Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of bound states in the continuum in photonics

Abstract

Bound states in the continuum (BICs) have attracted attention in photonics owing to their interesting properties. For example, BICs can effectively confine light in a counterintuitive way, and the far-field radiation of photonic structures that exhibit BICs has fascinating topological characteristics. Early research into photonic BICs was primarily focused on designing artificial structures to produce BICs. However, since the mid-2010s, exploring the potential applications of BICs has been a growing trend in research. In this Review, we detail the unique properties of BICs, including the ability to achieve enhanced light confinement, sharp Fano resonances and topological characteristics. We explore phenomena derived from BICs, including the generation of circularly polarized states and unidirectional guided resonances, and the impact of BICs on various applications such as lasing, nonlinear frequency conversion, waveguiding, sensing and wavefront control. We also discuss the insights provided by BICs in several emerging research frontiers, such as parity–time symmetric systems, higher-order topology, exciton–photon coupling and moiré superlattices.

Key points

  • Photonics provides a versatile platform to study and exploit the properties of bound states in the continuum (BICs), leading to a wide range of applications.

  • The ability of BICs to achieve highly efficient light confinement leads to the coherent field enhancement of both electric and magnetic fields, which can improve lasing performance, nonlinear conversion efficiency and waveguiding in photonic integrated circuits.

  • Light scattered by photonic structures exhibiting BICs manifests the features of Fano resonances, leading to advanced functionalities in refractometric sensing and the identification of molecular fingerprints.

  • BICs are characterized as topological polarization vortices in far-field radiation, in which the geometric phases in momentum space can be used to manipulate light, giving rise to polarization conversion, vortex beam generation and beam shifts.

  • BICs have been integrated to explore several emerging frontiers, including parity–time-symmetric systems, higher-order topology, exciton–photon coupling and moiré superlattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lasing boosted by the field confinement of BICs.
Fig. 2: Enhanced nonlinear effects and protected waveguiding with BICs.
Fig. 3: The sensing benefits of Fano resonances of quasi-BICs.
Fig. 4: Manipulating topological charges.
Fig. 5: Applications of polarization vortices.
Fig. 6: Emerging research areas.

Similar content being viewed by others

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Google Scholar 

  2. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS  MathSciNet  Google Scholar 

  3. Gorodetsky, M. L., Savchenkov, A. A. & Ilchenko, V. S. Ultimate Q of optical microsphere resonators. Opt. Lett. 21, 453–455 (1996).

    ADS  Google Scholar 

  4. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Google Scholar 

  5. von Neumann, J. & Wigner, E. P. Über merkwürdige diskrete eigenwerte. Phys. Z. 30, 465–467 (1929).

    MATH  Google Scholar 

  6. Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231–3242 (1985).

    ADS  Google Scholar 

  7. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Google Scholar 

  8. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljacic, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    ADS  Google Scholar 

  9. Koshelev, K. L., Sadrieva, Z. F., Shcherbakov, A. A., Kivshar, Y. S. & Bogdanov, A. A. Bound states in the continuum in photonic structures. Phys. Usp. 66, 494–517 (2023).

    ADS  Google Scholar 

  10. Silveirinha, M. G. Trapping light in open plasmonic nanostructures. Phys. Rev. A 89, 023813 (2014).

    ADS  Google Scholar 

  11. Monticone, F. & Alù, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014).

    ADS  Google Scholar 

  12. Lannebere, S. & Silveirinha, M. G. Optical meta-atom for localization of light with quantized energy. Nat. Commun. 6, 8766 (2015).

    ADS  Google Scholar 

  13. Liberal, I. & Engheta, N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Sci. Adv. 2, e1600987 (2016).

    ADS  Google Scholar 

  14. Monticone, F., Doeleman, H. M., Den Hollander, W., Koenderink, A. F. & Alù, A. Trapping light in plain sight: embedded photonic eigenstates in zero‐index metamaterials. Laser Photonics Rev. 12, 1700220 (2018).

    ADS  Google Scholar 

  15. Zhou, Q. et al. Geometry symmetry-free and higher-order optical bound states in the continuum. Nat. Commun. 12, 4390 (2021).

    ADS  Google Scholar 

  16. Paddon, P. & Young, J. F. Two-dimensional vector-coupled-mode theory for textured planar waveguides. Phys. Rev. B 61, 2090–2101 (2000).

    ADS  Google Scholar 

  17. Pacradouni, V. et al. Photonic band structure of dielectric membranes periodically textured in two dimensions. Phys. Rev. B 62, 4204–4207 (2000).

    ADS  Google Scholar 

  18. Ochiai, T. & Sakoda, K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys. Rev. B 63, 125107 (2001).

    ADS  Google Scholar 

  19. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    ADS  Google Scholar 

  20. Lee, J. et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012).

    ADS  Google Scholar 

  21. Kang, M., Zhang, S., Xiao, M. & Xu, H. Merging bound states in the continuum at off-high symmetry points. Phys. Rev. Lett. 126, 117402 (2021).

    ADS  Google Scholar 

  22. Yang, Y., Peng, C., Liang, Y., Li, Z. & Noda, S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 113, 037401 (2014).

    ADS  Google Scholar 

  23. Ni, L., Wang, Z., Peng, C. & Li, Z. Tunable optical bound states in the continuum beyond in-plane symmetry protection. Phys. Rev. B 94, 245148 (2016).

    ADS  Google Scholar 

  24. Gao, X. et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. Sci. Rep. 6, 31908 (2016).

    ADS  Google Scholar 

  25. Hu, P. et al. Global phase diagram of bound states in the continuum. Optica 9, 1353–1361 (2022).

    ADS  Google Scholar 

  26. Chen, W., Chen, Y. & Liu, W. Singularities and Poincaré indices of electromagnetic multipoles. Phys. Rev. Lett. 122, 153907 (2019).

    ADS  Google Scholar 

  27. Sadrieva, Z., Frizyuk, K., Petrov, M., Kivshar, Y. & Bogdanov, A. Multipolar origin of bound states in the continuum. Phys. Rev. B 100, 115303 (2019).

    ADS  Google Scholar 

  28. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    ADS  Google Scholar 

  29. Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 64, 836–842 (2019).

    Google Scholar 

  30. Koshelev, K., Favraud, G., Bogdanov, A., Kivshar, Y. & Fratalocchi, A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 8, 725–745 (2019).

    Google Scholar 

  31. Azzam, S. I. & Kildishev, A. V. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater. 9, 2001469 (2021).

    Google Scholar 

  32. Liu, W., Liu, W., Shi, L. & Kivshar, Y. Topological polarization singularities in metaphotonics. Nanophotonics 10, 1469–1486 (2021).

    Google Scholar 

  33. Wang, F. et al. Fundamentals and applications of topological polarization singularities. Front. Phys. 10, 862962 (2022).

    Google Scholar 

  34. Hwang, M.-S., Jeong, K.-Y., So, J.-P., Kim, K.-H. & Park, H.-G. Nanophotonic nonlinear and laser devices exploiting bound states in the continuum. Commun. Phys. 5, 106 (2022).

    Google Scholar 

  35. Dong, Z. et al. Nanoscale mapping of optically inaccessible bound-states-in-the-continuum. Light Sci. Appl. 11, 20 (2022).

    ADS  Google Scholar 

  36. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    ADS  Google Scholar 

  37. Weimann, S. et al. Compact surface Fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett. 111, 240403 (2013).

    ADS  Google Scholar 

  38. Dreisow, F. et al. Adiabatic transfer of light via a continuum in optical waveguides. Opt. Lett. 34, 2405–2407 (2009).

    ADS  Google Scholar 

  39. Longhi, S. Rabi oscillations of bound states in the continuum. Opt. Lett. 46, 2091–2094 (2021).

    ADS  Google Scholar 

  40. Longhi, S. Dispersive bands of bound states in the continuum. Nanophotonics 10, 4241–4249 (2021).

    Google Scholar 

  41. Gomis-Bresco, J., Artigas, D. & Torner, L. Anisotropy-induced photonic bound states in the continuum. Nat. Photon. 11, 232–236 (2017).

    ADS  Google Scholar 

  42. Mukherjee, S., Gomis-Bresco, J., Pujol-Closa, P., Artigas, D. & Torner, L. Topological properties of bound states in the continuum in geometries with broken anisotropy symmetry. Phys. Rev. A 98, 063826 (2018).

    ADS  Google Scholar 

  43. Pankin, P. S. et al. One-dimensional photonic bound states in the continuum. Commun. Phys. 3, 91 (2020).

    Google Scholar 

  44. Nabol, S. V., Pankin, P. S., Maksimov, D. N. & Timofeev, I. V. Fabry–Perot bound states in the continuum in an anisotropic photonic crystal. Phys. Rev. B 106, 245403 (2022).

    ADS  Google Scholar 

  45. Corrielli, G., Della Valle, G., Crespi, A., Osellame, R. & Longhi, S. Observation of surface states with algebraic localization. Phys. Rev. Lett. 111, 220403 (2013).

    ADS  Google Scholar 

  46. Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012).

    ADS  Google Scholar 

  47. Vaidya, S., Benalcazar, W. A., Cerjan, A. & Rechtsman, M. C. Point-defect-localized bound states in the continuum in photonic crystals and structured fibers. Phys. Rev. Lett. 127, 023605 (2021).

    ADS  Google Scholar 

  48. Kim, S., Kim, K. H., Hill, D. J., Park, H. G. & Cahoon, J. F. Mie-coupled bound guided states in nanowire geometric superlattices. Nat. Commun. 9, 2781 (2018).

    ADS  Google Scholar 

  49. Kim, S., Kim, K.-H. & Cahoon, J. F. Optical bound states in the continuum with nanowire geometric superlattices. Phys. Rev. Lett. 122, 187402 (2019).

    ADS  Google Scholar 

  50. Gao, X. W., Zhen, B., Soljacic, M., Chen, H. S. & Hsu, C. W. Bound states in the continuum in fiber Bragg gratings. ACS Photonics 6, 2996–3002 (2019).

    Google Scholar 

  51. Suh, W., Yanik, M. F., Solgaard, O. & Fan, S. Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs. Appl. Phys. Lett. 82, 1999–2001 (2003).

    ADS  Google Scholar 

  52. Suh, W., Solgaard, O. & Fan, S. Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs. J. Appl. Phys. 98, 033102 (2005).

    ADS  Google Scholar 

  53. Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).

    ADS  Google Scholar 

  54. Liu, V., Povinelli, M. & Fan, S. Resonance-enhanced optical forces between coupled photonic crystal slabs. Opt. Express 17, 21897–21909 (2009).

    ADS  Google Scholar 

  55. Fitzgerald, J. M., Manjeshwar, S. K., Wieczorek, W. & Tassin, P. Cavity optomechanics with photonic bound states in the continuum. Phys. Rev. Res. 3, 013131 (2021).

    Google Scholar 

  56. Hsu, C. W. et al. Bloch surface eigenstates within the radiation continuum. Light Sci. Appl. 2, e84 (2013).

    Google Scholar 

  57. Cerjan, A., Hsu, C. W. & Rechtsman, M. C. Bound states in the continuum through environmental design. Phys. Rev. Lett. 123, 023902 (2019).

    ADS  Google Scholar 

  58. Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, eabk1117 (2021).

    ADS  Google Scholar 

  59. Hu, P. et al. Bound states in the continuum based on the total internal reflection of Bloch waves. Natl Sci. Rev. 10, nwac043 (2023).

    ADS  Google Scholar 

  60. Azzam, S. I., Shalaev, V. M., Boltasseva, A. & Kildishev, A. V. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett. 121, 253901 (2018).

    ADS  Google Scholar 

  61. Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

    ADS  Google Scholar 

  62. Kuhner, L. et al. Radial bound states in the continuum for polarization-invariant nanophotonics. Nat. Commun. 13, 4992 (2022).

    ADS  Google Scholar 

  63. Yu, Y. et al. Ultra-coherent Fano laser based on a bound state in the continuum. Nat. Photon. 15, 758–764 (2021).

    ADS  Google Scholar 

  64. Ge, X., Minkov, M., Fan, S., Li, X. & Zhou, W. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling. Appl. Phys. Lett. 112, 141105 (2018).

    ADS  Google Scholar 

  65. Chen, Z. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull. 67, 359–366 (2022).

    Google Scholar 

  66. Seok, T. J. et al. Radiation engineering of optical antennas for maximum field enhancement. Nano Lett. 11, 2606–2610 (2011).

    ADS  Google Scholar 

  67. Koshelev, K. et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019).

    Google Scholar 

  68. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    ADS  Google Scholar 

  69. Hwang, M.-S. et al. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 12, 4135 (2021).

    ADS  Google Scholar 

  70. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    ADS  Google Scholar 

  71. Mylnikov, V. et al. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano 14, 7338–7346 (2020).

    Google Scholar 

  72. Zhang, X., Liu, Y., Han, J., Kivshar, Y. & Song, Q. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022).

    ADS  Google Scholar 

  73. Ren, Y. et al. Low-threshold nanolasers based on miniaturized bound states in the continuum. Sci. Adv. 8, eade8817 (2022).

    Google Scholar 

  74. Sang, Y. G. et al. Topological polarization singular lasing with highly efficient radiation channel. Nat. Commun. 13, 6485 (2022).

    ADS  Google Scholar 

  75. Carletti, L., Koshelev, K., De Angelis, C. & Kivshar, Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett. 121, 033903 (2018).

    ADS  Google Scholar 

  76. Liu, Z. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    ADS  Google Scholar 

  77. Minkov, M., Gerace, D. & Fan, S. Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum. Optica 6, 1039–1045 (2019).

    ADS  Google Scholar 

  78. Carletti, L., Kruk, S. S., Bogdanov, A. A., De Angelis, C. & Kivshar, Y. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys. Rev. Res. 1, 023016 (2019).

    Google Scholar 

  79. Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    ADS  Google Scholar 

  80. Anthur, A. P. et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett. 20, 8745–8751 (2020).

    ADS  Google Scholar 

  81. Wang, J. et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica 7, 1126–1132 (2020).

    ADS  Google Scholar 

  82. Panmai, M. et al. Highly efficient nonlinear optical emission from a subwavelength crystalline silicon cuboid mediated by supercavity mode. Nat. Commun. 13, 2749 (2022).

    ADS  Google Scholar 

  83. Zograf, G. et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics 9, 567–574 (2022).

    Google Scholar 

  84. Santiago-Cruz, T. et al. Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022).

    ADS  Google Scholar 

  85. Minkov, M., Williamson, I. A. D., Xiao, M. & Fan, S. Zero-index bound states in the continuum. Phys. Rev. Lett. 121, 263901 (2018).

    ADS  Google Scholar 

  86. Dong, T. et al. Ultra-low-loss on-chip zero-index materials. Light Sci. Appl. 10, 10 (2021).

    ADS  Google Scholar 

  87. Tang, H. et al. Low-loss zero-index materials. Nano Lett. 21, 914–920 (2021).

    ADS  Google Scholar 

  88. Zou, C.-L. et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev. 9, 114–119 (2015).

    ADS  Google Scholar 

  89. Lin, Y., Feng, T., Lan, S., Liu, J. & Xu, Y. On-chip diffraction-free beam guiding beyond the light cone. Phys. Rev. Appl. 13, 064032 (2020).

    ADS  Google Scholar 

  90. Yu, Z. J. et al. Photonic integrated circuits with bound states in the continuum. Optica 6, 1342–1348 (2019).

    ADS  Google Scholar 

  91. Yu, Z., Tong, Y., Tsang, H. K. & Sun, X. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun. 11, 2602 (2020).

    ADS  Google Scholar 

  92. Yu, Z. & Sun, X. Acousto-optic modulation of photonic bound state in the continuum. Light Sci. Appl. 9, 1 (2020).

    ADS  Google Scholar 

  93. Yu, Z. et al. Hybrid 2D-material photonics with bound states in the continuum. Adv. Opt. Mater. 7, 1901306 (2019).

    Google Scholar 

  94. Yu, Y., Yu, Z., Wang, L. & Sun, X. Ultralow‐loss etchless lithium niobate integrated photonics at near‐visible wavelengths. Adv. Opt. Mater. 9, 2100060 (2021).

    Google Scholar 

  95. Ye, F., Yu, Y., Xi, X. & Sun, X. Second‐harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photonics Rev. 16, 2100429 (2022).

    ADS  Google Scholar 

  96. Li, X. et al. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides. Light Sci. Appl. 11, 317 (2022).

    ADS  Google Scholar 

  97. Benea-Chelmus, I. C. et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 13, 3170 (2022).

    ADS  Google Scholar 

  98. Ishizaki, K., De Zoysa, M. & Noda, S. Progress in photonic-crystal surface-emitting lasers. Photonics 6, 96 (2019).

    Google Scholar 

  99. Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019).

    ADS  Google Scholar 

  100. Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    ADS  Google Scholar 

  101. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    ADS  Google Scholar 

  102. Zhou, M. et al. Increasing the Q-contrast in large photonic crystal slab resonators using bound-states-in-continuum. ACS photonics 10, 1519–1528 (2023).

    Google Scholar 

  103. Gorkunov, M. V., Antonov, A. A. & Kivshar, Y. S. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett. 125, 093903 (2020).

    ADS  Google Scholar 

  104. Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 126, 073001 (2021).

    ADS  Google Scholar 

  105. Dixon, J., Lawrence, M., Barton, D. R. & Dionne, J. Self-isolated Raman lasing with a chiral dielectric metasurface. Phys. Rev. Lett. 126, 123201 (2021).

    ADS  Google Scholar 

  106. Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum. Nature 613, 474–478 (2023).

    ADS  Google Scholar 

  107. Liu, W. et al. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett. 123, 116104 (2019).

    ADS  Google Scholar 

  108. Yin, X., Jin, J., Soljacic, M., Peng, C. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).

    ADS  Google Scholar 

  109. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    ADS  Google Scholar 

  110. Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Google Scholar 

  111. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Google Scholar 

  112. Zalogina, A. et al. High-harmonic generation from a subwavelength dielectric resonator. Sci. Adv. 9, eadg2655 (2023).

    Google Scholar 

  113. Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photon. 16, 411–421 (2022).

    ADS  Google Scholar 

  114. Kuhner, L. et al. High-Q nanophotonics over the full visible spectrum enabled by hexagonal boron nitride metasurfaces. Adv. Mater. 35, e2209688 (2023).

    Google Scholar 

  115. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    ADS  Google Scholar 

  116. Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742–760 (2019).

    ADS  Google Scholar 

  117. Li, Y., Chan, C. T. & Mazur, E. Dirac-like cone-based electromagnetic zero-index metamaterials. Light Sci. Appl. 10, 203 (2021).

    ADS  Google Scholar 

  118. Wu, Y., Li, J., Zhang, Z.-Q. & Chan, C. T. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B 74, 085111 (2006).

    ADS  Google Scholar 

  119. García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).

    ADS  Google Scholar 

  120. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010).

    ADS  Google Scholar 

  121. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Google Scholar 

  122. Odit, M. et al. Observation of supercavity modes in subwavelength dielectric resonators. Adv. Mater. 33, e2003804 (2021).

    Google Scholar 

  123. Melik-Gaykazyan, E. et al. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett. 21, 1765–1771 (2021).

    ADS  Google Scholar 

  124. Crespi, A. et al. Particle statistics affects quantum decay and Fano interference. Phys. Rev. Lett. 114, 090201 (2015).

    ADS  Google Scholar 

  125. Longhi, S. in Fano Resonances in Optics and Microwaves: Physics and Applications (eds Kamenetskii, E. et al.) 85–108 (Springer, 2018).

  126. Longhi, S. Optical analog of population trapping in the continuum: classical and quantum interference effects. Phys. Rev. A 79, 023811 (2009).

    ADS  Google Scholar 

  127. Longhi, S. Optical analogue of coherent population trapping via a continuum in optical waveguide arrays. J. Mod. Opt. 56, 729–737 (2009).

    ADS  MATH  Google Scholar 

  128. Abujetas, D. R., van Hoof, N., ter Huurne, S., Rivas, J. G. & Sánchez-Gil, J. A. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces. Optica 6, 996–1001 (2019).

    ADS  Google Scholar 

  129. Cong, L. Q. & Singh, R. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater. 7, 1900383 (2019).

    Google Scholar 

  130. Liang, Y. et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 20, 6351–6356 (2020).

    ADS  Google Scholar 

  131. Liang, Y. et al. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett. 21, 8917–8923 (2021).

    ADS  Google Scholar 

  132. Bogdanov, A. A. et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photonics 1, 016001 (2019).

    ADS  Google Scholar 

  133. Tseng, M. L., Jahani, Y., Leitis, A. & Altug, H. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics 8, 47–60 (2020).

    Google Scholar 

  134. Altug, H., Oh, S. H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    ADS  Google Scholar 

  135. Romano, S. et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum. Photon. Res. 6, 726–733 (2018).

    Google Scholar 

  136. Mikheeva, E. et al. Photosensitive chalcogenide metasurfaces supporting bound states in the continuum. Opt. Express 27, 33847–33853 (2019).

    ADS  Google Scholar 

  137. Romano, S. et al. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. Opt. Express 27, 18776–18786 (2019).

    ADS  Google Scholar 

  138. Srivastava, Y. K. et al. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett. 115, 151105 (2019).

    ADS  Google Scholar 

  139. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    ADS  Google Scholar 

  140. Lv, J. et al. High-sensitive refractive index sensing enabled by topological charge evolution. IEEE Photonics J. 12, 1–10 (2020).

    Google Scholar 

  141. Jahani, Y. et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun. 12, 3246 (2021).

    ADS  Google Scholar 

  142. Leitis, A., Tseng, M. L., John-Herpin, A., Kivshar, Y. S. & Altug, H. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33, e2102232 (2021).

    Google Scholar 

  143. Jacobsen, R. E., Krasnok, A., Arslanagić, S., Lavrinenko, A. V. & Alú, A. Boundary-induced embedded eigenstate in a single resonator for advanced sensing. ACS Photonics 9, 1936–1943 (2022).

    Google Scholar 

  144. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  145. Romano, S. et al. Surface-enhanced Raman and fluorescence spectroscopy with an all-dielectric metasurface. J. Phys. Chem. C 122, 19738–19745 (2018).

    Google Scholar 

  146. Leitis, A. et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019).

    ADS  Google Scholar 

  147. Aigner, A. et al. Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv. 8, eadd4816 (2022).

    Google Scholar 

  148. Chen, Y., Zhao, C., Zhang, Y. & Qiu, C. W. Integrated molar chiral sensing based on high-Q metasurface. Nano Lett. 20, 8696–8703 (2020).

    ADS  Google Scholar 

  149. Zhang, H. et al. Experimental observation of vector bound states in the continuum. Adv. Opt. Mater. 11, 2203118 (2023).

    Google Scholar 

  150. Chen, Y. et al. Can weak chirality induce strong coupling between resonant states? Phys. Rev. Lett. 128, 146102 (2022).

    ADS  Google Scholar 

  151. Bulgakov, E. N. & Maksimov, D. N. Topological bound states in the continuum in arrays of dielectric spheres. Phys. Rev. Lett. 118, 267401 (2017).

    ADS  Google Scholar 

  152. Bezus, E. A., Bykov, D. A. & Doskolovich, L. L. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide. Photon. Res. 6, 1084–1093 (2018).

    Google Scholar 

  153. Liu, M. et al. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett. 127, 266101 (2021).

    ADS  Google Scholar 

  154. Doeleman, H. M., Monticone, F., den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397 (2018).

    ADS  Google Scholar 

  155. Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018).

    ADS  Google Scholar 

  156. Hsu, C. W., Zhen, B., Soljačić, M. & Stone, A. D. Polarization state of radiation from a photonic crystal slab. Preprint at https://doi.org/10.48550/arXiv.1708.02197 (2017).

  157. Kang, M. et al. Merging bound states in the continuum by harnessing higher-order topological charges. Light Sci. Appl. 11, 228 (2022).

    ADS  Google Scholar 

  158. Yoda, T. & Notomi, M. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking. Phys. Rev. Lett. 125, 053902 (2020).

    ADS  Google Scholar 

  159. Ye, W., Gao, Y. & Liu, J. Singular points of polarizations in the momentum space of photonic crystal slabs. Phys. Rev. Lett. 124, 153904 (2020).

    ADS  Google Scholar 

  160. Zeng, Y., Hu, G., Liu, K., Tang, Z. & Qiu, C. W. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett. 127, 176101 (2021).

    ADS  Google Scholar 

  161. Yin, X., Inoue, T., Peng, C. & Noda, S. Topological unidirectional guided resonances emerged from interband coupling. Phys. Rev. Lett. 130, 056401 (2023).

    ADS  Google Scholar 

  162. Chen, W., Yang, Q., Chen, Y. & Liu, W. Extremize optical chiralities through polarization singularities. Phys. Rev. Lett. 126, 253901 (2021).

    ADS  MathSciNet  Google Scholar 

  163. Wu, J. et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum. Phys. Rev. Appl. 16, 064018 (2021).

    ADS  Google Scholar 

  164. Shi, T. et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun. 13, 4111 (2022).

    ADS  Google Scholar 

  165. Koshelev, K. et al. Resonant chiral effects in nonlinear dielectric metasurfaces. ACS Photonics 10, 298–306 (2023).

    Google Scholar 

  166. Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    ADS  Google Scholar 

  167. Kang, L., Wu, Y., Ma, X., Lan, S. & Werner, D. H. High‐harmonic optical vortex generation from photonic bound states in the continuum. Adv. Opt. Mater. 10, 2101497 (2021).

    Google Scholar 

  168. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    ADS  Google Scholar 

  169. Bahari, B. et al. Integrated and steerable vortex lasers using bound states in continuum. Preprint at https://doi.org/10.48550/arXiv.1707.00181 (2017).

  170. Wu, F. et al. Giant enhancement of the Goos–Hänchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl. 12, 014028 (2019).

    ADS  Google Scholar 

  171. Wang, J. et al. Shifting beams at normal incidence via controlling momentum-space geometric phases. Nat. Commun. 12, 6046 (2021).

    ADS  Google Scholar 

  172. Wang, J., Shi, L. & Zi, J. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum. Phys. Rev. Lett. 129, 236101 (2022).

    ADS  Google Scholar 

  173. Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A 44, 398–417 (1956).

    MathSciNet  Google Scholar 

  174. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  175. Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Google Scholar 

  176. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Google Scholar 

  177. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    ADS  Google Scholar 

  178. Dorrah, A. H. & Capasso, F. Tunable structured light with flat optics. Science 376, eabi6860 (2022).

    Google Scholar 

  179. Overvig, A. C., Malek, S. C. & Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 017402 (2020).

    ADS  Google Scholar 

  180. Malek, S. C., Overvig, A. C., Shrestha, S. & Yu, N. Active nonlocal metasurfaces. Nanophotonics 10, 655–665 (2020).

    Google Scholar 

  181. Malek, S. C., Overvig, A. C., Alu, A. & Yu, N. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl. 11, 246 (2022).

    ADS  Google Scholar 

  182. Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photonics Rev. 16, 2100633 (2022).

    ADS  Google Scholar 

  183. Shastri, K. & Monticone, F. Nonlocal flat optics. Nat. Photon. 17, 36–47 (2022).

    ADS  Google Scholar 

  184. Guo, Y., Xiao, M. & Fan, S. Topologically protected complete polarization conversion. Phys. Rev. Lett. 119, 167401 (2017).

    ADS  Google Scholar 

  185. Guo, Y., Xiao, M., Zhou, Y. & Fan, S. Arbitrary polarization conversion with a photonic crystal slab. Adv. Opt. Mater. 7, 1801453 (2019).

    Google Scholar 

  186. Kang, M. et al. Coherent full polarization control based on bound states in the continuum. Nat. Commun. 13, 4536 (2022).

    ADS  Google Scholar 

  187. Hao, J. et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007).

    ADS  Google Scholar 

  188. Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    ADS  Google Scholar 

  189. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161 (2011).

    Google Scholar 

  190. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Google Scholar 

  191. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    ADS  Google Scholar 

  192. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Google Scholar 

  193. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  194. Liu, W. Z., Shi, L., Zi, J. & Chan, C. T. Ways to achieve efficient non-local vortex beam generation. Nanophotonics 10, 4297–4304 (2021).

    Google Scholar 

  195. Li, T. et al. High-efficiency nonlocal reflection-type vortex beam generation based on bound states in the continuum. Natl Sci. Rev. 10, nwac234 (2023).

    Google Scholar 

  196. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013).

    ADS  Google Scholar 

  197. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Google Scholar 

  198. Ling, X. et al. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 80, 066401 (2017).

    ADS  Google Scholar 

  199. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    ADS  Google Scholar 

  200. Dai, H., Yuan, L., Yin, C., Cao, Z. & Chen, X. Direct visualizing the spin Hall effect of light via ultrahigh-order modes. Phys. Rev. Lett. 124, 053902 (2020).

    ADS  Google Scholar 

  201. Couny, F., Benabid, F., Roberts, P., Light, P. & Raymer, M. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    ADS  Google Scholar 

  202. Pichugin, K. N. & Sadreev, A. F. Frequency comb generation by symmetry-protected bound state in the continuum. J. Opt. Soc. Am. B 32, 1630–1636 (2015).

    ADS  Google Scholar 

  203. Lei, F. et al. Hyperparametric oscillation via bound states in the continuum. Phys. Rev. Lett. 130, 093801 (2023).

    ADS  Google Scholar 

  204. Han, S. et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater. 31, 1901921 (2019).

    ADS  Google Scholar 

  205. Zhao, C. et al. Electrically tunable and robust bound states in the continuum enabled by 2D transition metal dichalcogenide. Adv. Opt. Mater. 10, 2201634 (2022).

    Google Scholar 

  206. Cotrufo, M., Cordaro, A., Sounas, D. L., Polman, A. & Alù, A. Passive bias-free nonreciprocal metasurfaces based on nonlinear quasi-bound states in the continuum. Preprint at https://doi.org/10.48550/arXiv.2210.05586 (2022).

  207. Wang, W., Wang, X. & Ma, G. Extended state in a localized continuum. Phys. Rev. Lett. 129, 264301 (2022).

    ADS  Google Scholar 

  208. Dong, Z. et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 8, eabm4512 (2022).

    Google Scholar 

  209. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    ADS  Google Scholar 

  210. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  211. Ozdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    ADS  Google Scholar 

  212. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  213. Miri, M. A. & Alu, A. Exceptional points in optics and photonics. Science 363, eaar770 (2019).

    MathSciNet  MATH  Google Scholar 

  214. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    ADS  MathSciNet  Google Scholar 

  215. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Google Scholar 

  216. Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  217. Chen, W., Yang, Q., Chen, Y. & Liu, W. Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies. Proc. Natl Acad. Sci. USA 118, e2019578118 (2021).

    MathSciNet  Google Scholar 

  218. Regensburger, A. et al. Observation of defect states in PT-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013).

    ADS  Google Scholar 

  219. Longhi, S. Bound states in the continuum in PT-symmetric optical lattices. Opt. Lett. 39, 1697–1700 (2014).

    ADS  Google Scholar 

  220. Song, Q. et al. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry. Sci. Adv. 6, eabc1160 (2020).

    ADS  Google Scholar 

  221. Song, Q. J. et al. PT symmetry induced rings of lasing threshold modes embedded with discrete bound states in the continuum. Chin. Phys. Lett. 38, 084203 (2021).

    ADS  Google Scholar 

  222. Yang, Y. et al. Unconventional singularity in anti-parity-time symmetric cavity magnonics. Phys. Rev. Lett. 125, 147202 (2020).

    ADS  Google Scholar 

  223. Kartashov, Y. V., Milián, C., Konotop, V. V. & Torner, L. Bound states in the continuum in a two-dimensional PT-symmetric system. Opt. Lett. 43, 575–578 (2018).

    ADS  Google Scholar 

  224. Novitsky, D. V., Shalin, A. S., Redka, D., Bobrovs, V. & Novitsky, A. V. Quasibound states in the continuum induced by PT symmetry breaking. Phys. Rev. B 104, 085126 (2021).

    ADS  Google Scholar 

  225. Longhi, S. & Della Valle, G. Optical lattices with exceptional points in the continuum. Phys. Rev. A 89, 052132 (2014).

    ADS  Google Scholar 

  226. Xie, B. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).

    Google Scholar 

  227. Kim, M., Jacob, Z. & Rho, J. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020).

    ADS  Google Scholar 

  228. Chen, Z.-G., Xu, C., Al Jahdali, R., Mei, J. & Wu, Y. Corner states in a second-order acoustic topological insulator as bound states in the continuum. Phys. Rev. B 100, 075120 (2019).

    ADS  Google Scholar 

  229. Benalcazar, W. A. & Cerjan, A. Bound states in the continuum of higher-order topological insulators. Phys. Rev. B 101, 161116 (2020).

    ADS  Google Scholar 

  230. Cerjan, A., Jürgensen, M., Benalcazar, W. A., Mukherjee, S. & Rechtsman, M. C. Observation of a higher-order topological bound state in the continuum. Phys. Rev. Lett. 125, 213901 (2020).

    ADS  Google Scholar 

  231. Wang, Y. et al. Quantum superposition demonstrated higher-order topological bound states in the continuum. Light Sci. Appl. 10, 173 (2021).

    ADS  Google Scholar 

  232. Hu, Z. et al. Nonlinear control of photonic higher-order topological bound states in the continuum. Light Sci. Appl. 10, 164 (2021).

    ADS  Google Scholar 

  233. Xiao, Y. X., Ma, G., Zhang, Z. Q. & Chan, C. T. Topological subspace-induced bound state in the continuum. Phys. Rev. Lett. 118, 166803 (2017).

    ADS  Google Scholar 

  234. Liu, L., Li, T., Zhang, Q., Xiao, M. & Qiu, C. Universal mirror-stacking approach for constructing topological bound states in the continuum. Phys. Rev. Lett. 130, 106301 (2023).

    ADS  Google Scholar 

  235. He, L., Addison, Z., Mele, E. J. & Zhen, B. Quadrupole topological photonic crystals. Nat. Commun. 11, 3119 (2020).

    ADS  Google Scholar 

  236. Zhou, P. et al. Realization of a quadrupole topological insulator phase in a gyromagnetic photonic crystal. Preprint at https://doi.org/10.48550/arXiv.2302.03184 (2023).

  237. Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5, 748–763 (2020).

    ADS  Google Scholar 

  238. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    ADS  Google Scholar 

  239. Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    ADS  Google Scholar 

  240. Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

    ADS  Google Scholar 

  241. Oudich, M. et al. Photonic analog of bilayer graphene. Phys. Rev. B 103, 214311 (2021).

    ADS  Google Scholar 

  242. Tang, H. et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl. 10, 157 (2021).

    ADS  Google Scholar 

  243. Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystals: almost-perfect flatbands and unconventional localization. Phys. Rev. Res. 4, L032031 (2022).

    Google Scholar 

  244. Zhang, Y. et al. Unfolded band structures of photonic quasicrystals and moiré superlattices. Phys. Rev. B 105, 165304 (2022).

    ADS  Google Scholar 

  245. Mao, X. R., Shao, Z. K., Luan, H. Y., Wang, S. L. & Ma, R. M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    ADS  Google Scholar 

  246. Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).

    ADS  Google Scholar 

  247. Che, Z. et al. Polarization singularities of photonic quasicrystals in momentum space. Phys. Rev. Lett. 127, 043901 (2021).

    ADS  Google Scholar 

  248. Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

    ADS  Google Scholar 

  249. Ma, X. et al. Coherent momentum control of forbidden excitons. Nat. Commun. 13, 6916 (2022).

    ADS  Google Scholar 

  250. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS  MathSciNet  Google Scholar 

  251. Wang, J. et al. Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci. Appl. 9, 148 (2020).

    ADS  Google Scholar 

  252. Zhang, X. X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883–888 (2017).

    ADS  Google Scholar 

  253. Wang, G. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 119, 047401 (2017).

    ADS  Google Scholar 

  254. Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    ADS  Google Scholar 

  255. Park, K. D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).

    ADS  Google Scholar 

  256. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    ADS  Google Scholar 

  257. Ciarrocchi, A., Tagarelli, F., Avsar, A. & Kis, A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022).

    ADS  Google Scholar 

  258. Li, Y. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987–992 (2017).

    ADS  Google Scholar 

  259. Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).

    ADS  Google Scholar 

  260. Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).

    ADS  Google Scholar 

  261. Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 20, 5309–5314 (2020).

    ADS  Google Scholar 

  262. Liu, Z. et al. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum. Nano Lett. 21, 7405–7410 (2021).

    ADS  Google Scholar 

  263. Koshelev, K., Sychev, S., Sadrieva, Z. F., Bogdanov, A. A. & Iorsh, I. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B 98, 161113 (2018).

    ADS  Google Scholar 

  264. Cao, S. et al. Normal-incidence-excited strong coupling between excitons and symmetry-protected quasi-bound states in the continuum in silicon nitride–WS2 heterostructures at room temperature. J. Phys. Chem. Lett. 11, 4631–4638 (2020).

    Google Scholar 

  265. Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl. 9, 56 (2020).

    ADS  Google Scholar 

  266. Al‐Ani, I. A. M., As’Ham, K., Huang, L., Miroshnichenko, A. E. & Hattori, H. T. Enhanced strong coupling of TMDC monolayers by bound state in the continuum. Laser Photonics Rev. 15, 2100240 (2021).

    ADS  Google Scholar 

  267. Xie, P. et al. Strong coupling between excitons in a two-dimensional atomic crystal and quasibound states in the continuum in a two-dimensional all-dielectric asymmetric metasurface. Phys. Rev. B 104, 125446 (2021).

    ADS  Google Scholar 

  268. Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum. Nat. Mater. 22, 964–969 (2023).

    ADS  Google Scholar 

  269. Meade, R. D., Brommer, K. D., Rappe, A. M. & Joannopoulos, J. D. Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B 44, 10961–10964 (1991).

    ADS  Google Scholar 

  270. Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019).

    ADS  Google Scholar 

  271. Muhammad, N., Chen, Y., Qiu, C. W. & Wang, G. P. Optical bound states in continuum in MoS2-based metasurface for directional light emission. Nano Lett. 21, 967–972 (2021).

    ADS  Google Scholar 

  272. Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).

    ADS  Google Scholar 

  273. Kim, S. et al. Topological control of 2D perovskite emission in the strong coupling regime. Nano Lett. 21, 10076–10085 (2021).

    ADS  Google Scholar 

  274. Dang, N. H. M. et al. Realization of polaritonic topological charge at room temperature using polariton bound states in the continuum from perovskite metasurface. Adv. Opt. Mater. 10, 2102386 (2022).

    Google Scholar 

  275. Ardizzone, V. et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature 605, 447–452 (2022).

    ADS  Google Scholar 

  276. Zangeneh-Nejad, F. & Fleury, R. Topological Fano resonances. Phys. Rev. Lett. 122, 014301 (2019).

    ADS  Google Scholar 

  277. Deriy, I., Toftul, I., Petrov, M. & Bogdanov, A. Bound states in the continuum in compact acoustic resonators. Phys. Rev. Lett. 128, 084301 (2022).

    ADS  MathSciNet  Google Scholar 

  278. Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894 (2018).

    Google Scholar 

  279. Roques-Carmes, C. et al. Free-electron-light interactions in nanophotonics. Appl. Phys. Rev. 10, 011303 (2023).

    ADS  Google Scholar 

  280. Xie, Y., Zhang, Z., Lin, Y., Feng, T. & Xu, Y. Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl. 15, 044024 (2021).

    ADS  Google Scholar 

  281. Song, M. et al. Wireless power transfer based on novel physical concepts. Nat. Electron. 4, 707–716 (2021).

    Google Scholar 

  282. Mercadé, L., Barreda, Á. & Martínez, A. Dispersive optomechanics of supercavity modes in high-index disks. Opt. Lett. 45, 5238–5241 (2020).

    ADS  Google Scholar 

  283. Liu, S., Tong, H. & Fang, K. Optomechanical crystal with bound states in the continuum. Nat. Commun. 13, 3187 (2022).

    ADS  Google Scholar 

  284. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  285. Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    ADS  Google Scholar 

  286. Nefedkin, N., Alù, A. & Krasnok, A. Quantum embedded superstates. Adv. Quantum Technol. 4, 2000121 (2021).

    Google Scholar 

  287. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Q. Zhang, W. Liu, J. Li and R.-Y. Zhang for discussions. M.K. and C.T.C acknowledge support from Research Grants Council (RGC) Hong Kong through grant AoE/P-502/20 and the Croucher Foundation (CAS20SC01). T.L. and M.X. acknowledge support from the National Natural Science Foundation of China (grant no. 12274332) and the National Key Research and Development Program of China (grant no. 2022YFA1404900).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and T.L. researched data for the article. C.T.C., M.K. and M.X. contributed substantially to discussion of the content. M.K., T.L. and M.X. wrote the article. C.T.C., M.K. and M.X. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to C. T. Chan or Meng Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Cheng-Wei Qiu, Boubacar Kante, Lei Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bulk Fermi arc

In classical systems, a bulk Fermi arc refers to an isofrequency contour of bulk band structures that presents as an arc in momentum space.

C 4v point group

A symmetry group with rotations and reflections associated with a square.

C 6v point group

A symmetry group with rotations and reflections associated with a hexagon.

Fabry–Pérot resonances

Resonances supported by two parallel reflecting surfaces.

Fano interference

Interference between discrete bound states and a continuum of extended states, resulting in the generation of Fano resonance.

Goos–Hänchen shifts

Lateral shifts of the reflected and transmitted beams in the direction parallel to the incident plane.

Imbert–Fedorov shifts

Spin-dependent lateral shifts of the reflected and transmitted beams in the direction perpendicular to the incident plane.

Mie resonances

Resonances that occur in scattering by particles with sizes comparable to the wavelength of the incident light.

Nonlinear frequency conversion

A type of nonlinear optical effect, which includes processes such as second-harmonic generation, third-harmonic generation, high-harmonic generation, sum-frequency generation, difference-frequency generation and spontaneous parametric down-conversion.

Photonic crystal slabs

(PCSs). Periodic planar waveguides that possess 2D periodicity but have a finite thickness.

Zero-index materials

Materials that have zero refractive index at certain frequencies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Liu, T., Chan, C.T. et al. Applications of bound states in the continuum in photonics. Nat Rev Phys 5, 659–678 (2023). https://doi.org/10.1038/s42254-023-00642-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00642-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing