Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The physics of optical computing

Abstract

There has been a resurgence of interest in optical computing since the early 2010s, both in academia and in industry, with much of the excitement centred around special-purpose optical computers for neural-network processing. Optical computing has been a topic of periodic study since the 1960s, including for neural networks in the 1980s and early 1990s, and a wide variety of optical-computing schemes and architectures have been proposed. In this Perspective article, we provide a systematic explanation of why and how optics might be able to give speed or energy-efficiency benefits over electronics for computing, enumerating 11 features of optics that can be harnessed when designing an optical computer. One often-mentioned motivation for optical computing — that the speed of light is fast — is emphatically not a key differentiating physical property of optics for computing; understanding where an advantage could come from is more subtle. We discuss how gaining an advantage over state-of-the-art electronic processors will likely only be achievable by careful design that harnesses more than 1 of the 11 features, while avoiding a number of pitfalls that we describe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three features most likely to have a key role in any future optical processor that does deliver an overall advantage in latency, throughput or energy efficiency.
Fig. 2: Signal transmission in optical systems.
Fig. 3: Additional ways that optical systems are different from electrical systems.
Fig. 4: The quantum nature of light.

Similar content being viewed by others

References

  1. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article  ADS  Google Scholar 

  2. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article  ADS  Google Scholar 

  3. Greengard, S. Photonic processors light the way. Commun. ACM 64, 16–18 (2021).

    Article  Google Scholar 

  4. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article  Google Scholar 

  5. Tucker, R. S. The role of optics in computing. Nat. Photon. 4, 405 (2010).

    Article  ADS  Google Scholar 

  6. Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    Article  ADS  Google Scholar 

  7. Datta, S., Chakraborty, W. & Radosavljevic, M. Toward attojoule switching energy in logic transistors. Science 378, 733–740 (2022).

    Article  ADS  Google Scholar 

  8. Artificial intelligence and the rise of optical computing. The Economist (20 December 2022).

  9. Cartlidge, E. Photonic computing for sale. Opt. Photon. News 34, 26–33 (2023).

    Article  ADS  Google Scholar 

  10. Feinberg, B., Vengalam, U. K. R., Whitehair, N., Wang, S. & Ipek, E. Enabling scientific computing on memristive accelerators. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 367–382 (IEEE, 2018).

  11. Dubrovsky, M., Ball, M., Kiffer, L. & Penkovsky, B. Towards optical proof of work. In Cryptoeconomic Systems ‘20 Conference (2020).

  12. Pai, S. et al. Experimental evaluation of digitally verifiable photonic computing for blockchain and cryptocurrency. Optica 10, 552–560 (2023).

    Article  ADS  Google Scholar 

  13. Ambs, P. Optical computing: a 60-year adventure. Adv. Opt. Technol. 2010, 372652 (2010).

    Article  Google Scholar 

  14. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).

    Article  Google Scholar 

  15. Nakajima, M., Tanaka, K. & Hashimoto, T. Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4, 1–12 (2021).

    Article  Google Scholar 

  16. Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Scalable optical learning operator. Nat. Comput. Sci. 1, 542–549 (2021).

    Article  Google Scholar 

  17. Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article  ADS  Google Scholar 

  18. Zhou, T., Scalzo, F. & Jalali, B. Nonlinear Schrödinger kernel for hardware acceleration of machine learning. J. Lightwave Technol. 40, 1308–1319 (2022).

    Article  ADS  Google Scholar 

  19. Semenova, N., Larger, L. & Brunner, D. Understanding and mitigating noise in trained deep neural networks. Neural Netw. 146, 151–160 (2022).

    Article  Google Scholar 

  20. Huang, C. et al. Prospects and applications of photonic neural networks. Adv. Phys. X 7, 1981155 (2022).

    MathSciNet  Google Scholar 

  21. Anderson, M. G., Ma, S.-Y., Wang, T., Wright, L. G. & McMahon, P. L. Optical transformers. Preprint at https://arxiv.org/abs/2302.10360 (2023).

  22. Leiserson, C. E. et al. There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science 368, eaam9744 (2020).

    Article  Google Scholar 

  23. Horowitz, M. Computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 10–14 (IEEE, 2014).

  24. Xu, X. et al. Scaling for edge inference of deep neural networks. Nat. Electron. 1, 216–222 (2018).

    Article  Google Scholar 

  25. Kaplan, J. et al. Scaling laws for neural language models. Preprint at https://arxiv.org/abs/2001.08361 (2020).

  26. Zhai, X., Kolesnikov, A., Houlsby, N. & Beyer, L. Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12104–12113 (IEEE, 2022).

  27. Samsung unveils isocell image sensor with industry’s smallest 0.56 μm pixel. https://news.samsung.com/global/samsung-unveils-isocell-image-sensor-with-industrys-smallest-0-56%CE%BCm-pixel (2022).

  28. Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019).

    Article  Google Scholar 

  29. Chen, X., Li, C. & Tsang, H. K. Device engineering for silicon photonics. NPG Asia Mater. 3, 34–40 (2011).

    Article  Google Scholar 

  30. Borghi, M., Castellan, C., Signorini, S., Trenti, A. & Pavesi, L. Nonlinear silicon photonics. J. Opt. 19, 093002 (2017).

    Article  ADS  Google Scholar 

  31. Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).

    Article  Google Scholar 

  32. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  33. Chen, R. et al. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. ACS Photon. 9, 3181–3195 (2022).

    Article  Google Scholar 

  34. Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photon. 16, 834–842 (2022).

    Article  ADS  Google Scholar 

  35. Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article  ADS  Google Scholar 

  36. Chen, Y., Xie, Y., Song, L., Chen, F. & Tang, T. A survey of accelerator architectures for deep neural networks. Engineering 6, 264–274 (2020).

    Article  Google Scholar 

  37. Yu, S., Jiang, H., Huang, S., Peng, X. & Lu, A. Compute-in-memory chips for deep learning: recent trends and prospects. IEEE Circuits Syst. Mag. 21, 31–56 (2021).

    Article  Google Scholar 

  38. Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article  ADS  Google Scholar 

  39. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article  ADS  Google Scholar 

  40. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  41. Ohno, S., Tang, R., Toprasertpong, K., Takagi, S. & Takenaka, M. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photon. 9, 2614–2622 (2022).

    Article  Google Scholar 

  42. Hooker, S. The hardware lottery. Commun. ACM 64, 58–65 (2021).

    Article  Google Scholar 

  43. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    Article  ADS  Google Scholar 

  44. Hoefler, T., Häner, T. & Troyer, M. Disentangling hype from practicality: on realistically achieving quantum advantage. Commun. ACM 66, 82–87 (2023).

    Article  Google Scholar 

  45. NVIDIA Hopper architecture in-depth. https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ (2022).

  46. Deal, W., Leong, K., Yoshida, W., Zamora, A. & Mei, X. InP HEMT integrated circuits operating above 1,000 GHz. In 2016 IEEE International Electron Devices Meeting (IEDM), 29-1 (IEEE, 2016).

  47. Thome, F. & Leuther, A. First demonstration of distributed amplifier MMICs with more than 300-GHz bandwidth. IEEE J. Solid-State Circuits 56, 2647–2655 (2021).

    Article  ADS  Google Scholar 

  48. Ho, R., Mai, K. W. & Horowitz, M. A. The future of wires. Proc. IEEE 89, 490–504 (2001).

    Article  Google Scholar 

  49. Rabaey, J. M., Chandrakasan, A. & Nikolic, B. Digital Integrated Circuits: A Design Perspective 2nd edn (Pearson, 2002).

  50. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  Google Scholar 

  51. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  52. Hennessy, J. L. & Patterson, D. A. Computer architecture: a quantitative approach. in The Morgan Kaufmann Series in Computer Architecture and Design 6th edn (Morgan Kaufmann, 2017).

  53. Sicard, E. & Trojman, L. Introducing 5-nm FinFET technology in Microwind. https://hal.archives-ouvertes.fr/hal-03254444 (2021).

  54. Xie, Q. et al. Performance comparisons between 7-nm FinFET and conventional bulk CMOS standard cell libraries. IEEE Trans. Circuits Syst. II Express Briefs 62, 761–765 (2015).

    Google Scholar 

  55. Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).

    Article  ADS  Google Scholar 

  56. Kahn, J. M. & Miller, D. A. Communications expands its space. Nat. Photon. 11, 5–8 (2017).

    Article  ADS  Google Scholar 

  57. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  58. Khaddam-Aljameh, R. et al. HERMES-core — a 1.59-tops/mm2 PCM on 14-nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE J. Solid-State Circuits 57, 1027–1038 (2022).

    Article  ADS  Google Scholar 

  59. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  60. Majumdar, A. et al. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation. Phys. Rev. B 86, 195312 (2012).

    Article  ADS  Google Scholar 

  61. Da Dalt, N., Knopf, C., Burian, M., Hartig, T. & Eul, H. A 10b 10GHz digitally controlled LC oscillator in 65nm CMOS. In 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers, 669–678 (IEEE, 2006).

  62. Psaltis, D., Brady, D., Gu, X.-G. & Lin, S. Holography in artificial neural networks. Nature 343, 325–330 (1990).

    Article  ADS  Google Scholar 

  63. Sell, B. et al. Intel 4 CMOS technology featuring advanced FinFET transistors optimized for high density and high-performance computing. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 282–283 (IEEE, 2022).

  64. Li, H.-Y. S., Qiao, Y. & Psaltis, D. Optical network for real-time face recognition. Appl. Opt. 32, 5026–5035 (1993).

    Article  ADS  Google Scholar 

  65. Goda, A. 3-D NAND technology achievements and future scaling perspectives. IEEE Trans. Electron Dev. 67, 1373–1381 (2020).

    Article  ADS  Google Scholar 

  66. Dally, W. J. The future of high-performance computing: are neuromorphic systems the answer? https://www.youtube.com/watch?v=lH3wKXZK9Zc (2022).

  67. Neff, J. A., Athale, R. A. & Lee, S. H. Two-dimensional spatial light modulators: a tutorial. Proc. IEEE 78, 826–855 (1990).

    Article  Google Scholar 

  68. Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

    Article  ADS  Google Scholar 

  69. Mait, J. N., Euliss, G. W. & Athale, R. A. Computational imaging. Adv. Opt. Photon. 10, 409–483 (2018).

    Article  Google Scholar 

  70. Colburn, S., Chu, Y., Shilzerman, E. & Majumdar, A. Optical frontend for a convolutional neural network. Appl. Opt. 58, 3179–3186 (2019).

    Article  ADS  Google Scholar 

  71. Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).

    Article  ADS  Google Scholar 

  72. Goodman, J. Introduction to Fourier Optics (Roberts and Company Publishers, 2004).

  73. Saade, A. et al. Random projections through multiple optical scattering: approximating kernels at the speed of light. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6215–6219 (IEEE, 2016).

  74. Lent, C. S., Orlov, A. O., Porod, W. & Snider, G. L. (eds) Energy Limits in Computation 1st edn (Springer International Publishing, 2018).

  75. Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).

    Google Scholar 

  76. Boyd, R. W. Nonlinear Optics (Academic Press, 2020).

  77. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  78. Kia, B., Lindner, J. F. & Ditto, W. L. Nonlinear dynamics as an engine of computation. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 375, 20160222 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  79. Miller, D. A. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017).

    Article  ADS  Google Scholar 

  80. Jose, A. P., Patounakis, G. & Shepard, K. L. Pulsed current-mode signaling for nearly speed-of-light intrachip communication. IEEE J. Solid-State Circuits 41, 772–780 (2006).

    Article  ADS  Google Scholar 

  81. Tyndall, N. F. et al. A low-loss, broadband, nitride-only photonic integrated circuit platform. In Quantum 2.0, QTu4B-5 (Optica Publishing Group, 2022).

  82. Cheng, Q., Glick, M. & Bergman, K. Optical interconnection networks for high-performance systems. In Optical Fiber Telecommunications VII, 785–825 (Elsevier, 2020).

  83. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article  ADS  Google Scholar 

  84. Fillion-Gourdeau, F. & Gagnon, J.-S. On the physical (im)possibility of lightsabers. Eur. J. Phys. 40, 055201 (2019).

    Article  MATH  Google Scholar 

  85. Duan, C., LaMeres, B. J. & Khatri, S. P. On and Off-Chip Crosstalk Avoidance in VLSI Design (Springer, 2010).

  86. Lee, J. N. Design Issues in Optical Processing (Cambridge Univ. Press, 1995).

  87. Nassif, N. et al. Sapphire rapids: the next-generation intel xeon scalable processor. In 2022 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65, 44–46 (IEEE, 2022).

  88. Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

    Article  ADS  Google Scholar 

  89. Goodman, J. W. Fan-in and fan-out with optical interconnections. Optica Acta Int. J. Opt. 32, 1489–1496 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  90. McArdle, N., Naruse, M., Toyoda, H., Kobayashi, Y. & Ishikawa, M. Reconfigurable optical interconnections for parallel computing. Proc. IEEE 88, 829–837 (2000).

    Article  Google Scholar 

  91. Wang, T. & Arrathoon, R. Limits of optical and electrical fan-out versus power and fan-out versus bandwidth. In Hybrid Image and Signal Processing II Vol. 1297, 133–149 (SPIE, 1990).

  92. Ji, L. & Heuring, V. P. Impact of gate fan-in and fan-out limits on optoelectronic digital circuits. Appl. Opt. 36, 3927–3940 (1997).

    Article  ADS  Google Scholar 

  93. Chen, J., Clark, L. & Cao, Y. Maximum fan-in/out: ultra-low voltage circuit design in the presence of variations. IEEE Circ. Dev. Mag. 21, 12–20 (2006).

    Article  Google Scholar 

  94. de Groot, P. J. & Noll, R. J. Adaptive neural network in a hybrid optical/electronic architecture using lateral inhibition. Appl. Opt. 28, 3852–3859 (1989).

    Article  ADS  Google Scholar 

  95. Bernstein, L. et al. Single-shot optical neural network. Sci. Adv. 9, eadg7904 (2023).

    Article  Google Scholar 

  96. Yao, R. et al. Compact and low-insertion-loss 1×N power splitter in silicon photonics. J. Lightwave Technol. 39, 6253–6259 (2021).

    Article  ADS  Google Scholar 

  97. Xu, X. et al. 11 Tops photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  98. Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

    Article  ADS  Google Scholar 

  99. Murmann, B., Bankman, D., Chai, E., Miyashita, D. & Yang, L. Mixed-signal circuits for embedded machine-learning applications. In 2015 49th Asilomar Conference on Signals, Systems and Computers, 1341–1345 (IEEE, 2015).

  100. DeBenedictis, E. P. Computational complexity and new computing approaches. Computer 49, 76–79 (2016).

    Google Scholar 

  101. Shi, L., Zheng, G., Tian, B., Dkhil, B. & Duan, C. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2, 1811–1827 (2020).

    Article  ADS  Google Scholar 

  102. Aluf, O. Optoisolation Circuits: Nonlinear Applications in Engineering (World Scientific, 2012).

  103. Vadlamani, S. K., Xiao, T. P. & Yablonovitch, E. Physics successfully implements Lagrange multiplier optimization. Proc. Natl Acad. Sci. USA 117, 26639–26650 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  104. E, W. & Yu, B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Feynman, R. P. QED: The Strange Theory of Light and Matter (Princeton Univ. Press, 2006).

  106. Wen, K. Injection-locked Laser Network for Solving NP-Complete Problems. PhD thesis, Stanford Univ. (2012).

  107. Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    Article  ADS  Google Scholar 

  108. Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).

    Article  ADS  Google Scholar 

  109. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  110. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  111. Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Philos. Trans. Royal Soc. Lond. A Math. Phys. Eng. Sci. 361, 1655–1674 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  112. Pearson, B. J. & Jackson, D. P. A hands-on introduction to single photons and quantum mechanics for undergraduates. Am. J. Phys. 78, 471–484 (2010).

    Article  ADS  Google Scholar 

  113. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  114. Duprez, H. et al. Macroscopic electron quantum coherence in a solid-state circuit. Phys. Rev. X 9, 021030 (2019).

    Google Scholar 

  115. Lee, T. H. The Design of CMOS Radio-frequency Integrated Circuits (Cambridge Univ. Press, 2003).

  116. Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics: Publisher’s note. Optica 6, 410 (2019).

    Article  ADS  Google Scholar 

  117. Dwivedi, S. et al. Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers. J. Lightwave Technol. 33, 4471–4477 (2015).

    Article  ADS  Google Scholar 

  118. Rabaey, J. M., Chandrakasan, A. & Nikolic, B. Digital Integrated Circuits: A Design Perspective 2nd edn, Ch. 4 (Pearson, 2002).

  119. Bremermann, H. J. Quantum noise and information. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4, 15–20 (1967).

  120. Kao, Y.-C., Chen, H.-A. & Ma, H.-P. An FPGA-based high-frequency trading system for 10 gigabit ethernet with a latency of 433 ns. In 2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) 1–4 (IEEE, 2022).

  121. Pope, R. et al. Efficiently scaling transformer inference. In Proc. of Machine Learning and Systems (MLSys, 2023).

  122. Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and integrated optical memories: a survey. Light Sci. Appl. 9, 1–16 (2020).

    Article  Google Scholar 

  123. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article  ADS  Google Scholar 

  124. Rodrigues, S. P. et al. Weighing in on photonic-based machine learning for automotive mobility. Nat. Photon. 15, 66–67 (2021).

    Article  ADS  Google Scholar 

  125. Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 1–10 (2018).

    Article  Google Scholar 

  126. Minzioni, P. et al. Roadmap on all-optical processing. J. Opt. 21, 063001 (2019).

    Article  ADS  Google Scholar 

  127. Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

    Article  Google Scholar 

  128. Chen, Y. et al. Photonic unsupervised learning processor for secure and high-throughput optical fiber communication. Preprint at https://arxiv.org/abs/2203.03807 (2022).

  129. Ghobadi, M. Emerging optical interconnects for AI systems. In 2022 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2022).

  130. Williamson, I. A. et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–12 (2019).

    Article  Google Scholar 

  131. Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    Article  ADS  Google Scholar 

  132. Dinc, N. U., Psaltis, D. & Brunner, D. Optical neural networks: the 3D connection. Photoniques 104, 34–38 (2020).

    Article  ADS  Google Scholar 

  133. Boahen, K. Dendrocentric learning for synthetic intelligence. Nature 612, 43–50 (2022).

    Article  ADS  Google Scholar 

  134. Morris, R., Kodi, A. K. & Louri, A. Dynamic reconfiguration of 3d photonic networks-on-chip for maximizing performance and improving fault tolerance. In 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, 282–293 (IEEE, 2012).

  135. Moughames, J. et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica 7, 640–646 (2020).

    Article  ADS  Google Scholar 

  136. Tait, A. N. Quantifying power in silicon photonic neural networks. Phys. Rev. Appl. 17, 054029 (2022).

    Article  ADS  Google Scholar 

  137. Ramey, C. Silicon photonics for artificial intelligence acceleration: Hotchips 32. In IEEE Hot Chips 32 Symposium, 1–26 (IEEE, 2020).

  138. Zhang, Y. et al. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett. 118, 210501 (2021).

    Article  ADS  Google Scholar 

  139. Martin-Monier, L. et al. Endurance of chalcogenide optical phase change materials: a review. Opt. Mater. Express 12, 2145–2167 (2022).

    Article  ADS  Google Scholar 

  140. Hamerly, R., Bandyopadhyay, S. & Englund, D. Asymptotically fault-tolerant programmable photonics. Nat. Commun. 13, 6831 (2022).

    Article  ADS  Google Scholar 

  141. Mabuchi, H. Nonlinear interferometry approach to photonic sequential logic. Appl. Phys. Lett. 99, 153103 (2011).

    Article  ADS  Google Scholar 

  142. Kerckhoff, J., Armen, M. A. & Mabuchi, H. Remnants of semiclassical bistability in the few-photon regime of cavity QED. Opt. Expr. 19, 24468–24482 (2011).

    Article  ADS  Google Scholar 

  143. Tezak, N. & Mabuchi, H. A coherent perceptron for all-optical learning. EPJ Quant. Technol. 2, 1–22 (2015).

    Google Scholar 

  144. Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017).

    Article  ADS  Google Scholar 

  145. Ma, S.-Y., Wang, T., Laydevant, J., Wright, L. G. & McMahon, P. L. Quantum-noise-limited optical neural networks operating at a few quanta per activation. Preprint at https://arxiv.org/abs/2307.15712 (2023).

  146. Johnson, A. R. et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117–5120 (2015).

    Article  ADS  Google Scholar 

  147. Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics lidar. Nature 603, 253–258 (2022).

    Article  ADS  Google Scholar 

  148. Stallings, W. Data and Computer Communications 8th edn (Pearson, 2007).

  149. Kleveland, B. et al. High-frequency characterization of on-chip digital interconnects. IEEE J. Solid-State Circuits 37, 716–725 (2002).

    Article  ADS  Google Scholar 

  150. Qaxial. RG142B/U Flexible PTFE High Power Coaxial Cable Datasheet (2022).

  151. Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Expr. 19, 24090–24101 (2011).

    Article  ADS  Google Scholar 

  152. Schubert, E. F. Light-Emitting Diodes 2nd edn (Cambridge Univ. Press, 2012).

  153. Corning. SMF-28 ULL Optical Fiber Portfolio Product Information (2021).

  154. Miller, D. A. B. & Ozaktas, H. M. Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture. J. Parallel Distrib. Comput. 41, 42–52 (1997).

    Article  Google Scholar 

  155. Huang, D., Sze, T., Landin, A., Lytel, R. & Davidson, H. L. Optical interconnects: out of the box forever? IEEE J. Sel. Top. Quantum Electron. 9, 614–623 (2003).

    Article  ADS  Google Scholar 

  156. Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photon. 7, 081301 (2022).

    Article  ADS  Google Scholar 

  157. Johnson, M., Thompson, M. G. & Sahin, D. Low-loss, low-crosstalk waveguide crossing for scalable integrated silicon photonics applications. Opt. Expr. 28, 12498–12507 (2020).

    Article  ADS  Google Scholar 

  158. Stepanovsky, M. A comparative review of MEMS-based optical cross-connects for all-optical networks from the past to the present day. IEEE Commun. Surv. Tutor. 21, 2928–2946 (2019).

    Article  Google Scholar 

  159. Barredo, D., Lienhard, V., De Leseleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    Article  ADS  Google Scholar 

  160. Wayne, M. et al. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for film and phasor imaging applications. IEEE Trans. Electron Devices 69, 2865–2872 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges many helpful conversations with co-workers including D. Brunner, R. Hamerly, H. Mabuchi, A. Majumdar, A. Marandi, E. Ng, T. Onodera, T. Wang, L. Wright and Y. Yamamoto; these conversations over several years have shaped his understanding of optical computing. The author also gratefully acknowledges S. Agarwal for explanations about analog-electronic crossbars and B. Govind for discussions about electrical interconnects. The author thanks M. Anderson, T. Wang and F. Wu for providing detailed feedback on a draft of this manuscript. This work has been financially supported in part by the National Science Foundation (Award CCF-1918549), NTT Research and a David and Lucile Packard Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. McMahon.

Ethics declarations

Competing interests

The author is listed as an inventor on several U.S. provisional patent applications relating to optical computing (63/149,974; 63/178,318; 63/392,042).

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMahon, P.L. The physics of optical computing. Nat Rev Phys 5, 717–734 (2023). https://doi.org/10.1038/s42254-023-00645-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00645-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing