Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Disordered mechanical metamaterials

Abstract

Mechanical metamaterials are a class of artificial materials whose geometry is engineered to have peculiar mechanical properties or programmed responses that are difficult to find in conventional materials. Typically, metamaterials are periodic, but incorporating disorder into their design can provide improved functionalities over ordered structures. In this Perspective article, we use examples of biological materials with disordered structures to elucidate how disorder can enhance the mechanical performance of engineered mechanical metamaterials. We clarify opportunities and pitfalls posed by randomness, highlight the increasingly prominent role played by disorder in novel design strategies for mechanical metamaterials and discuss recently developed algorithmic and data-driven strategies for the design of disordered optimized metamaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disordered structures in biology.
Fig. 2: Role of disorder in the density scaling of metamaterials.
Fig. 3: Mechanical failure of disordered and hierarchical metamaterials.
Fig. 4: Continuous and discrete disordered metamaterials.
Fig. 5: Computational strategies for disordered metamaterials design.

Similar content being viewed by others

References

  1. Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017). This review discuses the main fundamental mechanisms underlying mechanical metamaterials.

    ADS  Google Scholar 

  2. Barchiesi, E., Spagnuolo, M. & Placidi, L. Mechanical metamaterials: a state of the art. Math. Mech. Solids 24, 212–234 (2019).

    MathSciNet  MATH  Google Scholar 

  3. Ashby, M. F. & Medalist, R. M. The mechanical properties of cellular solids. Metall. Trans. A 14, 1755–1769 (1983).

    Google Scholar 

  4. Ashby, M. The properties of foams and lattices. Phil. Trans. R. Soc. A 364, 15–30 (2006). This study is a discussion of bending-dominated and stretching-dominated density scaling of mechanical properties in cellular solids.

    ADS  MathSciNet  Google Scholar 

  5. Xia, X., Spadaccini, C. M. & Greer, J. R. Responsive materials architected in space and time. Nat. Rev. Mater. 7, 683–701 (2022).

    ADS  Google Scholar 

  6. Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012).

    ADS  Google Scholar 

  7. Bertoldi, K., Reis, P. M., Willshaw, S. & Mullin, T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010).

    Google Scholar 

  8. Babaee, S. et al. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).

    Google Scholar 

  9. Lakes, R. Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987). This paper provides an introduction to auxetic materials showing negative Poisson’s ratio.

    ADS  Google Scholar 

  10. Li, Y. & Zeng, C. Room-temperature, near-instantaneous fabrication of auxetic materials with constant Poisson’s ratio over large deformation. Adv. Mater. 28, 2822–2826 (2016).

    Google Scholar 

  11. Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40–44 (2017).

    Google Scholar 

  12. Rayneau-Kirkhope, D. & Dias, M. A. Embracing failure. Phys. World 30, 25 (2017).

    Google Scholar 

  13. Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

    ADS  Google Scholar 

  14. Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical metamaterials: the role of geometry. Soft Matter 12, 8736–8743 (2016).

    ADS  Google Scholar 

  15. Rayneau-Kirkhope, D. J. & Dias, M. A. Recipes for selecting failure modes in 2-d lattices. Extreme Mech. Lett. 9, 11–20 (2016).

    Google Scholar 

  16. Paulose, J., Meeussen, A. S. & Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl Acad. Sci. USA 112, 7639–7644 (2015).

    ADS  Google Scholar 

  17. La Porta, C. A. et al. Metamaterial architecture from a self-shaping carnivorous plant. Proc. Natl Acad. Sci. USA 116, 18777–18782 (2019).

    ADS  Google Scholar 

  18. Wu, H. et al. Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution. ACS Appl. Mater. Interfaces 14, 42504–42512 (2022).

    Google Scholar 

  19. Giorgio, I., Spagnuolo, M., Andreaus, U., Scerrato, D. & Bersani, A. M. In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. Math. Mech. Solids 26, 1074–1103 (2021).

    MathSciNet  MATH  Google Scholar 

  20. Pham, M.-S., Liu, C., Todd, I. & Lertthanasarn, J. Damage-tolerant architected materials inspired by crystal microstructure. Nature 565, 305–311 (2019).

    ADS  Google Scholar 

  21. Rayneau-Kirkhope, D., Bonfanti, S. & Zapperi, S. Density scaling in the mechanics of a disordered mechanical meta-material. Appl. Phys. Lett. 114, 111902 (2019). This work shows the presence of anomalous density scaling of mechanical parameters induced by disorder.

    ADS  Google Scholar 

  22. Nguyen, C., Peetz, D., Elbanna, A. E. & Carlson, J. M. Characterization of fracture in topology-optimized bioinspired networks. Phys. Rev. E 100, 042402 (2019).

    ADS  Google Scholar 

  23. Reid, D. R. et al. Auxetic metamaterials from disordered networks. Proc. Natl Acad. Sci. USA 115, E1384–E1390 (2018).

    Google Scholar 

  24. Hanifpour, M., Petersen, C. F., Alava, M. J. & Zapperi, S. Mechanics of disordered auxetic metamaterials. Eur. Phys. J. B 91, 271 (2018). This is a systematic study of the role of disorder in auxetic metamaterials.

    ADS  Google Scholar 

  25. Studart, A. R. Biologically inspired dynamic material systems. Angew. Chem. Int. Ed. 54, 3400–3416 (2015).

    Google Scholar 

  26. Zaiser, M. & Zapperi, S. in Understanding Innovation Through Exaptation (eds La Porta, C. A. M., Zapperi, S. & Pilotti, L.) 35–45 (Springer, 2020).

  27. Qin, Z., Dimas, L., Adler, D., Bratzel, G. & Buehler, M. J. Biological materials by design. J. Phys. Condens. Matter 26, 073101 (2014).

    Google Scholar 

  28. Feng, L. et al. Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14, 1857–1860 (2002).

    Google Scholar 

  29. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    ADS  Google Scholar 

  30. Green, D. W. et al. High quality bioreplication of intricate nanostructures from a fragile gecko skin surface with bactericidal properties. Sci. Rep. 7, 1–12 (2017).

    Google Scholar 

  31. Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995 (2014).

    ADS  Google Scholar 

  32. Ashby, M. The properties of foams and lattices. Phil. Trans. R. Soc. A 364, 15–30 (2006).

    ADS  MathSciNet  Google Scholar 

  33. Launey, M. E. & Ritchie, R. O. On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009).

    Google Scholar 

  34. Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018).

    Google Scholar 

  35. Gao, H. in Advances in Fracture Research (eds Carpinteri, A., Mai, Y. W. & Ritchie, R. O.) 101–137 (Springer, 2006).

  36. Koester, K. J., Ager Iii, J. & Ritchie, R. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 7, 672–677 (2008).

    ADS  Google Scholar 

  37. Fields, A. J. et al. Vertebral fragility and structural redundancy. J. Bone Miner. Res. 27, 2152–2158 (2012).

    Google Scholar 

  38. Huiskes, R. If bone is the answer, then what is the question? J. Anat. 197, 145–156 (2000).

    Google Scholar 

  39. Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993).

    ADS  Google Scholar 

  40. Fudge, D. S., Gardner, K. H., Forsyth, V. T., Riekel, C. & Gosline, J. M. The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys. J. 85, 2015–2027 (2003).

    ADS  Google Scholar 

  41. Aizenberg, J. et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    ADS  Google Scholar 

  42. Hamza, S., Slimane, N., Azari, Z. & Pluvinage, G. Structural and mechanical properties of the coral and nacre and the potentiality of their use as bone substitutes. Appl. Surf. Sci. 264, 485–491 (2013).

    ADS  Google Scholar 

  43. Krauss, S., Monsonego-Ornan, E., Zelzer, E., Fratzl, P. & Shahar, R. Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle. Adv. Mater. 21, 407–412 (2009).

    Google Scholar 

  44. Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766 (2012).

    Google Scholar 

  45. Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the venus flytrap snaps. Nature 433, 421–425 (2005).

    ADS  Google Scholar 

  46. Overvelde, J. T. B., Kloek, T., D’haen, J. J. A. & Bertoldi, K. Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl Acad. Sci. USA 112, 10863–10868 (2015).

    ADS  Google Scholar 

  47. Rafsanjani, A., Akbarzadeh, A. & Pasini, D. Snapping mechanical metamaterials under tension. Adv. Mater. 27, 5931–5935 (2015).

    Google Scholar 

  48. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    ADS  Google Scholar 

  49. Rayneau-Kirkhope, D. Stiff auxetics: hierarchy as a route to stiff, strong lattice based auxetic meta-materials. Sci. Rep. 8, 12437 (2018).

    ADS  Google Scholar 

  50. Lumpe, T. S. & Stankovic, T. Exploring the property space of periodic cellular structures based on crystal networks. Proc. Natl Acad. Sci. USA 118, e2003504118 (2021).

    Google Scholar 

  51. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties (Cambridge Univ. Press, 1999).

  52. Fleck, N., Deshpande, V. & Ashby, M. Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 2495–2516 (2010).

    ADS  Google Scholar 

  53. Ogata, S., Li, J. & Yip, S. Ideal pure shear strength of aluminum and copper. Science 298, 807–811 (2002).

    ADS  Google Scholar 

  54. Aifantis, E. C. On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992).

    MATH  Google Scholar 

  55. Bauer, J., Kraus, J. A., Crook, C., Rimoli, J. J. & Valdevit, L. Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation. Adv. Mater. 33, 2005647 (2021).

    Google Scholar 

  56. Zhang, X. Y., Ren, X., Zhang, Y. & Xie, Y. M. A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity. Thin Wall. Struct. 174, 109162 (2022).

    Google Scholar 

  57. Cheng, X. et al. Design and mechanical characteristics of auxetic metamaterial with tunable stiffness. Int. J. Mech. Sci. 223, 107286 (2022).

    Google Scholar 

  58. Ren, X., Shen, J., Ghaedizadeh, A., Tian, H. & Xie, Y. M. Experiments and parametric studies on 3d metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater. Struct. 24, 095016 (2015).

    ADS  Google Scholar 

  59. Zaiser, M., Mill, F., Konstantinidis, A. & Aifantis, K. E. Strain localization and strain propagation in collapsible solid foams. Mater. Sci. Eng. A 567, 38–45 (2013).

    Google Scholar 

  60. Tüzes, D., Ispánovity, P. D. & Zaiser, M. Disorder is good for you: the influence of local disorder on strain localization and ductility of strain softening materials. Int. J. Fract. 205, 139–150 (2017).

    Google Scholar 

  61. Koyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).

    ADS  Google Scholar 

  62. Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2022).

    ADS  Google Scholar 

  63. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    ADS  Google Scholar 

  64. Meza, L. R. et al. Resilient 3d hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    ADS  Google Scholar 

  65. Zaiser, M. et al. Hierarchical slice patterns inhibit crack propagation in brittle sheets. Phys. Rev. Appl. 18, 044035 (2022). This paper discusses how to design hierarchical structures to inhibit crack propagation.

    ADS  Google Scholar 

  66. Pournajar, M. et al. Failure precursors and failure mechanisms in hierarchically patterned paper sheets in tensile and creep loading. Phys. Rev. Applied 20, 024008 (2023).

    ADS  Google Scholar 

  67. Hosseini, S. A., Moretti, P., Konstantinidis, D. & Zaiser, M. Beam network model for fracture of materials with hierarchical microstructure. Int. J. Fract. 227, 243–257 (2021).

    Google Scholar 

  68. Li, D., Yin, J., Dong, L. & Lakes, R. S. Strong re-entrant cellular structures with negative Poisson’s ratio. J. Mater. Sci. 53, 3493–3499 (2018).

    ADS  Google Scholar 

  69. Mullin, T., Deschanel, S., Bertoldi, K. & Boyce, M. C. Pattern transformation triggered by deformation. Phys. Rev. Lett. 99, 084301 (2007).

    ADS  Google Scholar 

  70. Zhang, Y. et al. One-step nanoscale assembly of complex structures via harnessing of an elastic instability. Nano Lett. 8, 1192–1196 (2008).

    ADS  Google Scholar 

  71. Shim, J., Perdigou, C., Chen, E. R., Bertoldi, K. & Reis, P. M. Buckling-induced encapsulation of structured elastic shells under pressure. Proc. Natl Acad. Sci. USA 109, 5978–5983 (2012).

    ADS  Google Scholar 

  72. Ren, C., Yang, D. & Qin, H. Mechanical performance of multidirectional buckling-based negative stiffness metamaterials: an analytical and numerical study. Materials 11, 1078 (2018).

    ADS  Google Scholar 

  73. Grima, J. N., Mizzi, L., Azzopardi, K. M. & Gatt, R. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv. Mater. 28, 385–389 (2016).

    Google Scholar 

  74. Bonfanti, S., Guerra, R., Zaiser, M. & Zapperi, S. Digital strategies for structured and architected materials design. APL Mater. 9, 020904 (2021).

    ADS  Google Scholar 

  75. Aage, N., Andreassen, E., Lazarov, B. S. & Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature 550, 84–86 (2017). This study is a large-scale structural design using topology optimization.

    ADS  Google Scholar 

  76. Sigmund, O. Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995).

    Google Scholar 

  77. Bendsoe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods, and Applications (Springer, 2013).

  78. Plocher, J. & Panesar, A. Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater. Des. 183, 108164 (2019).

    Google Scholar 

  79. Cadman, J. E., Zhou, S., Chen, Y. & Li, Q. On design of multi-functional microstructural materials. J. Mater. Sci. 48, 51–66 (2013).

    ADS  Google Scholar 

  80. Long, K., Du, X., Xu, S. & Xie, Y. M. Maximizing the effective Young’s modulus of a composite material by exploiting the Poisson effect. Compos. Struct. 153, 593–600 (2016).

    Google Scholar 

  81. Zhang, H., Luo, Y. & Kang, Z. Bi-material microstructural design of chiral auxetic metamaterials using topology optimization. Compos. Struct. 195, 232–248 (2018).

    Google Scholar 

  82. Yang, X. & Kim, Y. Y. Topology optimization for the design of perfect mode-converting anisotropic elastic metamaterials. Compos. Struct. 201, 161–177 (2018).

    Google Scholar 

  83. Ai, L. & Gao, X.-L. Topology optimization of 2-d mechanical metamaterials using a parametric level set method combined with a meshfree algorithm. Compos. Struct. 229, 111318 (2019).

    Google Scholar 

  84. Schwerdtfeger, J. et al. Design of auxetic structures via mathematical optimization. Adv. Mater. 23, 2650–2654 (2011).

    Google Scholar 

  85. Goodrich, C. P., Liu, A. J. & Nagel, S. R. The principle of independent bond-level response: tuning by pruning to exploit disorder for global behavior. Phys. Rev. Lett. 114, 225501 (2015).

    ADS  Google Scholar 

  86. Reyes-Martinez, M. A. et al. Tuning the mechanical impedance of disordered networks for impact mitigation. Soft Matter 18, 2039–2045 (2022).

    ADS  Google Scholar 

  87. Yan, L., Ravasio, R., Brito, C. & Wyart, M. Architecture and coevolution of allosteric materials. Proc. Natl Acad. Sci. USA 114, 2526–2531 (2017).

    Google Scholar 

  88. Yan, L., Ravasio, R., Brito, C. & Wyart, M. Principles for optimal cooperativity in allosteric materials. Biophys. J. 114, 2787–2798 (2018).

    ADS  Google Scholar 

  89. Pashine, N., Hexner, D., Liu, A. J. & Nagel, S. R. Directed aging, memory, and nature’s greed. Sci. Adv. 5, eaax4215 (2019).

    ADS  Google Scholar 

  90. Rocks, J. W. et al. Designing allostery-inspired response in mechanical networks. Proc. Natl Acad. Sci. USA 114, 2520–2525 (2017).

    ADS  Google Scholar 

  91. Liu, J., Nie, Y., Tong, H. & Xu, N. Realizing negative Poisson’s ratio in spring networks with close-packed lattice geometries. Phys. Rev. Mater. 3, 055607 (2019).

    Google Scholar 

  92. Bonfanti, S., Guerra, R., Font-Clos, F., Rayneau-Kirkhope, D. & Zapperi, S. Automatic design of mechanical metamaterial actuators. Nat. Commun. 11, 4162 (2020). This paper shows how to generate disordered metamaterials using Monte Carlo simulations combined with deep learning.

    ADS  Google Scholar 

  93. Beretta, L. et al. Automatic design of chiral mechanical metamaterials. APL Mater. 9, 101112 (2021).

    ADS  Google Scholar 

  94. Bessa, M. A., Glowacki, P. & Houlder, M. Bayesian machine learning in metamaterial design: fragile becomes supercompressible. Adv. Mater. 31, 1904845 (2019).

    Google Scholar 

  95. Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).

    ADS  Google Scholar 

  96. Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the structure–property map of truss metamaterials by deep learning. Proc. Natl Acad. Sci. USA 119, e2111505119 (2022). This study is an illustration of the generation of a large annotated data set of elementary metamaterial unit cells combined with a deep learning algorithm.

    Google Scholar 

  97. Liu, K., Sun, R. & Daraio, C. Growth rules for irregular architected materials with programmable properties. Science 377, 975–981 (2022). This paper shows how to design disordered metamaterials through a random growth algorithm.

    ADS  Google Scholar 

  98. Mansimov, E., Mahmood, O., Kang, S. & Cho, K. Molecular geometry prediction using a deep generative graph neural network. Sci. Rep. 9, 20381 (2019).

    ADS  Google Scholar 

  99. Bongini, P., Bianchini, M. & Scarselli, F. Molecular generative graph neural networks for drug discovery. Neurocomputing 450, 242–252 (2021).

    Google Scholar 

  100. Xue, T., Adriaenssens, S. & Mao, S. Learning the nonlinear dynamics of mechanical metamaterials with graph networks. Int. J. Mech. Sci. 238, 107835 (2023).

    Google Scholar 

  101. Wang, L. et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Methods Appl. Mech. Eng. 372, 113377 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  102. Dieleman, P., Vasmel, N., Waitukaitis, S. & van Hecke, M. Jigsaw puzzle design of pluripotent origami. Nat. Phys. 16, 63–68 (2020).

    Google Scholar 

  103. Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).

    ADS  Google Scholar 

  104. Chaudhary, G., Niu, L., Han, Q., Lewicka, M. & Mahadevan, L. Geometric mechanics of ordered and disordered kirigami. Proc. R. Soc. A 479, 20220822 (2023).

    ADS  MathSciNet  Google Scholar 

  105. Dudte, L. H., Choi, G. P. & Mahadevan, L. An additive algorithm for origami design. Proc. Natl Acad. Sci. USA 118, e2019241118 (2021).

    MathSciNet  Google Scholar 

  106. Wu, Y.-y et al. Evaluation of different culture techniques of osteoblasts on 3d scaffolds. Cent. Eur. J. Biol. 5, 456–465 (2010).

    Google Scholar 

  107. Carlquist, S. Living cells in wood 3. Overview; functional anatomy of the parenchyma network. Bot. Rev. 84, 242–294 (2018).

    Google Scholar 

  108. Podroužek, J., Marcon, M., Ninčević, K. & Wan-Wendner, R. Bio-inspired 3d infill patterns for additive manufacturing and structural applications. Materials 12, 499 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) under grant no. ZA171/14-1.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Michael Zaiser or Stefano Zapperi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Corentin Coulais, Lisa Manning and Xin Ren for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Auxetic behaviour

Lateral compression in response to longitudinal compression or lateral extension in response to longitudinal extension.

Compaction bands

Narrow regions with increased material density.

Embryonic shear band

A narrow region of shear strain localization anticipating the formation of a shear band.

Meta-precipitates

A localized portion of a metamaterial with a lattice structure different from the main lattice structure.

Process zone

The area close to the crack tip where linear elastic behaviour breaks down.

Soft modes

A deformation associated with zero force.

Tensegrity structures

Structures consisting of pre-strained members, some loaded in pure compression and others in pure tension, such that this distinction is maintained under external loading.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaiser, M., Zapperi, S. Disordered mechanical metamaterials. Nat Rev Phys 5, 679–688 (2023). https://doi.org/10.1038/s42254-023-00639-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00639-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing