Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Supersolidity in ultracold dipolar gases

Abstract

Can a gas behave like a crystal? Supersolidity is an intriguing and challenging state of matter that combines key features of superfluids and crystals. Predicted a long time ago, its experimental realization has been recently achieved in Bose–Einstein condensed atomic gases inside optical resonators, spin–orbit-coupled Bose–Einstein condensates and atomic gases interacting with long-range dipolar forces. The activity on dipolar gases has been particularly vibrant in the past few years. This Perspective article summarizes the main experimental and theoretical achievements concerning supersolidity in the field of dipolar gases, like the observation of the density modulations caused by the spontaneous breaking of translational invariance, the effects of coherence and the occurrence of novel Goldstone modes. A series of important issues for the future experimental and theoretical research are outlined including, among others, the possible realization of quantized vortices inside these novel crystal structures, the role of dimensionality, the characterization of the crystal properties and the nature of the phase transitions. At the end, a brief overview on some other (mainly cold atomic) platforms, in which supersolidity has been observed or supersolidity is expected to emerge, is provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observation of the crystallization of droplets in a superfluid dipolar gas.
Fig. 2: Probing the existence of the roton mode and its softening using Bragg spectroscopy, that is, by resonantly exciting the gas cloud via a two-photon process.
Fig. 3: Breathing modes in the superfluid, supersolid and crystal phases.
Fig. 4: Density plots of vortex configurations.

Similar content being viewed by others

References

  1. Gross, E. P. Quantum theory of interacting bosons. Ann. Phys. 9, 292–324 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107 (1969).

    ADS  Google Scholar 

  3. Chester, G. V. Speculations on Bose–Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article  ADS  Google Scholar 

  4. Leggett, A. J. Can a solid be “superfluid"? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  Google Scholar 

  5. Kim, D. Y. & Chan, M. H. W. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett. 109, 155301 (2012).

    Article  ADS  Google Scholar 

  6. Balibar, S. The enigma of supersolidity. Nature 464, 176–182 (2010).

    Article  ADS  Google Scholar 

  7. Kirzhnits, D. A. & Nepomnyashchii, Y. A. Coherent crystallization of quantum liquid. Sov. Phys. JETP 32, 1191 (1971).

  8. Josserand, C., Pomeau, Y. & Rica, S. Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid. Phys. Rev. Lett. 98, 195301 (2007).

    Article  ADS  Google Scholar 

  9. Boninsegni, M. & Prokof’ev, N. V. Colloquium: supersolids: what and where are they? Rev. Mod. Phys. 84, 759–776 (2012).

    Article  ADS  Google Scholar 

  10. Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  Google Scholar 

  11. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article  ADS  Google Scholar 

  12. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article  ADS  Google Scholar 

  13. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  14. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    Google Scholar 

  15. Pomeau, Y. & Rica, S. Model of superflow with rotons. Phys. Rev. Lett. 71, 247–250 (1993).

    Article  ADS  Google Scholar 

  16. Pomeau, Y. & Rica, S. Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426–2429 (1994).

    Article  ADS  Google Scholar 

  17. Saccani, S., Moroni, S. & Boninsegni, M. Excitation spectrum of a supersolid. Phys. Rev. Lett. 108, 175301 (2012).

    Article  ADS  Google Scholar 

  18. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).

    Article  ADS  Google Scholar 

  19. Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton–maxon spectrum and stability of trapped dipolar Bose–Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003).

    Article  ADS  Google Scholar 

  20. O’Dell, D. H. J., Giovanazzi, S. & Kurizki, G. Rotons in gaseous Bose–Einstein condensates irradiated by a laser. Phys. Rev. Lett. 90, 110402 (2003).

    Article  ADS  Google Scholar 

  21. Bisset, R. N., Blakie, P. B. & Stringari, S. Static-response theory and the roton–maxon spectrum of a flattened dipolar Bose–Einstein condensate. Phys. Rev. A 100, 013620 (2019).

    Article  ADS  Google Scholar 

  22. Celli, V. & Ruvalds, J. Theory of the liquid–solid phase transition in helium II. Phys. Rev. Lett. 28, 539–542 (1972).

    Article  ADS  Google Scholar 

  23. Balibar, S. Rotons, superfluidity, and helium crystals. AIP Conf. Proc. 850, 18–25 (2006).

    Article  ADS  Google Scholar 

  24. Lee, T. D., Huang, K. & Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Schützhold, R., Uhlmann, M., Xu, Y. & Fischer, U. R. Mean-field expansion in Bose–Einstein condensates with finite-range interactions. Int. J. Mod. Phys. B 20, 3555–3565 (2006).

    Article  ADS  MATH  Google Scholar 

  26. Lima, A. R. P. & Pelster, A. Beyond mean-field low-lying excitations of dipolar Bose gases. Phys. Rev. A 86, 063609 (2012).

    Article  ADS  Google Scholar 

  27. Petrov, D. S. Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett. 115, 155302 (2015).

    Article  ADS  Google Scholar 

  28. Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 93, 061603 (2016).

    Article  ADS  Google Scholar 

  29. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    Article  ADS  Google Scholar 

  30. Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    Article  ADS  Google Scholar 

  31. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259–262 (2016).

    Article  ADS  Google Scholar 

  32. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  33. Semeghini, G. et al. Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120, 235301 (2018).

    Article  ADS  Google Scholar 

  34. Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301–304 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  35. Cheiney, P. et al. Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates. Phys. Rev. Lett. 120, 135301 (2018).

    Article  ADS  Google Scholar 

  36. Ferioli, G. et al. Collisions of self-bound quantum droplets. Phys. Rev. Lett. 122, 090401 (2019).

    Article  ADS  Google Scholar 

  37. Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Article  Google Scholar 

  38. Petter, D. et al. Probing the roton excitation spectrum of a stable dipolar Bose gas. Phys. Rev. Lett. 122, 183401 (2019).

    Article  ADS  Google Scholar 

  39. Schmidt, J.-N. et al. Roton excitations in an oblate dipolar quantum gas. Phys. Rev. Lett. 126, 193002 (2021).

    Article  ADS  Google Scholar 

  40. Roccuzzo, S. M. & Ancilotto, F. Supersolid behavior of a dipolar Bose–Einstein condensate confined in a tube. Phys. Rev. A 99, 041601 (2019).

    Article  ADS  Google Scholar 

  41. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    Article  ADS  Google Scholar 

  42. Bland, T. et al. Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett. 128, 195302 (2022).

    Article  ADS  Google Scholar 

  43. Macrì, T., Maucher, F., Cinti, F. & Pohl, T. Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition. Phys. Rev. A 87, 061602 (2013).

    Article  ADS  Google Scholar 

  44. Ancilotto, F., Rossi, M. & Toigo, F. Supersolid structure and excitation spectrum of soft-core bosons in three dimensions. Phys. Rev. A 88, 033618 (2013).

    Article  ADS  Google Scholar 

  45. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382 (2019).

    Article  ADS  Google Scholar 

  46. Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386 (2019).

    Article  ADS  Google Scholar 

  47. Mossman, S. M. Sounds of a supersolid detected in dipolar atomic gases for the first time. Nature 574, 382 (2019).

    Article  Google Scholar 

  48. Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    Article  ADS  Google Scholar 

  49. Biagioni, G. et al. Dimensional crossover in the superfluid-supersolid quantum phase transition. Phys. Rev. X 12, 021019 (2022).

    Google Scholar 

  50. Norcia, M. A. et al. Can angular oscillations probe superfluidity in dipolar supersolids? Phys. Rev. Lett. 129, 040403 (2022).

    Article  ADS  Google Scholar 

  51. Roccuzzo, S. M., Recati, A. & Stringari, S. Moment of inertia and dynamical rotational response of a supersolid dipolar gas. Phys. Rev. A 105, 023316 (2022).

    Article  ADS  Google Scholar 

  52. Roccuzzo, S. M., Gallemí, A., Recati, A. & Stringari, S. Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

    Article  ADS  Google Scholar 

  53. Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Guéry-Odelin, D. & Stringari, S. Scissors mode and superfluidity of a trapped Bose–Einstein condensed gas. Phys. Rev. Lett. 83, 4452–4455 (1999).

    Article  ADS  Google Scholar 

  55. Maragò, O. M. et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose–Einstein condensed gas. Phys. Rev. Lett. 84, 2056–2059 (2000).

    Article  ADS  Google Scholar 

  56. Ferrier-Barbut, I. et al. Scissors mode of dipolar quantum droplets of dysprosium atoms. Phys. Rev. Lett. 120, 160402 (2018).

    Article  ADS  Google Scholar 

  57. Abrikosov, A. A. Nobel lecture: type-II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975–979 (2004).

    Article  ADS  Google Scholar 

  58. Donnelly, J. R. Quantized Vortices in Helium II (Cambridge Univ. Press, 1991).

  59. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  60. Pitaevskii, L. & Stringari, S. BoseEinstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  61. Klaus, L. et al. Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18, 1453–1458 (2022).

    Article  Google Scholar 

  62. Gallemí, A., Roccuzzo, S. M., Stringari, S. & Recati, A. Quantized vortices in dipolar supersolid Bose–Einstein-condensed gases. Phys. Rev. A 102, 023322 (2020).

    Article  ADS  Google Scholar 

  63. Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of dipolar Bose–Einstein condensates. Phys. Rev. A 103, 033314 (2021).

    Article  ADS  Google Scholar 

  64. Lu, H.-Y. et al. Spatial density oscillations in trapped dipolar condensates. Phys. Rev. A 82, 023622 (2010).

    Article  ADS  Google Scholar 

  65. Roccuzzo, S. M., Stringari, S. & Recati, A. Supersolid edge and bulk phases of a dipolar quantum gas in a box. Phys. Rev. Res. 4, 013086 (2022).

    Article  Google Scholar 

  66. Zhang, Y.-C., Maucher, F. & Pohl, T. Supersolidity around a critical point in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 123, 015301 (2019).

    Article  ADS  Google Scholar 

  67. Blakie, P. B., Baillie, D., Chomaz, L. & Ferlaino, F. Supersolidity in an elongated dipolar condensate. Phys. Rev. Res. 2, 043318 (2020).

    Article  Google Scholar 

  68. Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).

    Article  ADS  Google Scholar 

  69. Sánchez-Baena, J., Politi, C., Maucher, F., Ferlaino, F. & Pohl, T. Heating a dipolar quantum fluid into a solid. Nat. Commun. 14, 1868 (2023).

    Article  Google Scholar 

  70. Ilzhöfer, P. et al. Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms. Nat. Phys. 17, 356–361 (2021).

    Article  Google Scholar 

  71. Tao, J., Zhao, M. & Spielman, I. Observation of anisotropic superfluid density in an artificial crystal. Preprint at https://doi.org/10.48550/arXiv.2301.01258 (2023).

  72. Chauveau, G. et al. Superfluid fraction in an interacting spatially modulated Bose–Einstein condensate. Phys. Rev. Lett. 130, 226003 (2023).

  73. Saslow, W. M. Microscopic and hydrodynamic theory of superfluidity in periodic solids. Phys. Rev. B 15, 173–186 (1977).

    Article  ADS  Google Scholar 

  74. Yoo, C.-D. & Dorsey, A. T. Hydrodynamic theory of supersolids: variational principle, effective Lagrangian, and density–density correlation function. Phys. Rev. B 81, 134518 (2010).

    Article  ADS  Google Scholar 

  75. Hofmann, J. & Zwerger, W. Hydrodynamics of a superfluid smectic. J. Stat. Mech. Theory Exp. 2021, 033104 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  76. Zapata, I., Sols, F. & Leggett, A. J. Josephson effect between trapped Bose–Einstein condensates. Phys. Rev. A 57, R28–R31 (1998).

    Article  ADS  Google Scholar 

  77. Trautmann, A. et al. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).

    Article  ADS  Google Scholar 

  78. Durastante, G. et al. Feshbach resonances in an erbium-dysprosium dipolar mixture. Phys. Rev. A 102, 033330 (2020).

    Article  ADS  Google Scholar 

  79. Politi, C. et al. Interspecies interactions in an ultracold dipolar mixture. Phys. Rev. A 105, 023304 (2022).

    Article  ADS  Google Scholar 

  80. Li, S., Le, U. N. & Saito, H. Long-lifetime supersolid in a two-component dipolar Bose–Einstein condensate. Phys. Rev. A 105, L061302 (2022).

    Article  ADS  Google Scholar 

  81. Bland, T. et al. Alternating-domain supersolids in binary dipolar condensates. Phys. Rev. A 106, 053322 (2022).

    Article  ADS  Google Scholar 

  82. Bombin, R., Boronat, J. & Mazzanti, F. Dipolar Bose supersolid stripes. Phys. Rev. Lett. 119, 250402 (2017).

    Article  ADS  Google Scholar 

  83. Cinti, F. & Boninsegni, M. Absence of superfluidity in 2D dipolar Bose striped crystals. J. Low Temp. Phys. 196, 413–422 (2019).

    Article  ADS  Google Scholar 

  84. Bombín, R., Mazzanti, F. & Boronat, J. Berezinskii–Kosterlitz–Thouless transition in two-dimensional dipolar stripes. Phys. Rev. A 100, 063614 (2019).

    Article  ADS  Google Scholar 

  85. Staudinger, C., Hufnagl, D., Mazzanti, F. & Zillich, R. E. Striped ultradilute liquid of dipolar bosons in two dimensions. Phys. Rev. A 108, 033303 (2023).

  86. Wenzel, M., Böttcher, F., Langen, T., Ferrier-Barbut, I. & Pfau, T. Striped states in a many-body system of tilted dipoles. Phys. Rev. A 96, 053630 (2017).

    Article  ADS  Google Scholar 

  87. Ho, T.-L. & Zhang, S. Bose–Einstein condensates with spin–orbit interaction. Phys. Rev. Lett. 107, 150403 (2011).

    Article  ADS  Google Scholar 

  88. Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012).

    Article  ADS  Google Scholar 

  89. Zhai, H. Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  90. Li, Y., Martone, G. I. & Stringari, S. in Annual Review of Cold Atoms and Molecules Vol. 3 (eds Madison, K. W. & Carr, L. D.) Ch. 5 (World Scientific, 2015).

  91. Martone, G. I. Bose–Einstein condensates with Raman-induced spin–orbit coupling: an overview. Europhys. Lett. 143, 25001 (2023).

    Article  ADS  Google Scholar 

  92. Lin, Y. J., Jiménez-García, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  ADS  Google Scholar 

  93. Li, Y., Martone, G. I., Pitaevskii, L. P. & Stringari, S. Superstripes and the excitation spectrum of a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 110, 235302 (2013).

    Article  ADS  Google Scholar 

  94. Chen, L., Pu, H., Yu, Z.-Q. & Zhang, Y. Collective excitation of a trapped Bose–Einstein condensate with spin–orbit coupling. Phys. Rev. A 95, 033616 (2017).

    Article  ADS  Google Scholar 

  95. Geier, K. T., Martone, G. I., Hauke, P. & Stringari, S. Exciting the Goldstone modes of a supersolid spin–orbit-coupled Bose gas. Phys. Rev. Lett. 127, 115301 (2021).

    Article  ADS  Google Scholar 

  96. Geier, K. T., Martone, G. I., Hauke, P., Ketterle, W. & Stringari, S. Dynamics of stripe patterns in supersolid spin–orbit-coupled Bose gases. Phys. Rev. Lett. 130, 156001 (2023).

  97. Mivehvar, F., Piazza, F., Donner, T. & Ritsch, H. Cavity QED with quantum gases: new paradigms in many-body physics. Adv. Phys. https://doi.org/10.1080/00018732.2021.1969727 (2021).

  98. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87 (2017).

    Article  ADS  Google Scholar 

  99. Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    Article  ADS  Google Scholar 

  100. Schuster, S. C., Wolf, P., Ostermann, S., Slama, S. & Zimmermann, C. Supersolid properties of a Bose–Einstein condensate in a ring resonator. Phys. Rev. Lett. 124, 143602 (2020).

    Article  ADS  Google Scholar 

  101. Guo, Y. et al. An optical lattice with sound. Nature 599, 211–215 (2021).

    Article  ADS  Google Scholar 

  102. Klinder, J., Keßler, H., Bakhtiari, M. R., Thorwart, M. & Hemmerich, A. Observation of a superradiant Mott insulator in the Dicke–Hubbard model. Phys. Rev. Lett. 115, 230403 (2015).

    Article  ADS  Google Scholar 

  103. Pitaevskii, L. P. Layered structure of superfluid helium-4 with supercritical motion. JETP Lett. 39, 511–514 (1984).

    ADS  Google Scholar 

  104. Ancilotto, F., Dalfovo, F., Pitaevskii, L. P. & Toigo, F. Density pattern in supercritical flow of liquid 4He. Phys. Rev. B 71, 104530 (2005).

    Article  ADS  Google Scholar 

  105. Baym, G. & Pethick, C. J. Landau critical velocity in weakly interacting Bose gases. Phys. Rev. A 86, 023602 (2012).

    Article  ADS  Google Scholar 

  106. Martone, G. I., Recati, A. & Pavloff, N. Supersolidity of cnoidal waves in an ultracold Bose gas. Phys. Rev. Res. 3, 013143 (2021).

    Article  Google Scholar 

  107. Korteweg, D. D. J. & de Vries, D. G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. London Edinb. Dublin Philos. Mag. J. Sci. 39, 422–443 (1895).

    Article  MathSciNet  MATH  Google Scholar 

  108. Matsuda, H. & Tsuneto, T. Off-diagonal long-range order in solids. Prog. Theor. Phys. Suppl. 46, 411–436 (1970).

  109. Kottmann, K., Haller, A., Acín, A., Astrakharchik, G. E. & Lewenstein, M. Supersolid–superfluid phase separation in the extended Bose–Hubbard model. Phys. Rev. B 104, 174514 (2021).

    Article  ADS  Google Scholar 

  110. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  111. Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).

    Article  ADS  Google Scholar 

  112. Noury, A. et al. Layering transition in superfluid helium adsorbed on a carbon nanotube mechanical resonator. Phys. Rev. Lett. 122, 165301 (2019).

    Article  ADS  Google Scholar 

  113. Choi, J., Zadorozhko, A. A., Choi, J. & Kim, E. Spatially modulated superfluid state in two-dimensional 4He films. Phys. Rev. Lett. 127, 135301 (2021).

    Article  ADS  Google Scholar 

  114. Rao, R. Seeking supersolidity in helium layers. Physics 14, s114 (2021).

    Article  Google Scholar 

  115. Radzihovsky, L. & Vishwanath, A. Quantum liquid crystals in an imbalanced fermi gas: fluctuations and fractional vortices in Larkin–Ovchinnikov states. Phys. Rev. Lett. 103, 010404 (2009).

    Article  ADS  Google Scholar 

  116. Casalbuoni, R. & Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 76, 263–320 (2004).

    Article  ADS  Google Scholar 

  117. Yang, K. Inhomogeneous superconducting state in quasi-one-dimensional systems. Phys. Rev. B 63, 140511 (2001).

    Article  ADS  Google Scholar 

  118. Orso, G. Attractive Fermi gases with unequal spin populations in highly elongated traps. Phys. Rev. Lett. 98, 070402 (2007).

    Article  ADS  Google Scholar 

  119. Liao, Y.-a et al. Spin-imbalance in a one-dimensional Fermi gas. Nature 467, 567–569 (2010).

    Article  ADS  Google Scholar 

  120. Pavarini, E. Superconductors gain momentum. Science 376, 350–351 (2022).

    Article  ADS  Google Scholar 

  121. Wosnitza, J. Spatially nonuniform superconductivity in quasi-two-dimensional organic charge-transfer salts. Crystals 8, 183 (2018).

    Article  Google Scholar 

  122. Chamel, N. & Haensel, P. Physics of neutron star crusts. Living Rev. Relativ. 11, 10 (2008).

    Article  ADS  MATH  Google Scholar 

  123. Watanabe, G. & Pethick, C. J. Superfluid density of neutrons in the inner crust of neutron stars: new life for pulsar glitch models. Phys. Rev. Lett. 119, 062701 (2017).

    Article  ADS  Google Scholar 

  124. Haskell, B. & Melatos, A. Models of pulsar glitches. Int. J. Mod. Phys. D 24, 1530008 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful and stimulating discussions and collaborations during the past few years with F. Ferlaino, A. Gallemí, K. Geier, P. Hauke, W. Ketterle, G. Martone, G. Modugno, T. Pfau, F. Piazza, S. Roccuzzo, L. Santos and L. Tarruell. We acknowledge funding from Provincia Autonoma di Trento, from the Italian Ministry of Education, Universities and Research under the PRIN2017 project CEnTraL (Protocol Number 20172H2SC4) and from Piano Nazionale di Ripresa e Resilienza Ministry of Universities and Research project PE0000023-NQSTI.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alessio Recati or Sandro Stringari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Lauriane Chomaz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recati, A., Stringari, S. Supersolidity in ultracold dipolar gases. Nat Rev Phys 5, 735–743 (2023). https://doi.org/10.1038/s42254-023-00648-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00648-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing