).

    Google Scholar 

  7. Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 5, 357–390 (1958).

    ADS  MathSciNet  Google Scholar 

  8. Feshbach, H. A unified theory of nuclear reactions. II. Ann. Phys. 19, 287–313 (1962).

    ADS  MathSciNet  Google Scholar 

  9. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    ADS  Google Scholar 

  10. Liu, Z., Chan, C. T. & Sheng, P. Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 14103 (2005).

    ADS  Google Scholar 

  11. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006).

    ADS  Google Scholar 

  12. Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

    ADS  Google Scholar 

  13. Yang, M., Ma, G., Yang, Z. & Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).

    ADS  Google Scholar 

  14. Wu, Y., Lai, Y. & Zhang, Z.-Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011).

    ADS  Google Scholar 

  15. Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 93904 (2007).

    ADS  Google Scholar 

  16. Brunet, T. et al. Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14, 384–388 (2015).

    ADS  Google Scholar 

  17. Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015).

    ADS  Google Scholar 

  18. Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70, 55602 (2004).

    ADS  Google Scholar 

  19. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Google Scholar 

  20. Sadreev, A. F. Interference traps waves in an open system: bound states in the continuum. Rep. Prog. Phys. 84, 55901 (2021).

    ADS  MathSciNet  Google Scholar 

  21. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  22. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet  Google Scholar 

  23. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    ADS  Google Scholar 

  24. Xue, H., Yang, Y. & Zhang, B. Topological acoustics. Nat. Rev. Mater. 7, 974–990 (2022).

    ADS  Google Scholar 

  25. Kinsler, L. E., Frey, A., Coppens, A. B. & Sanders, J. V. Fundamental of Acoustics (Wiley, 2000).

  26. Huang, L. et al. Sound trapping in an open resonator. Nat. Commun. 12, 4819 (2021).

    ADS  Google Scholar 

  27. HEIN, S., KOCH, W. & NANNEN, L. Fano resonances in acoustics. J. Fluid Mech. 664, 238–264 (2010).

    ADS  MathSciNet  Google Scholar 

  28. Huang, S. et al. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am. 145, 254–262 (2019).

    ADS  Google Scholar 

  29. Zhu, X., Liang, B., Kan, W., Peng, Y. & Cheng, J. Deep-subwavelength-scale directional sensing based on highly localized dipolar Mie resonances. Phys. Rev. Appl. 5, 54015 (2016).

    ADS  Google Scholar 

  30. Lu, G. et al. Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure. Appl. Phys. Lett. 110, 123507 (2017).

    ADS  Google Scholar 

  31. Zhao, J., Zhang, L. & Wu, Y. Enhancing monochromatic multipole emission by a subwavelength enclosure of degenerate Mie resonances. J. Acoust. Soc. Am. 142, EL24–EL29 (2017).

    ADS  Google Scholar 

  32. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Google Scholar 

  33. Kivshar, Y. & Miroshnichenko, A. Meta-optics with Mie resonances. Opt. Photonics N. 28, 24 (2017).

    ADS  Google Scholar 

  34. Liang, Z. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

    ADS  Google Scholar 

  35. Cheng, Y. et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. 14, 1013–1019 (2015).

    ADS  Google Scholar 

  36. Liang, Z. et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

    Google Scholar 

  37. Xie, Y., Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

    ADS  Google Scholar 

  38. Zhang, J., Cheng, Y. & Liu, X. Extraordinary acoustic transmission at low frequency by a tunable acoustic impedance metasurface based on coupled Mie resonators. Appl. Phys. Lett. 110, 233502 (2017).

    ADS  Google Scholar 

  39. Zhou, C., Yuan, B., Cheng, Y. & Liu, X. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures. Appl. Phys. Lett. 108, 63501 (2016).

    Google Scholar 

  40. Li, Y. et al. Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012).

    ADS  Google Scholar 

  41. Brunet, T., Leng, J. & Mondain-Monval, O. Soft acoustic metamaterials. Science 342, 323–324 (2013).

    ADS  Google Scholar 

  42. Cai, Z. et al. Bubble architectures for locally resonant acoustic metamaterials. Adv. Funct. Mater. 29, 1906984 (2019).

    Google Scholar 

  43. Boughzala, M., Stephan, O., Bossy, E., Dollet, B. & Marmottant, P. Polyhedral bubble vibrations. Phys. Rev. Lett. 126, 54502 (2021).

    ADS  Google Scholar 

  44. Kafesaki, M., Penciu, R. S. & Economou, E. N. Air bubbles in water: a strongly multiple scattering medium for acoustic waves. Phys. Rev. Lett. 84, 6050–6053 (2000).

    ADS  Google Scholar 

  45. Sharma, G. S., Skvortsov, A., MacGillivray, I. & Kessissoglou, N. Sound scattering by a bubble metasurface. Phys. Rev. B 102, 214308 (2020).

    ADS  Google Scholar 

  46. Bok, E. et al. Metasurface for water-to-air sound transmission. Phys. Rev. Lett. 120, 44302 (2018).

    ADS  Google Scholar 

  47. Bretagne, A., Tourin, A. & Leroy, V. Enhanced and reduced transmission of acoustic waves with bubble meta-screens. Appl. Phys. Lett. 99, 221906 (2011).

    ADS  Google Scholar 

  48. Leroy, V. et al. Superabsorption of acoustic waves with bubble metascreens. Phys. Rev. B 91, 20301 (2015).

    ADS  Google Scholar 

  49. Lanoy, M. et al. Subwavelength focusing in bubbly media using broadband time reversal. Phys. Rev. B 91, 224202 (2015).

    ADS  Google Scholar 

  50. Huang, T.-Y., Shen, C. & Jing, Y. Membrane- and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 139, 3240–3250 (2016).

    ADS  Google Scholar 

  51. Jenkins, C. H. M. & Korde, U. A. Membrane vibration experiments: an historical review and recent results. J. Sound. Vib. 295, 602–613 (2006).

    ADS  Google Scholar 

  52. Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).

    ADS  Google Scholar 

  53. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    ADS  Google Scholar 

  54. Lu, M.-H. et al. Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys. Rev. Lett. 99, 174301 (2007).

    ADS  Google Scholar 

  55. Hou, B. et al. Tuning Fabry–Perot resonances via diffraction evanescent waves. Phys. Rev. B 76, 54303 (2007).

    ADS  Google Scholar 

  56. Christensen, J., Martin-Moreno, L. & Garcia-Vidal, F. J. Theory of resonant acoustic transmission through subwavelength apertures. Phys. Rev. Lett. 101, 14301 (2008).

    ADS  Google Scholar 

  57. Zhu, J. et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 7, 52–55 (2011).

    Google Scholar 

  58. Yang, M. & Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83–114 (2017).

    Google Scholar 

  59. Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991).

    ADS  Google Scholar 

  60. Qu, S. & Sheng, P. Microwave and acoustic absorption metamaterials. Phys. Rev. Appl. 17, 47001 (2022).

    ADS  Google Scholar 

  61. Yang, M. & Sheng, P. Acoustic metamaterial absorbers: the path to commercialization. Appl. Phys. Lett. 122, 260504 (2023).

    ADS  Google Scholar 

  62. Huang, S., Li, Y., Zhu, J. & Tsai, D. P. Sound-absorbing materials. Phys. Rev. Appl. 20, 10501 (2023).

    ADS  Google Scholar 

  63. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    ADS  Google Scholar 

  64. Xu, Y., Li, Y., Lee, R. K. & Yariv, A. Scattering-theory analysis of waveguide–resonator coupling. Phys. Rev. E 62, 7389–7404 (2000).

    ADS  Google Scholar 

  65. Gu, Z. et al. Controlling sound in non-Hermitian acoustic systems. Phys. Rev. Appl. 16, 57001 (2021).

    ADS  Google Scholar 

  66. Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S. & Nori, F. Colloquium: unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80, 1201–1213 (2008).

    ADS  Google Scholar 

  67. Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109, 121902 (2016).

    ADS  Google Scholar 

  68. Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139, 3395–3403 (2016).

    ADS  Google Scholar 

  69. Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016).

    ADS  Google Scholar 

  70. Long, H., Cheng, Y., Tao, J. & Liu, X. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system. Appl. Phys. Lett. 110, 23502 (2017).

    Google Scholar 

  71. Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015).

    ADS  Google Scholar 

  72. Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area. Appl. Phys. Lett. 113, 201904 (2018).

    ADS  Google Scholar 

  73. Cai, X., Guo, Q., Hu, G. & Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105, 121901 (2014).

    ADS  Google Scholar 

  74. Liu, L., Chang, H., Zhang, C. & Hu, X. Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth. Appl. Phys. Lett. 111, 83503 (2017).

    Google Scholar 

  75. Huang, S. et al. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Appl. Phys. Lett. 113, 233501 (2018).

    ADS  Google Scholar 

  76. Wang, Y. et al. A tunable sound-absorbing metamaterial based on coiled-up space. J. Appl. Phys. 123, 185109 (2018).

    ADS  Google Scholar 

  77. Donda, K. et al. Extreme low-frequency ultrathin acoustic absorbing metasurface. Appl. Phys. Lett. 115, 173506 (2019).

    ADS  Google Scholar 

  78. Li, D. T., Huang, S. B., Cheng, Y. & Li, Y. Compact asymmetric sound absorber at the exceptional point. Sci. China Phys., Mech. Astron. 64, 244303 (2021).

    ADS  Google Scholar 

  79. Guo, J., Zhang, X., Fang, Y. & Qu, R. An extremely-thin acoustic metasurface for low-frequency sound attenuation with a tunable absorption bandwidth. Int. J. Mech. Sci. 213, 106872 (2022).

    Google Scholar 

  80. Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 63502 (2016).

    Google Scholar 

  81. Zhang, C. & Hu, X. Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Phys. Rev. Appl. 6, 64025 (2016).

    Google Scholar 

  82. Long, H., Shao, C., Liu, C., Cheng, Y. & Liu, X. Broadband near-perfect absorption of low-frequency sound by subwavelength metasurface. Appl. Phys. Lett. 115, 103503 (2019).

    ADS  Google Scholar 

  83. Li, J., Wang, W., Xie, Y., Popa, B.-I. & Cummer, S. A. A sound absorbing metasurface with coupled resonators. Appl. Phys. Lett. 109, 91908 (2016).

    Google Scholar 

  84. Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Mater. Horiz. 4, 673–680 (2017).

    Google Scholar 

  85. Zhu, Y., Donda, K., Fan, S., Cao, L. & Assouar, B. Broadband ultra-thin acoustic metasurface absorber with coiled structure. Appl. Phys. Express 12, 114002 (2019).

    ADS  Google Scholar 

  86. Gao, N., Luo, D., Cheng, B. & Hou, H. Teaching-learning-based optimization of a composite metastructure in the 0–10 kHz broadband sound absorption range. J. Acoust. Soc. Am. 148, EL125–EL129 (2020).

    ADS  Google Scholar 

  87. Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7, 13595 (2017).

    ADS  Google Scholar 

  88. Peng, X., Ji, J. & Jing, Y. Composite honeycomb metasurface panel for broadband sound absorption. J. Acoust. Soc. Am. 144, EL255–EL261 (2018).

    ADS  Google Scholar 

  89. Liu, C. R., Wu, J. H., Ma, F., Chen, X. & Yang, Z. A thin multi-order Helmholtz metamaterial with perfect broadband acoustic absorption. Appl. Phys. Express 12, 84002 (2019).

    Google Scholar 

  90. Long, H. et al. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes. J. Sound. Vib. 479, 115371 (2020).

    Google Scholar 

  91. Rui Liu, C., Hui, Wu,J., Yang, Z. & Ma, F. Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Compos. Struct. 246, 112366 (2020).

    Google Scholar 

  92. Long, H., Gao, S., Cheng, Y. & Liu, X. Multiband quasi-perfect low-frequency sound absorber based on double-channel Mie resonator. Appl. Phys. Lett. 112, 33507 (2018).

    Google Scholar 

  93. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491 LP–17417496 (2010).

    ADS  Google Scholar 

  94. Zhou, Z., Huang, S., Li, D., Zhu, J. & Li, Y. Broadband impedance modulation via non-local acoustic metamaterials. Natl Sci. Rev. 9, nwab171 (2022).

    Google Scholar 

  95. Huang, S. et al. Compact broadband acoustic sink with coherently coupled weak resonances. Sci. Bull. 65, 373–379 (2020).

    Google Scholar 

  96. Huang, S. et al. Broadband sound attenuation by metaliner under grazing flow. Appl. Phys. Lett. 118, 63504 (2021).

    Google Scholar 

  97. Rajendran, V., Piacsek, A. & Méndez Echenagucia, T. Design of broadband Helmholtz resonator arrays using the radiation impedance method. J. Acoust. Soc. Am. 151, 457–466 (2022).

    ADS  Google Scholar 

  98. Zhu, Y. et al. Nonlocal acoustic metasurface for ultrabroadband sound absorption. Phys. Rev. B 103, 64102 (2021).

    ADS  Google Scholar 

  99. Li, X., Yu, X. & Zhai, W. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels. Adv. Mater. 33, 2104552 (2021).

    Google Scholar 

  100. Dong, R., Mao, D., Wang, X. & Li, Y. Ultrabroadband acoustic ventilation barriers via hybrid-functional metasurfaces. Phys. Rev. Appl. 15, 24044 (2021).

    ADS  Google Scholar 

  101. Ren, Z., Cheng, Y., Chen, M., Yuan, X. & Fang, D. A compact multifunctional metastructure for low-frequency broadband sound absorption and crash energy dissipation. Mater. Des. 215, 110462 (2022).

    Google Scholar 

  102. Chen, A. et al. Machine learning-assisted low-frequency and broadband sound absorber with coherently coupled weak resonances. Appl. Phys. Lett. 120, 33501 (2022).

    Google Scholar 

  103. Liu, L. et al. Broadband acoustic absorbing metamaterial via deep learning approach. Appl. Phys. Lett. 120, 251701 (2022).

    ADS  Google Scholar 

  104. Ding, H. et al. Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness. Int. J. Mech. Sci. 232, 107601 (2022).

    Google Scholar 

  105. Shao, C. et al. Metasurface absorber for ultra-broadband sound via over-damped modes coupling. Appl. Phys. Lett. 120, 83504 (2022).

    Google Scholar 

  106. Wang, N. et al. Meta-silencer with designable timbre. Int. J. Extrem. Manuf. 5, 25501 (2023).

    Google Scholar 

  107. Jiang, X., Li, Y., Liang, B., Cheng, J. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 34301 (2016).

    ADS  Google Scholar 

  108. Jiang, X., Liang, B., Cheng, J.-C. & Qiu, C.-W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Adv. Mater. 30, 1800257 (2018).

    Google Scholar 

  109. Fu, Y. et al. Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv. 6, eaba9876 (2023).

    ADS  Google Scholar 

  110. Zou, Z., Lirette, R. & Zhang, L. Orbital angular momentum reversal and asymmetry in acoustic vortex beam reflection. Phys. Rev. Lett. 125, 74301 (2020).

    ADS  Google Scholar 

  111. Chen, H. Z. et al. Revealing the missing dimension at an exceptional point. Nat. Phys. 16, 571–578 (2020).

    Google Scholar 

  112. Wang, Q. et al. Acoustic topological beam nonreciprocity via the rotational Doppler effect. Sci. Adv. 8, eabq4451 (2023).

    ADS  Google Scholar 

  113. Fu, Y. et al. Asymmetric generation of acoustic vortex using dual-layer metasurfaces. Phys. Rev. Lett. 128, 104501 (2022).

    ADS  Google Scholar 

  114. Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 24302 (2008).

    ADS  Google Scholar 

  115. Anhäuser, A., Wunenburger, R. & Brasselet, E. Acoustic rotational manipulation using orbital angular momentum transfer. Phys. Rev. Lett. 109, 34301 (2012).

    ADS  Google Scholar 

  116. Courtney, C. R. P. et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014).

    ADS  Google Scholar 

  117. Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl Acad. Sci. USA 114, 7250–7253 (2017).

    ADS  Google Scholar 

  118. Liu, C. et al. Broadband acoustic vortex beam generator based on coupled resonances. Appl. Phys. Lett. 118, 143503 (2021).

    ADS  Google Scholar 

  119. Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009).

    ADS  Google Scholar 

  120. Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 64301 (2011).

    ADS  Google Scholar 

  121. Molerón, M. & Daraio, C. Acoustic metamaterial for subwavelength edge detection. Nat. Commun. 6, 8037 (2015).

    ADS  Google Scholar 

  122. Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9, 1632 (2018).

    ADS  Google Scholar 

  123. Tian, Z. et al. Programmable acoustic metasurfaces. Adv. Funct. Mater. 29, 1808489 (2019).

    Google Scholar 

  124. Liu, T., Chen, F., Liang, S., Gao, H. & Zhu, J. Subwavelength sound focusing and imaging via gradient metasurface-enabled spoof surface acoustic wave modulation. Phys. Rev. Appl. 11, 34061 (2019).

    Google Scholar 

  125. Tian, Y. et al. Far-field subwavelength acoustic computational imaging with a single detector. Phys. Rev. Appl. 18, 14046 (2022).

    Google Scholar 

  126. Landi, M., Zhao, J., Prather, W. E., Wu, Y. & Zhang, L. Acoustic Purcell effect for enhanced emission. Phys. Rev. Lett. 120, 114301 (2018).

    ADS  Google Scholar 

  127. Schmidt, M. K., Helt, L. G., Poulton, C. G. & Steel, M. J. Elastic Purcell effect. Phys. Rev. Lett. 121, 64301 (2018).

    ADS  Google Scholar 

  128. Song, Y. et al. Strong collimated emission enhancement by acoustic metasurfaces. Phys. Rev. Appl. 12, 54012 (2019).

    Google Scholar 

  129. Huang, S. et al. Acoustic Purcell effect induced by quasibound state in the continuum. Fundam. Res. https://doi.org/10.1016/j.fmre.2022.06.009 (2022).

  130. Lyapina, A. A., Maksimov, D. N., Pilipchuk, A. S. & Sadreev, A. F. Bound states in the continuum in open acoustic resonators. J. Fluid Mech. 780, 370–387 (2015).

    ADS  MathSciNet  Google Scholar 

  131. Deriy, I., Toftul, I., Petrov, M. & Bogdanov, A. Bound states in the continuum in compact acoustic resonators. Phys. Rev. Lett. 128, 84301 (2022).

    ADS  MathSciNet  Google Scholar 

  132. Parker, R. Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies. J. Sound. Vib. 5, 330–343 (1967).

    ADS  Google Scholar 

  133. Hein, S. & Koch, W. Acoustic resonances and trapped modes in pipes and tunnels. J. Fluid Mech. 605, 401–428 (2008).

    ADS  Google Scholar 

  134. Linton, C. M., McIver, M., McIver, P., Ratcliffe, K. & Zhang, J. Trapped modes for off-centre structures in guides. Wave Motion 36, 67–85 (2002).

    ADS  MathSciNet  Google Scholar 

  135. Duan, Y., Koch, W., Linton, C. M. & McIver, M. Complex resonances and trapped modes in ducted domains. J. Fluid Mech. 571, 119–147 (2007).

    ADS  MathSciNet  Google Scholar 

  136. Evans, D. & Porter, R. Trapped modes embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 51, 263–274 (1998).

    MathSciNet  Google Scholar 

  137. Jacobsen, R. E., Krasnok, A., Arslanagić, S., Lavrinenko, A. V. & Alú, A. Boundary-induced embedded eigenstate in a single resonator for advanced sensing. ACS Photonics 9, 1936–1943 (2022).

    Google Scholar 

  138. Linton, C. & McIver, M. Trapped modes in cylindrical waveguides. Q. J. Mech. Appl. Math. 51, 389–412 (1998).

    MathSciNet  Google Scholar 

  139. Linton, C. M. & McIver, P. Embedded trapped modes in water waves and acoustics. Wave Motion 45, 16–29 (2007).

    ADS  MathSciNet  Google Scholar 

  140. Rotter, I. A continuum shell model for the open quantum mechanical nuclear system. Rep. Prog. Phys. 54, 635 (1991).

    ADS  Google Scholar 

  141. Okołowicz, J., Płoszajczak, M. & Rotter, I. Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271–383 (2003).

    ADS  MathSciNet  Google Scholar 

  142. Dittes, F.-M. The decay of quantum systems with a small number of open channels. Phys. Rep. 339, 215–316 (2000).

    ADS  MathSciNet  Google Scholar 

  143. Sadreev, A. F. & Rotter, I. S-matrix theory for transmission through billiards in tight-binding approach. J. Phys. A. Math. Gen. 36, 11413–11433 (2003).

    ADS  MathSciNet  Google Scholar 

  144. Maksimov, D. N., Sadreev, A. F., Lyapina, A. A. & Pilipchuk, A. S. Coupled mode theory for acoustic resonators. Wave Motion 56, 52–66 (2015).

    ADS  MathSciNet  Google Scholar 

  145. Pichugin, K., Schanz, H. & Šeba, P. Effective coupling for open billiards. Phys. Rev. E 64, 56227 (2001).

    ADS  Google Scholar 

  146. Parker, R. Resonance effects in wake shedding from parallel plates: some experimental observations. J. Sound. Vib. 4, 62–72 (1966).

    ADS  Google Scholar 

  147. Huang, S. et al. Extreme sound confinement from quasibound states in the continuum. Phys. Rev. Appl. 14, 21001 (2020).

    Google Scholar 

  148. Jia, B. et al. Bound states in the continuum protected by reduced symmetry of three-dimensional open acoustic resonators. Phys. Rev. Appl. 19, 54001 (2023).

    Google Scholar 

  149. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    ADS  Google Scholar 

  150. Huang, L. et al. General framework of bound states in the continuum in an open acoustic resonator. Phys. Rev. Appl. 18, 54021 (2022).

    Google Scholar 

  151. Pilipchuk, A. S. & Sadreev, A. F. Accidental bound states in the continuum in an open Sinai billiard. Phys. Lett. A 381, 720–724 (2017).

    ADS  MathSciNet  Google Scholar 

  152. Lyapina, A. A., Pilipchuk, A. S. & Sadreev, A. F. Trapped modes in a non-axisymmetric cylindrical waveguide. J. Sound. Vib. 421, 48–60 (2018).

    ADS  Google Scholar 

  153. Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231–3242 (1985).

    ADS  Google Scholar 

  154. Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    ADS  Google Scholar 

  155. Volya, A. & Zelevinsky, V. Non-Hermitian effective Hamiltonian and continuum shell model. Phys. Rev. C. 67, 54322 (2003).

    ADS  Google Scholar 

  156. Pilipchuk, A. S., Pilipchuk, A. A. & Sadreev, A. F. Bound states in the continuum in open spherical resonator. Phys. Scr. 95, 85002 (2020).

    Google Scholar 

  157. Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Bound states in the continuum in open quantum billiards with a variable shape. Phys. Rev. B 73, 235342 (2006).

    ADS  Google Scholar 

  158. Huang, L., Xu, L., Rahmani, M., Neshev, D. & Miroshnichenko, A. E. Pushing the limit of high-Q mode of a single dielectric nanocavity. Adv. Photonics 3, 016004 (2021).

    ADS  Google Scholar 

  159. Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901(2017).

    ADS  Google Scholar 

  160. Fan, S. et al. Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882–15892 (1999).

    ADS  Google Scholar 

  161. Bulgakov, E. N. & Sadreev, A. F. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B 78, 75105 (2008).

    ADS  Google Scholar 

  162. Hein, S., Koch, W. & Nannen, L. Trapped modes and Fano resonances in two-dimensional acoustical duct–cavity systems. J. Fluid Mech. 692, 257–287 (2012).

    ADS  Google Scholar 

  163. Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Trapping of an electron in the transmission through two quantum dots coupled by a wire. J. Exp. Theor. Phys. Lett. 82, 498–503 (2005).

    Google Scholar 

  164. Huang, L. et al. Topological supercavity resonances in the finite system. Adv. Sci. https://doi.org/10.1002/advs.202200257 (2022).

  165. Bulgakov, E. N. & Maksimov, D. N. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods. Phys. Rev. A 96, 63833 (2017).

    ADS  Google Scholar 

  166. Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019).

    ADS  Google Scholar 

  167. Cao, L. et al. Perfect absorption of flexural waves induced by bound state in the continuum. Extrem. Mech. Lett. 47, 101364 (2021).

    Google Scholar 

  168. Cao, L. et al. Elastic bound state in the continuum with perfect mode conversion. J. Mech. Phys. Solids 154, 104502 (2021).

    MathSciNet  Google Scholar 

  169. Zhou, Z., Jia, B., Wang, N., Wang, X. & Li, Y. Observation of perfectly-chiral exceptional point via bound state in the continuum. Phys. Rev. Lett. 130, 116101 (2023).

    ADS  Google Scholar 

  170. Srivastava, A. Causality and passivity in elastodynamics. Proc. R. Soc. A 471, 20150256 (2015).

    ADS  MathSciNet  Google Scholar 

  171. Muhlestein, M. B., Sieck, C. F., Alù, A. & Haberman, M. R. Reciprocity, passivity and causality in Willis materials. Proc. R. Soc. A 472, 20160604 (2016).

    ADS  MathSciNet  Google Scholar 

  172. Mangulis, V. Kramers–Kronig or dispersion relations in acoustics. J. Acoust. Soc. Am. 36, 211–212 (1964).

    ADS  Google Scholar 

  173. Gao, N. et al. Acoustic metamaterials for noise reduction: a review. Adv. Mater. Technol. 7, 2100698 (2022).

    Google Scholar 

  174. Zangeneh-Nejad, F. & Fleury, R. Active times for acoustic metamaterials. Rev. Phys. 4, 100031 (2019).

    Google Scholar 

  175. Ji, G. & Huber, J. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials — a review. Appl. Mater. Today 26, 101260 (2022).

    Google Scholar 

  176. Willatzen, M. & Christensen, J. Acoustic gain in piezoelectric semiconductors at ε-near-zero response. Phys. Rev. B 89, 041201 (2014).

    ADS  Google Scholar 

  177. Hutson, A. R., McFee, J. H. & White, D. L. Ultrasonic amplification in CdS. Phys. Rev. Lett. 7, 237–239 (1961).

    ADS  Google Scholar 

  178. Trainiti, G. et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Phys. Rev. Lett. 122, 124301 (2019).

    ADS  Google Scholar 

  179. Bergamini, A. et al. Phononic crystal with adaptive connectivity. Adv. Mater. 26, 1343–1347 (2014).

    Google Scholar 

  180. Ma, G., Fan, X., Sheng, P. & Fink, M. Shaping reverberating sound fields with an actively tunable metasurface. Proc. Natl Acad. Sci. USA 115, 6638–6643 (2018).

    ADS  Google Scholar 

  181. Chen, Y. et al. Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Phys. Rev. Appl. 11, 64052 (2019).

    Google Scholar 

  182. Wang, Z., Zhang, Q., Zhang, K. & Hu, G. Tunable digital metamaterial for broadband vibration isolation at low frequency. Adv. Mater. 28, 9857–9861 (2016).

    Google Scholar 

  183. Bilal, O. R., Foehr, A. & Daraio, C. Reprogrammable phononic metasurfaces. Adv. Mater. 29, 1700628 (2017).

    Google Scholar 

  184. Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    ADS  Google Scholar 

  185. Quan, L., Yves, S., Peng, Y., Esfahlani, H. & Alù, A. Odd Willis coupling induced by broken time-reversal symmetry. Nat. Commun. 12, 2615 (2021).

    ADS  Google Scholar 

  186. Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

    ADS  Google Scholar 

  187. Shen, C., Zhu, X., Li, J. & Cummer, S. A. Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 54302 (2019).

    ADS  Google Scholar 

  188. Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity–time symmetry. Nat. Commun. 6, 5905 (2015).

    ADS  Google Scholar 

  189. Rasmussen, C. & Alù, A. Non-Foster acoustic radiation from an active piezoelectric transducer. Proc. Natl Acad. Sci. USA 118, e2024984118 (2021).

    Google Scholar 

  190. Chen, Z. et al. Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Sci. Adv. 7, eabj1198 (2023).

    ADS  Google Scholar 

  191. Cho, C., Wen, X., Park, N. & Li, J. Digitally virtualized atoms for acoustic metamaterials. Nat. Commun. 11, 251 (2020).

    ADS  Google Scholar 

  192. Wen, X. et al. Unidirectional amplification with acoustic non-Hermitian space−time varying metamaterial. Commun. Phys. 5, 18 (2022).

    Google Scholar 

  193. Popa, B.-I., Zhai, Y. & Kwon, H.-S. Broadband sound barriers with bianisotropic metasurfaces. Nat. Commun. 9, 5299 (2018).

    ADS  Google Scholar 

  194. Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    ADS  Google Scholar 

  195. Rupin, M., Lerosey, G., de Rosny, J. & Lemoult, F. Mimicking the cochlea with an active acoustic metamaterial. N. J. Phys. 21, 93012 (2019).

    Google Scholar 

  196. Koutserimpas, T. T., Rivet, E., Lissek, H. & Fleury, R. Active acoustic resonators with reconfigurable resonance frequency, absorption, and bandwidth. Phys. Rev. Appl. 12, 54064 (2019).

    ADS  Google Scholar 

  197. Sirota, L., Ilan, R., Shokef, Y. & Lahini, Y. Non-newtonian topological mechanical metamaterials using feedback control. Phys. Rev. Lett. 125, 256802 (2020).

    ADS  MathSciNet  Google Scholar 

  198. Souslov, A., van Zuiden, B. C., Bartolo, D. & Vitelli, V. Topological sound in active-liquid metamaterials. Nat. Phys. 13, 1091–1094 (2017).

    Google Scholar 

  199. Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

    Google Scholar 

  200. Aliev, A. E., Lima, M. D., Fang, S. & Baughman, R. H. Underwater sound generation using carbon nanotube projectors. Nano Lett. 10, 2374–2380 (2010).

    ADS  Google Scholar 

  201. Xiao, L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8, 4539–4545 (2008).

    ADS  Google Scholar 

  202. Pierce, C. D. et al. Adaptive elastic metastructures from magneto-active elastomers. Smart Mater. Struct. 29, 65004 (2020).

    Google Scholar 

  203. Xu, Z. et al. Vat photopolymerization of fly-like, complex micro-architectures with dissolvable supports. Addit. Manuf. 47, 102321 (2021).

    Google Scholar 

  204. Gliozzi, A. S. et al. Tunable photo-responsive elastic metamaterials. Nat. Commun. 11, 2576 (2020).

    ADS  Google Scholar 

  205. Sergeev, S. et al. Development of a plasma electroacoustic actuator for active noise control applications. J. Phys. D 53, 495202 (2020).

    Google Scholar 

  206. Cha, J. & Daraio, C. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. Nat. Nanotechnol. 13, 1016–1020 (2018).

    ADS  Google Scholar 

  207. Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).

    Google Scholar 

  208. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    ADS  MathSciNet  Google Scholar 

  209. del Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically induced squeezing. Nature 606, 82–87 (2022).

    ADS  Google Scholar 

  210. Popa, B.-I., Shinde, D., Konneker, A. & Cummer, S. A. Active acoustic metamaterials reconfigurable in real time. Phys. Rev. B 91, 220303 (2015).

    ADS  Google Scholar 

  211. Wang, Q., del Hougne, P. & Ma, G. Controlling the spatiotemporal response of transient reverberating sound. Phys. Rev. Appl. 17, 44007 (2022).

    Google Scholar 

  212. Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5, 667–685 (2020).

    ADS  Google Scholar 

  213. Zhu, Y. et al. Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations. Nat. Commun. 12, 7089 (2021).

    ADS  Google Scholar 

  214. Fleury, R., Sounas, D. L. & Alù, A. Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B 91, 174306 (2015).

    ADS  Google Scholar 

  215. Zhu, X. et al. Tunable unidirectional compact acoustic amplifier via space-time modulated membranes. Phys. Rev. B 102, 24309 (2020).

    ADS  Google Scholar 

  216. Popa, B.-I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014).

    ADS  Google Scholar 

  217. Gu, Z., Hu, J., Liang, B., Zou, X. & Cheng, J. Broadband non-reciprocal transmission of sound with invariant frequency. Sci. Rep. 6, 19824 (2016).

    ADS  Google Scholar 

  218. Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    ADS  Google Scholar 

  219. Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).

    Google Scholar 

  220. Li, H., Mekawy, A., Krasnok, A. & Alù, A. Virtual parity-time symmetry. Phys. Rev. Lett. 124, 193901 (2020).

    ADS  MathSciNet  Google Scholar 

  221. Ra’di, Y., Krasnok, A. & Alù, A. Virtual critical coupling. ACS Photonics 7, 1468–1475 (2020).

    Google Scholar 

  222. Trainiti, G., Ra’di, Y., Ruzzene, M. & Alù, A. Coherent virtual absorption of elastodynamic waves. Sci. Adv. 5, eaaw3255 (2023).

    ADS  Google Scholar 

  223. Bender, C. M. Making sense of non-Hermitian hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    ADS  MathSciNet  Google Scholar 

  224. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    ADS  MathSciNet  Google Scholar 

  225. Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    MathSciNet  Google Scholar 

  226. Mostafazadeh, A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 102, 220402 (2009).

    ADS  Google Scholar 

  227. Zhu, X., Ramezani, H., Shi, C., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).

    Google Scholar 

  228. Christensen, J., Willatzen, M., Velasco, V. R. & Lu, M.-H. Parity–time synthetic phononic media. Phys. Rev. Lett. 116, 207601 (2016).

    ADS  Google Scholar 

  229. Shi, C. et al. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun. 7, 11110 (2016).

    ADS  Google Scholar 

  230. Fleury, R., Sounas, D. L. & Alù, A. Parity-time symmetry in acoustics: theory, devices, and potential applications. IEEE J. Sel. Top. Quantum Electron. 22, 5000809 (2016).

    Google Scholar 

  231. Magariyachi, T., Arias Casals, H., Herrero, R., Botey, M. & Staliunas, K. PT-symmetric Helmholtz resonator dipoles for sound directivity. Phys. Rev. B 103, 94201 (2021).

    ADS  Google Scholar 

  232. Li, H. et al. Ultrathin acoustic parity-time symmetric metasurface cloak. Research 2019, 8345683 (2019).

    Google Scholar 

  233. Yang, W. J., Yang, Z. Z., Guan, A. Y., Zou, X. Y. & Cheng, J. C. Design and experimental demonstration of effective acoustic gain medium for PT-symmetric refractive index. Appl. Phys. Lett. 120, 063503 (2022).

    ADS  Google Scholar 

  234. Merkel, A., Romero-García, V., Groby, J. P., Li, J. & Christensen, J. Unidirectional zero sonic reflection in passive PT-symmetric Willis media. Phys. Rev. B 98, 201102(R) (2018).

    ADS  Google Scholar 

  235. Shen, C., Li, J., Peng, X. & Cummer, S. A. Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems. Phys. Rev. Mater. 2, 125203 (2018).

    Google Scholar 

  236. Liu, Y. et al. Willis metamaterial on a structured beam. Phys. Rev. X 9, 011040 (2019).

    Google Scholar 

  237. Liu, T., Zhu, X., Chen, F., Liang, S. & Zhu, J. Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal. Phys. Rev. Lett. 120, 124502 (2018).

    ADS  Google Scholar 

  238. Stojanoska, K. & Shen, C. Non-Hermitian planar elastic metasurface for unidirectional focusing of flexural waves. Appl. Phys. Lett. 120, 241701 (2022).

    ADS  Google Scholar 

  239. Wang, X., Fang, X., Mao, D., Jing, Y. & Li, Y. Extremely asymmetrical acoustic metasurface mirror at the exceptional point. Phys. Rev. Lett. 123, 214302 (2019).

    ADS  Google Scholar 

  240. Yang, Y., Jia, H., Bi, Y., Zhao, H. & Yang, J. Experimental demonstration of an acoustic asymmetric diffraction grating based on passive parity-time-symmetric medium. Phys. Rev. Appl. 12, 034040 (2019).

    ADS  Google Scholar 

  241. Liu, T. et al. Single-sided acoustic beam splitting based on parity-time symmetry. Phys. Rev. B 102, 014306 (2020).

    ADS  Google Scholar 

  242. Fang, X. et al. Observation of higher-order exceptional points in a non-local acoustic metagrating. Commun. Phys. 4, 271 (2021).

    Google Scholar 

  243. Zhang, J. et al. Giant nonlinearity via breaking parity-time symmetry: a route to low-threshold phonon diodes. Phys. Rev. B 92, 115407 (2015).

    ADS  Google Scholar 

  244. Shao, L. et al. Non-reciprocal transmission of microwave acoustic waves in nonlinear parity–time symmetric resonators. Nat. Electron. 3, 267–272 (2020).

    Google Scholar 

  245. Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).

    Google Scholar 

  246. Ding, K., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 85702 (2018).

    ADS  Google Scholar 

  247. Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-Hermitian acoustic metamaterials: role of exceptional points in sound absorption. Phys. Rev. B 95, 144303 (2017).

    ADS  Google Scholar 

  248. Lee, T., Nomura, T., Dede, E. M. & Iizuka, H. Asymmetric loss-induced perfect sound absorption in duct silencers. Appl. Phys. Lett. 116, 214101 (2020).

    ADS  Google Scholar 

  249. Liu, T. et al. Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point. Sci. Bull. 67, 1131–1136 (2022).

    Google Scholar 

  250. Tang, W. et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020).

    ADS  MathSciNet  Google Scholar 

  251. Tang, W., Ding, K. & Ma, G. Direct measurement of topological properties of an exceptional parabola. Phys. Rev. Lett. 127, 34301 (2021).

    ADS  Google Scholar 

  252. Mensah, G. A., Magri, L., Silva, C. F., Buschmann, P. E. & Moeck, J. P. Exceptional points in the thermoacoustic spectrum. J. Sound. Vib. 433, 124–128 (2018).

    ADS  Google Scholar 

  253. Bourquard, C. & Noiray, N. Stabilization of acoustic modes using Helmholtz and quarter-wave resonators tuned at exceptional points. J. Sound. Vib. 445, 288–307 (2019).

    ADS  Google Scholar 

  254. Liu, J. J. et al. Experimental realization of weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal. Phys. Rev. Lett. 129, 084301 (2022).

    ADS  Google Scholar 

  255. Zhang, Q. et al. Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions. Phys. Rev. Lett. 130, 17201 (2023).

    ADS  Google Scholar 

  256. Guo, C.-X., Chen, S., Ding, K. & Hu, H. Exceptional non-Abelian topology in multiband non-Hermitian systems. Phys. Rev. Lett. 130, 157201 (2023).

    ADS  MathSciNet  Google Scholar 

  257. Li, Z., Ding, K. & Ma, G. Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems. Phys. Rev. Res. 5, 23038 (2023).

    Google Scholar 

  258. Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Google Scholar 

  259. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Google Scholar 

  260. Miniaci, M. & Pal, R. K. Design of topological elastic waveguides. J. Appl. Phys. 130, 141101 (2021).

    ADS  Google Scholar 

  261. Yves, S., Ni, X. & Alù, A. Topological sound in two dimensions. Ann. N. Y. Acad. Sci. 1517, 63–77 (2022).

    ADS  Google Scholar 

  262. Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    ADS  Google Scholar 

  263. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 31079 (2018).

    Google Scholar 

  264. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 41015 (2019).

    Google Scholar 

  265. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 15005 (2021).

    ADS  MathSciNet  Google Scholar 

  266. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Google Scholar 

  267. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk–boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 26808 (2018).

    ADS  Google Scholar 

  268. Wang, M., Ye, L., Christensen, J. & Liu, Z. Valley physics in non-Hermitian artificial acoustic boron nitride. Phys. Rev. Lett. 120, 246601 (2018).

    ADS  Google Scholar 

  269. Hu, B. et al. Non-Hermitian topological whispering gallery. Nature 597, 655–659 (2021).

    ADS  Google Scholar 

  270. Rosendo López, M., Zhang, Z., Torrent, D. & Christensen, J. Multiple scattering theory of non-Hermitian sonic second-order topological insulators. Commun. Phys. 2, 132 (2019).

    Google Scholar 

  271. Zhang, Z., Rosendo López, M., Cheng, Y., Liu, X. & Christensen, J. Non-Hermitian sonic second-order topological insulator. Phys. Rev. Lett. 122, 195501 (2019).

    ADS  Google Scholar 

  272. Zhu, W. et al. Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system. Phys. Rev. Lett. 121, 124501 (2018).

    ADS  Google Scholar 

  273. Ni, X. et al. PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators.Phys. Rev. B 98, 165129 (2018).

    ADS  Google Scholar 

  274. Gao, H. et al. Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal. Phys. Rev. B 101, 180303 (2020).

    ADS  Google Scholar 

  275. Zhang, K. et al. Observation of topological properties of non-Hermitian crystal systems with diversified coupled resonators chains. J. Appl. Phys. 130, 64502 (2021).

    Google Scholar 

  276. Gao, H. et al. Non-Hermitian route to higher-order topology in an acoustic crystal. Nat. Commun. 12, 1888 (2021).

    ADS  Google Scholar 

  277. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 86801 (2020).

    ADS  MathSciNet  Google Scholar 

  278. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    ADS  MathSciNet  Google Scholar 

  279. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 86803 (2018).

    ADS  Google Scholar 

  280. Yokomizo, K. & Murakami, S. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123, 66404 (2019).

    ADS  MathSciNet  Google Scholar 

  281. Lin, R., Tai, T., Li, L. & Lee, C. H. Topological non-Hermitian skin effect. Front. Phys. 18, 53605 (2023).

    ADS  Google Scholar 

  282. Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    ADS  Google Scholar 

  283. Gu, Z. et al. Transient non-Hermitian skin effect. Nat. Commun. 13, 7668 (2022).

    ADS  Google Scholar 

  284. Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    ADS  Google Scholar 

  285. Rosa, M. I. N. & Ruzzene, M. Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions. N. J. Phys. 22, 53004 (2020).

    MathSciNet  Google Scholar 

  286. Scheibner, C., Irvine, W. T. M. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).

    ADS  MathSciNet  Google Scholar 

  287. Wang, W., Wang, X. & Ma, G. Non-Hermitian morphing of topological modes. Nature 608, 50–55 (2022).

    ADS  Google Scholar 

  288. Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

L.H. and A.E.M. were supported by the Australian Research Council Discovery Project (DP200101353) and the UNSW Scientia Fellowship programme. S.H. and Y.L. were supported by the Shanghai Science and Technology Committee (grant nos. 21JC1405600). C.S. was supported by the US National Science Foundation under grant no. CMMI-2137749. S.Y., X.N., S.K. and A.A. were supported by the Air Force Office of Scientific Research and Simons Foundation. A.S.P and A.F.S acknowledge the state assignment of Kirensky Institute of Physics. Y.K.C. and D.A.P. were supported by the Australian Research Council Discovery Project (grant no. DP200101708).

Author information

Authors and Affiliations

Authors

Contributions

L.H., S.H., C.S., S.Y. and A.S.P. provided initial drafts of portions of the manuscript. All authors subsequently integrated, reviewed and revised the full manuscript.

Corresponding authors

Correspondence to Lujun Huang, Yong Li, Almas F. Sadreev, Andrea Alù or Andrey E. Miroshnichenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Nicholas Fang, Ching Hua Lee and Guancong Ma for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Acoustic Purcell factor

Acoustic Purcell factor is defined as the ratio of emitted acoustic power of an acoustic source in a structure and in free space (or in an empty tube for waveguide systems).

Active acoustic systems

Active acoustic systems involve tunable properties including non-passivity, nonlinearity and time-dependence.

Bound states in the continuum

Bound states in the continuum (BICs) are peculiar states with infinite quality factors (or lifetime) and forbidden radiation, despite residing in the radiation continuum.

Fabry–Perot resonances

Fabry–Perot resonances usually occur in a cavity made of two parallel reflecting surfaces. They appear only when the accumulated round-trip phase in the cavity equals an integer number of 2π.

Hermitian system

A Hermitian system is usually associated with a closed system with a Hermitian Hamiltonian satisfying H = H+, where + indicates the combination of complex conjugation and transposition of Hamiltonian. The Hermitian nature ensures real eigenvalues and orthogonal eigenvectors.

Non-Hermitian system

A non-Hermitian system has a Hamiltonian that is not equal to its conjugate transpose, H ≠ H+, giving rise to complex eigenvalues and non-orthogonal eigenvectors, manifested by an open system that involves interaction and energy exchange with the surrounding environment.

Passive acoustic systems

Passive acoustic systems rely on the natural propagation and reception of sound waves without any intentional modification or manipulation.

Q-factors

The Q-factor is defined as the ratio of the stored energy to the dissipated energy per radian of the oscillation. It is widely used to describe the resonance behaviour of an underdamped harmonic oscillator.

Quasi-bound states in the continuum

Quasi-bound states in the continuum correspond to the eigenstates with finite but high-quality factors by perturbing system from critical parameters.

Willis coupling

Willis coupling in acoustic materials defines the coupling strength between strains and momentum, analogous to bianisotropy in electromagnetics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Huang, S., Shen, C. et al. Acoustic resonances in non-Hermitian open systems. Nat Rev Phys 6, 11–27 (2024). https://doi.org/10.1038/s42254-023-00659-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00659-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing