Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Analogue simulations of quantum gravity with fluids

Abstract

Technological advances in controlling and manipulating fluids have enabled the experimental realization of acoustic analogues of gravitational black holes. A flowing fluid provides an effective curved spacetime on which sound waves can propagate, allowing the simulation of gravitational geometries and related phenomena. The past decade has witnessed various hydrodynamic experiments testing disparate aspects of black-hole physics culminating with experimental evidence of Hawking radiation and Penrose superradiance. In this Perspective article, we discuss the potential use of analogue hydrodynamic systems beyond classical general relativity towards the exploration of quantum gravitational effects. These include possible insights into the information-loss paradox, black-hole physics with Planck-scale quantum corrections, emergent gravity scenarios and the regularization of curvature singularities. We aim at bridging the gap between the non-overlapping communities of experimentalists working with classical and quantum fluids and quantum-gravity theorists, by illustrating the opportunities made possible by the latest experimental and theoretical developments in these areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of backreaction of the phonon.
Fig. 2: Schematic of the self-steepening of a density wave.

Similar content being viewed by others

References

  1. Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).

    ADS  MATH  Google Scholar 

  2. Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). [Erratum: Commun. Math. Phys. 46, 206 (1976)].

    ADS  MathSciNet  MATH  Google Scholar 

  3. Penrose, R. & Floyd, R. M. Extraction of rotational energy from a black hole. Nature 229, 177–179 (1971).

    ADS  Google Scholar 

  4. Misner, C. Stability of Kerr black holes against scalar perturbations. Bull. Am. Phys. Soc. 17, 472 (1972).

    Google Scholar 

  5. Zel’dovich, Y. B. Generation of waves by a rotating body. Sov. J. Exp. Theor. Phys. Lett. 14, 180–181 (1971).

    ADS  Google Scholar 

  6. Starobinskiǐ, A. A. Amplification of waves during reflection from a rotating ‘black hole’. Sov. J. Exp. Theor. Phys. Lett. 37, 28–32 (1973).

    ADS  Google Scholar 

  7. Starobinskiǐ, A. A. & Churilov, S. M. Amplification of electromagnetic and gravitational waves scattered by a rotating ‘black hole’. Sov. J. Exp. Theor. Phys. Lett. 38, 1–5 (1974).

    ADS  Google Scholar 

  8. Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976).

    ADS  Google Scholar 

  9. Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

    ADS  Google Scholar 

  10. Barceló, C., Liberati, S. & Visser, M. Analogue gravity. Living Rev. Relativ. 14, 3 (2011).

    ADS  MATH  Google Scholar 

  11. Barceló, C. Analogue black-hole horizons. Nat. Phys. 15, 210–213 (2019).

    Google Scholar 

  12. Faccio, D. et al. (eds). Analogue Gravity Phenomenology Vol. 870 (Springer, 2013).

  13. White, R. W. Acoustic ray tracing in moving inhomogeneous fluids. J. Acoust. Soc. Am. 53, 1700–1704 (1973).

    ADS  Google Scholar 

  14. Visser, M. Hawking radiation without black hole entropy. Phys. Rev. Lett. 80, 3436–3439 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  15. Visser, M. Acoustic black holes: horizons, ergospheres and Hawking radiation. Class. Quantum Grav. 15, 1767–1791 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  16. Almeida, C. R. & Jacquet, M. J. Analogue gravity and the Hawking effect: historical perspective and literature review. Preprint at https://doi.org/10.48550/arXiv.2212.08838 (2022).

  17. Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T. G. & Leonhardt, U. Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect? New J. Phys. 10, 053015 (2008).

    ADS  Google Scholar 

  18. Rousseaux, G. et al. Horizon effects with surface waves on moving water. New J. Phys. 12, 095018 (2010).

    ADS  Google Scholar 

  19. Lahav, O. et al. Realization of a sonic black hole analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).

    ADS  Google Scholar 

  20. Elazar, M., Fleurov, V. & Bar-Ad, S. All-optical event horizon in an optical analog of a laval nozzle. Phys. Rev. A 86, 063821 (2012).

    ADS  Google Scholar 

  21. Nguyen, H. S. et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons. Phys. Rev. Lett. 114, 036402 (2015).

    ADS  Google Scholar 

  22. Človečko, M., Gažo, E., Kupka, M. & Skyba, P. Magnonic analog of black- and white-hole horizons in superfluid 3He−b. Phys. Rev. Lett. 123, 161302 (2019).

    ADS  Google Scholar 

  23. Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

    ADS  Google Scholar 

  24. Euvé, L.-P. & Rousseaux, G. Non-linear processes and stimulated Hawking radiation in hydrodynamics for decelerating subcritical free surface flows with a subluminal dispersion relation. Preprint at https://doi.org/10.48550/arXiv.2112.12504 (2021).

  25. Euvé, L.-P., Michel, F., Parentani, R., Philbin, T. G. & Rousseaux, G. Observation of noise correlated by the Hawking effect in a water tank. Phys. Rev. Lett. 117, 121301 (2016).

    ADS  Google Scholar 

  26. Euvé, L.-P., Robertson, S., James, N., Fabbri, A. & Rousseaux, G. Scattering of co-current surface waves on an analogue black hole. Phys. Rev. Lett. 124, 141101 (2020).

    ADS  Google Scholar 

  27. Fourdrinoy, J., Robertson, S., James, N., Fabbri, A. & Rousseaux, G. Correlations on weakly time-dependent transcritical white-hole flows. Phys. Rev. D 105, 085022 (2022).

    ADS  Google Scholar 

  28. Steinhauer, J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12, 959–965 (2016).

    Google Scholar 

  29. de Nova, J. R. M., Golubkov, K., Kolobov, V. I. & Steinhauer, J. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 569, 688–691 (2019).

    ADS  Google Scholar 

  30. Kolobov, V. I., Golubkov, K., de Nova, J. R. M. & Steinhauer, J. Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole. Nat. Phys. 17, 362–367 (2021).

    Google Scholar 

  31. Hu, J., Feng, L., Zhang, Z. & Chin, C. Quantum simulation of Unruh radiation. Nat. Phys. 15, 785–789 (2019).

    Google Scholar 

  32. Vocke, D. et al. Rotating black hole geometries in a two-dimensional photon superfluid. Optica 5, 1099–1103 (2018).

    ADS  Google Scholar 

  33. Torres, T. et al. Rotational superradiant scattering in a vortex flow. Nat. Phys. 13, 833–836 (2017).

    Google Scholar 

  34. Torres, T., Patrick, S., Richartz, M. & Weinfurtner, S. Quasinormal mode oscillations in an analogue black hole experiment. Phys. Rev. Lett. 125, 011301 (2020).

    ADS  MathSciNet  Google Scholar 

  35. Patrick, S. Rotational superradiance with Bogoliubov dispersion. Class. Quantum Grav. 38, 095010 (2021).

    ADS  MathSciNet  MATH  Google Scholar 

  36. Cromb, M. et al. Amplification of waves from a rotating body. Nat. Phys. 16, 1069–1073 (2020).

    Google Scholar 

  37. Braidotti, M. C. et al. Measurement of Penrose superradiance in a photon superfluid. Phys. Rev. Lett. 128, 013901 (2022).

    ADS  Google Scholar 

  38. Braidotti, M. C., Marino, F., Wright, E. M. & Faccio, D. The Penrose process in nonlinear optics. AVS Quantum Sci. 4, 010501 (2022).

    ADS  Google Scholar 

  39. Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B. & Campbell, G. K. A rapidly expanding Bose–Einstein condensate: an expanding universe in the lab. Phys. Rev. X 8, 021021 (2018).

    Google Scholar 

  40. Steinhauer, J. et al. Analogue cosmological particle creation in an ultracold quantum fluid of light. Nat. Commun. 13, 2890 (2022).

    ADS  Google Scholar 

  41. Hawking, S. W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976).

    ADS  MathSciNet  Google Scholar 

  42. Maldacena, J. Black holes and quantum information. Nat. Rev. Phys. 2, 123–125 (2020).

    Google Scholar 

  43. Raju, S. Lessons from the information paradox. Phys. Rep. 943, 1–80 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  44. Vachaspati, T., Stojkovic, D. & Krauss, L. M. Observation of incipient black holes and the information loss problem. Phys. Rev. D 76, 024005 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  45. Schützhold, R., Uhlmann, M., Xu, Y. & Fischer, U. R. Quantum backreaction in dilute Bose–Einstein condensates. Phys. Rev. D 72, 105005 (2005).

    ADS  Google Scholar 

  46. Baak, S.-S., Ribeiro, C. C. H. & Fischer, U. R. Number-conserving solution for dynamical quantum backreaction in a Bose–Einstein condensate. Phys. Rev. A 106, 053319 (2022).

    ADS  MathSciNet  Google Scholar 

  47. Patrick, S., Goodhew, H., Gooding, C. & Weinfurtner, S. Backreaction in an analogue black hole experiment. Phys. Rev. Lett. 126, 041105 (2021).

    ADS  MathSciNet  Google Scholar 

  48. Liberati, S., Tricella, G. & Trombettoni, A. The information loss problem: an analogue gravity perspective. Entropy 21, 940 (2019).

    ADS  MathSciNet  Google Scholar 

  49. Perez, A. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. Class. Quantum Grav. 32, 084001 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  50. Jacquet, M. J. et al. Quantum vacuum excitation of a quasinormal mode in an analog model of black hole spacetime. Phys. Rev. Lett. 130, 111501 (2023).

    ADS  Google Scholar 

  51. Calmet, X., Casadio, R., Hsu, S. D. H. & Kuipers, F. Quantum hair from gravity. Phys. Rev. Lett. 128, 111301 (2022).

    ADS  MathSciNet  Google Scholar 

  52. Calmet, X. & Hsu, S. D. Quantum hair and black hole information. Phys. Lett. B 827, 136995 (2022).

    MathSciNet  MATH  Google Scholar 

  53. Cheng, P. & An, Y. Soft black hole information paradox: page curve from Maxwell soft hair of a black hole. Phys. Rev. D 103, 126020 (2021).

    ADS  MathSciNet  Google Scholar 

  54. Krauss, L. M. & Wilczek, F. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett. 62, 1221–1223 (1989).

    ADS  Google Scholar 

  55. Coleman, S. R., Krauss, L. M., Preskill, J. & Wilczek, F. Quantum hair and quantum gravity. Gen. Rel. Grav. 24, 9–16 (1992).

    ADS  MathSciNet  Google Scholar 

  56. Preskill, J. & Krauss, L. M. Local discrete symmetry and quantum-mechanical hair. Nucl. Phys. B 341, 50–100 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  57. Berry, M. V., Chambers, R. G., Large, M. D., Upstill, C. & Walmsley, J. C. Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue. Eur. J. Phys. 1, 154–162 (1980).

    MathSciNet  Google Scholar 

  58. Vivanco, F., Melo, F., Coste, C. & Lund, F. Surface wave scattering by a vertical vortex and the symmetry of the Aharonov–Bohm wave function. Phys. Rev. Lett. 83, 1966–1969 (1999).

    ADS  Google Scholar 

  59. Kwon, W. J. et al. Sound emission and annihilations in a programmable quantum vortex collider. Nature 600, 64–69 (2021).

    ADS  Google Scholar 

  60. Herdeiro, C. A. R. & Radu, E. Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014).

    ADS  Google Scholar 

  61. Benone, C. L., Crispino, L. C. B., Herdeiro, C. & Radu, E. Kerr–Newman scalar clouds. Phys. Rev. D 90, 104024 (2014).

    ADS  Google Scholar 

  62. Press, W. H. & Teukolsky, S. A. Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972).

    ADS  Google Scholar 

  63. Hod, S. Stationary scalar clouds around rotating black holes. Phys. Rev. D 86, 104026 (2012).

    ADS  Google Scholar 

  64. Hod, S. Stationary resonances of rapidly-rotating Kerr black holes. Eur. Phys. J. C 73, 2378 (2013).

    ADS  Google Scholar 

  65. Girelli, F., Liberati, S. & Sindoni, L. Gravitational dynamics in Bose–Einstein condensates. Phys. Rev. D 78, 084013 (2008).

    ADS  Google Scholar 

  66. Marino, F. Massive phonons and gravitational dynamics in a photon-fluid model. Phys. Rev. A 100, 063825 (2019).

    ADS  Google Scholar 

  67. Fischer, U. R. & Schützhold, R. Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates. Phys. Rev. A 70, 063615 (2004).

    ADS  Google Scholar 

  68. Visser, M. & Weinfurtner, S. Massive Klein–Gordon equation from a Bose–Einstein-condensation-based analogue spacetime. Phys. Rev. D 72, 044020 (2005).

    ADS  Google Scholar 

  69. Cominotti, R. et al. Observation of massless and massive collective excitations with Faraday patterns in a two-component superfluid. Phys. Rev. Lett. 128, 210401 (2022).

    ADS  Google Scholar 

  70. Ciszak, M. & Marino, F. Acoustic black-hole bombs and scalar clouds in a photon-fluid model. Phys. Rev. D 103, 045004 (2021).

    ADS  MathSciNet  Google Scholar 

  71. Hod, S. Stationary scalar clouds supported by rapidly-rotating acoustic black holes in a photon-fluid model. Phys. Rev. D 103, 084003 (2021).

    ADS  MathSciNet  Google Scholar 

  72. Hod, S. No-short scalar hair theorem for spinning acoustic black holes in a photon-fluid model. Phys. Rev. D 104, 104041 (2021).

    ADS  MathSciNet  Google Scholar 

  73. Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976).

    ADS  Google Scholar 

  74. Chen, P., Ong, Y. & Yeom, D.-h. Black hole remnants and the information loss paradox. Phys. Rep. 603, 1–45 (2015).

    ADS  MathSciNet  Google Scholar 

  75. Amelino-Camelia, G., Ellis, J. R., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    ADS  Google Scholar 

  76. Garay, L. J. Spacetime foam as a quantum thermal bath. Phys. Rev. Lett. 80, 2508–2511 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  77. Amelino-Camelia, G. Special treatment. Nature 418, 34–35 (2002).

    ADS  MATH  Google Scholar 

  78. Magueijo, J. & Smolin, L. Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67, 044017 (2003).

    ADS  MathSciNet  Google Scholar 

  79. Liberati, S. Tests of Lorentz invariance: a 2013 update. Class. Quantum Grav. 30, 133001 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  80. Amelino-Camelia, G., Arzano, M. & Procaccini, A. Severe constraints on the loop-quantum-gravity energy–momentum dispersion relation from the black-hole area–entropy law. Phys. Rev. D 70, 107501 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  81. Ling, Y., Hu, B. & Li, X. Modified dispersion relations and black hole physics. Phys. Rev. D 73, 087702 (2006).

    ADS  Google Scholar 

  82. Nozari, K. & Sefidgar, A. Comparison of approaches to quantum correction of black hole thermodynamics. Phys. Lett. B 635, 156–160 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  83. Rovelli, C. & Speziale, S. Reconcile Planck-scale discreteness and the Lorentz–Fitzgerald contraction. Phys. Rev. D 67, 064019 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  84. Fontanini, M., Spallucci, E. & Padmanabhan, T. Zero-point length from string fluctuations. Phys. Lett. B 633, 627–630 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  85. Hu, B. L. Can spacetime be a condensate? Int. J. Theor. Phys. 44, 1785–1806 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  86. Bombelli, L., Lee, J., Meyer, D. & Sorkin, R. D. Space-time as a causal set. Phys. Rev. Lett. 59, 521–524 (1987).

    ADS  MathSciNet  Google Scholar 

  87. Konopka, T., Markopoulou, F. & Severini, S. Quantum graphity: a model of emergent locality. Phys. Rev. D 77, 104029 (2008).

    ADS  MathSciNet  Google Scholar 

  88. Jacobson, T. Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  89. Sakharov, A. D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040–1041 (1968).

    ADS  Google Scholar 

  90. Visser, M. Sakharov’s induced gravity: a modern perspective. Mod. Phys. Lett. A 17, 977–991 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  91. Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 29 (2011).

    MathSciNet  MATH  Google Scholar 

  92. Oriti, D. The group field theory approach to quantum gravity: some recent results. Preprint at https://doi.org/10.48550/arXiv.0912.2441 (2009).

  93. Beisert, N. et al. Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99, 3–32 (2011).

    ADS  MathSciNet  Google Scholar 

  94. Maldacena, J. Int. J. Theor. Phys. 38, 1113–1133 (1999).

    Google Scholar 

  95. Pasterski, S., Pate, M. & Raclariu, A.-M. Celestial holography. Preprint at https://doi.org/10.48550/arXiv.2111.11392 (2021).

  96. Freidel, L., Geiller, M. & Pranzetti, D. Edge modes of gravity. Part I: corner potentials and charges. J. High Energy Phys. 2020, 26 (2020).

    MathSciNet  MATH  Google Scholar 

  97. Freidel, L., Oliveri, R., Pranzetti, D. & Speziale, S. Extended corner symmetry, charge bracket and Einstein’s equations. J. High Energy Phys. 2021, 83 (2021).

    MathSciNet  MATH  Google Scholar 

  98. Jafferis, D. et al. Traversable wormhole dynamics on a quantum processor. Nature 612, 51–55 (2022).

    ADS  Google Scholar 

  99. Jafferis, D. L. & Schneider, E. Stringy ER = EPR. J. High Energy Phys. 2022, 195 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  100. Van Raamsdonk, M. Spacetime from bits. Science 370, 198–202 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  101. Hartnoll, S. et al. Quantum connections. Nat. Rev. Phys. 3, 391–393 (2021).

    Google Scholar 

  102. Wheeler, J. A. Information, physics, quantum: the search for links. 3rd International Symposium on Foundations of Quantum Mechanics in Light (Physical Society of Japan, 1989).

  103. Rousseaux, G. The basics of water waves theory for analogue gravity. Lecture Notes in Physics 81–107 (Springer International Publishing, 2013).

  104. Bogoliubov, N. N. On the theory of superfluidity. J. Phys. 11, 23–32 (1947).

    MathSciNet  Google Scholar 

  105. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    ADS  Google Scholar 

  106. Fontaine, Q. et al. Observation of the Bogoliubov dispersion in a fluid of light. Phys. Rev. Lett. 121, 183604 (2018).

    ADS  Google Scholar 

  107. Chä, S.-Y. & Fischer, U. R. Probing the scale invariance of the inflationary power spectrum in expanding quasi-two-dimensional dipolar condensates. Phys. Rev. Lett. 118, 130404 (2017).

    ADS  Google Scholar 

  108. Liberati, S., Visser, M. & Weinfurtner, S. Naturalness in an emergent analogue spacetime. Phys. Rev. Lett. 96, 151301 (2006).

    ADS  Google Scholar 

  109. Unruh, W. G. Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51, 2827–2838 (1995).

    ADS  MathSciNet  Google Scholar 

  110. Jacobson, T. Black-hole evaporation and ultrashort distances. Phys. Rev. D 44, 1731–1739 (1991).

    ADS  MathSciNet  Google Scholar 

  111. Corley, S. & Jacobson, T. Hawking spectrum and high frequency dispersion. Phys. Rev. D 54, 1568–1586 (1996).

    ADS  Google Scholar 

  112. Jacobson, T. Black hole radiation in the presence of a short distance cutoff. Phys. Rev. D 48, 728–741 (1993).

    ADS  MathSciNet  Google Scholar 

  113. Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).

    ADS  Google Scholar 

  114. Euvé, L.-P. & Rousseaux, G. Classical analogue of an interstellar travel through a hydrodynamic wormhole. Phys. Rev. D 96, 064042 (2017).

    ADS  Google Scholar 

  115. Unruh, W. G. & Schützhold, R. Universality of the Hawking effect. Phys. Rev. D 71, 024028 (2005).

    ADS  MathSciNet  Google Scholar 

  116. Ribeiro, C. C. H. & Fischer, U. R. Impact of trans-Planckian excitations on black-hole radiation in dipolar condensates. Phys. Rev. D 107, L121502 (2023).

    MathSciNet  Google Scholar 

  117. Novello, M. & Goulart, E. Beyond analog gravity: the case of exceptional dynamics. Class. Quantum Grav. 28, 145022 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  118. Goulart, E., Novello, M., Falciano, F. T. & Toniato, J. D. Hidden geometries in nonlinear theories: a novel aspect of analogue gravity. Class. Quantum Grav. 28, 245008 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  119. Cherubini, C. & Filippi, S. Von Mises’ potential flow wave equation and nonlinear analog gravity. Phys. Rev. D 84, 124010 (2011).

    ADS  Google Scholar 

  120. Marino, F., Maitland, C., Vocke, D., Ortolan, A. & Faccio, D. Emergent geometries and nonlinear-wave dynamics in photon fluids. Sci. Rep. 6, 23282 (2016).

    ADS  Google Scholar 

  121. Datta, S. & Fischer, U. R. Analogue gravitational field from nonlinear fluid dynamics. Class. Quantum Grav. 39, 075018 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  122. Balbinot, R., Fagnocchi, S., Fabbri, A. & Procopio, G. P. Backreaction in acoustic black holes. Phys. Rev. Lett. 94, 161302 (2005).

    ADS  MathSciNet  Google Scholar 

  123. Finazzi, S., Liberati, S. & Sindoni, L. Cosmological constant: a lesson from Bose–Einstein condensates. Phys. Rev. Lett. 108, 071101 (2012).

    ADS  Google Scholar 

  124. Belenchia, A., Liberati, S. & Mohd, A. Emergent gravitational dynamics in a relativistic Bose–Einstein condensate. Phys. Rev. D 90, 104015 (2014).

    ADS  Google Scholar 

  125. Nordström, G. Relativitätsprinzip und gravitation. Phys. Z. 13, 1126–1129 (1912).

    MATH  Google Scholar 

  126. Nordström, G. Zur theorie der gravitation vom standpunkt des relativitäatsprinzips. Ann. Phys. 347, 533–554 (1913).

    MATH  Google Scholar 

  127. Deruelle, N. Nordstrom’s scalar theory of gravity and the equivalence principle. Gen. Rel. Grav. 43, 3337–3354 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  128. Mosna, R. A., Pitelli, Ja. P. M. & Richartz, M. Analogue model for anti-de Sitter as a description of point sources in fluids. Phys. Rev. D 94, 104065 (2016).

    ADS  MathSciNet  Google Scholar 

  129. Aruquipa, D. Q., Mosna, R. A. & Pitelli, Ja. P. M. Analogue gravity and radial fluid flows: the case of AdS and its deformations. Phys. Rev. D 97, 104056 (2018).

    ADS  MathSciNet  Google Scholar 

  130. Hossenfelder, S. Analog systems for gravity duals. Phys. Rev. D 91, 124064 (2015).

    ADS  Google Scholar 

  131. Hossenfelder, S. A relativistic acoustic metric for planar black holes. Phys. Lett. B 752, 13–17 (2016).

    ADS  MATH  Google Scholar 

  132. Dey, R., Liberati, S. & Turcati, R. AdS and dS black hole solutions in analogue gravity: the relativistic and nonrelativistic cases. Phys. Rev. D 94, 104068 (2016).

    ADS  MathSciNet  Google Scholar 

  133. Bhattacharyya, S., Minwalla, S., Hubeny, V. E. & Rangamani, M. Nonlinear fluid dynamics from gravity. J. High Energy Phys. 2008, 045 (2008).

    Google Scholar 

  134. Bhattacharyya, S. et al. Local fluid dynamical entropy from gravity. J. High Energy Phys. 2008, 055 (2008).

    MathSciNet  Google Scholar 

  135. Waeber, S. & Yaffe, L. G. Colliding localized, lumpy holographic shocks with a granular nuclear structure. J. High Energy Phys. 2023, 208 (2023).

    Google Scholar 

  136. Folkestad, A., Grozdanov, S., Rajagopal, K. & van der Schee, W. Coupling constant corrections in a holographic model of heavy ion collisions with nonzero baryon number density. J. High Energy Phys. 2019, 93 (2019).

    MathSciNet  Google Scholar 

  137. Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965).

    ADS  MathSciNet  MATH  Google Scholar 

  138. Hawking, S. W. & Penrose, R. The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970).

    ADS  MathSciNet  MATH  Google Scholar 

  139. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics: Course of Theoretical Physics Vol. 6 (Elsevier, 2013).

  140. Riemann, B. Ueber die fortpflanzung ebener luftwellen von endlicher schwingungsweite. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 8, 43–66 (1860).

    Google Scholar 

  141. Bohm, D. A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166–179 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  142. Fischer, U. R. & Datta, S. Dispersive censor of acoustic spacetimes with a shock-wave singularity. Phys. Rev. D 107, 084023 (2023).

    ADS  MathSciNet  Google Scholar 

  143. Husain, V., Kelly, J. G., Santacruz, R. & Wilson-Ewing, E. Quantum gravity of dust collapse: shock waves from black holes. Phys. Rev. Lett. 128, 121301 (2022).

    ADS  MathSciNet  Google Scholar 

  144. Rousseaux, G., Mougenot, J.-M., Chatellier, L., David, L. & Calluaud, D. A novel method to generate tidal-like bores in the laboratory. Eur. J. Mech. B Fluids 55, 31–38 (2016).

    ADS  Google Scholar 

  145. Dutton, Z., Budde, M., Slowe, C. & Hau, L. V. Observation of quantum shock waves created with ultra- compressed slow light pulses in a Bose–Einstein condensate. Science 293, 663–668 (2001).

    ADS  Google Scholar 

  146. Wan, W., Jia, S. & Fleischer, J. W. Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2006).

    Google Scholar 

  147. Xu, G. et al. From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat. Commun. 6, 8131 (2015).

    ADS  Google Scholar 

  148. Bienaimé, T. et al. Quantitative analysis of shock wave dynamics in a fluid of light. Phys. Rev. Lett. 126, 183901 (2021).

    ADS  Google Scholar 

  149. Bendahmane, A., Xu, G., Kudlinski, A., Mussot, A. & Trillo, S. From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat. Commun. 13, 3137 (2022).

    ADS  Google Scholar 

  150. Volovik, G. E. Hydraulic jump as a white hole. J. Exp. Theor. Phys. Lett. 82, 624–627 (2005).

    Google Scholar 

  151. Jannes, G., Piquet, R., Maïssa, P., Mathis, C. & Rousseaux, G. Experimental demonstration of the supersonic–subsonic bifurcation in the circular jump: a hydrodynamic white hole. Phys. Rev. E 83, 056312 (2011).

    ADS  Google Scholar 

  152. Craik, A. D. D., Latham, R. C., Fawkes, M. J. & Gribbon, P. W. F. The circular hydraulic jump. J. Fluid Mech. 112, 347–362 (1981).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ciszak, P. Hoodbhoy, B.S. Kay, R. Norte, K.A. Peacock, D.J. Smith, T.S. Tsun and W.G. Unruh for valuable comments on the manuscript. The authors also thank S. Bahamonde for sharing many ideas on the information paradox and holography in analogue gravity and G. Roati for fruitful discussions on BECs experiments.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Francesco Marino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Uwe Fischer, Etera Livine and Germain Rousseaux for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braunstein, S.L., Faizal, M., Krauss, L.M. et al. Analogue simulations of quantum gravity with fluids. Nat Rev Phys 5, 612–622 (2023). https://doi.org/10.1038/s42254-023-00630-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00630-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing