Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Photocurrent as a multiphysics diagnostic of quantum materials

Abstract

The photoexcitation life cycle from incident photon (and creation of photoexcited electron–hole pair) to ultimate extraction of electrical current is a complex multiphysics process spanning across a range of spatiotemporal scales of quantum materials. Photocurrent is sensitive to a myriad of physical processes across these spatiotemporal scales, and over the past decade it has emerged as a versatile probe of electronic states, Bloch band quantum geometry, quantum kinetic processes and device characteristics of quantum materials. This Technical Review outlines the key multiphysics principles of photocurrent diagnostics, for resolving band structure and characterizing topological materials, for disentangling distinct types of carrier scattering that can range from femtosecond to nanosecond timescales and for enabling new types of remote-sensing protocols and photocurrent nanoscopy. These distinctive capabilities underscore photocurrent diagnostics as a novel multiphysics probe for a growing class of quantum materials with properties governed by physics spanning multiple spatiotemporal scales.

Key points

  • The transduction of light into electrical signals (photocurrent) in quantum materials involves physical phenomena across multiple spatiotemporal scales and, therefore, photocurrent stands out as a multiphysics diagnostic tool of quantum materials.

  • The long-range collection of locally generated photocurrent, as mediated by the streamlines of diffusion currents, enables a ‘remote’ sensing of local symmetry breaking such as p–n junctions and edges.

  • Photocurrent spectroscopy can probe charge, spin and collective excitations with enhanced signal-to-noise characteristics and resolution for atomically thin materials with low optical weight.

  • The intimate connection between light–matter interaction and Bloch band quantum geometry renders bulk geometric photocurrents highly sensitive to the crystal symmetry and light polarization.

  • Technique innovation including near-field photocurrent probes as well as ultrafast photocurrents grant high spatiotemporal resolution, providing a range of new photocurrent diagnostic tools for quantum materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiphysics photocurrent diagnostics probes each stage of the photoexcitation life cycle.
Fig. 2: Non-local sensing of photocurrent for spatial imaging of quantum materials and devices.
Fig. 3: Photocurrent measurements of charge, spin and collective excitations in quantum systems.
Fig. 4: Quantum geometric photocurrents observed in various materials with distinct dimensionalities and symmetry.
Fig. 5: Ultrafast photocurrents.

Similar content being viewed by others

References

  1. Nelson, J. A. The Physics of Solar Cells (World Scientific Publishing Company, 2003).

  2. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).

    Article  ADS  Google Scholar 

  3. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013). This experiment used photocurrent to probe the carrier-cooling processes in graphene.

    Article  Google Scholar 

  4. Tielrooij, K.-J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015). This paper used photocurrent to probe the ultrafast carrier-heating processes in graphene.

    Article  ADS  Google Scholar 

  5. Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016). This experiment demonstrated photocurrent mapping with 20 nm spatial resolution by combining a near-field microscope with photocurrent detection.

    Article  ADS  Google Scholar 

  6. Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017). This experiment was the first to electrically detect spatial images of propagating plasmons in graphene by using photocurrent.

    Article  ADS  Google Scholar 

  7. Sunku, S. S. et al. Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nat. Commun. 12, 1641 (2021).

    Article  ADS  Google Scholar 

  8. Hesp, N. C. et al. Nano-imaging photoresponse in a Moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).

    Article  ADS  Google Scholar 

  9. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016). This paper unveiled the intimate connection between nonlinear optical responses and quantum geometry.

    Article  ADS  Google Scholar 

  10. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021). This experiment realized bulk quantum geometric photocurrents in a two-dimensional heterostructure using van der Waals interface engineering.

    Article  ADS  Google Scholar 

  11. Ma, C. et al. Intelligent infrared sensing enabled by tunable Moiré quantum geometry. Nature 604, 266–272 (2022). This experiment demonstrated how tunable quantum geometric photocurrents in a moiré heterostructure can be used for the intelligent sensing of infrared light.

    Article  ADS  Google Scholar 

  12. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  13. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article  ADS  Google Scholar 

  14. Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Article  ADS  Google Scholar 

  15. Park, J., Ahn, Y. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  16. Cao, H. et al. Photo-Nernst current in graphene. Nat. Phys. 12, 236–239 (2016).

    Article  Google Scholar 

  17. Ma, Q. et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 14, 145–150 (2019).

    Article  ADS  Google Scholar 

  18. Wang, Q. et al. Robust edge photocurrent response on layered type II Weyl semimetal WTe2. Nat. Commun. 10, 5736 (2019).

    Article  ADS  Google Scholar 

  19. Song, J. C. & Levitov, L. S. Shockley–Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014). This paper uncovered the spatially long-range nature of photocurrent in quantum materials and introduced a useful framework for understanding photocurrent spatial maps.

    Article  ADS  Google Scholar 

  20. Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).

    Article  ADS  Google Scholar 

  21. Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).

    Article  Google Scholar 

  22. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). This experiment demonstrated how the photothermoelectric effect dominates the photocurrent response of graphene and bilayer graphene.

    Article  ADS  Google Scholar 

  23. Seifert, P. et al. Quantized conductance in topological insulators revealed by the Shockley–Ramo theorem. Phys. Rev. Lett. 122, 146804 (2019).

    Article  ADS  Google Scholar 

  24. Shao, Y. et al. Nonlinear nanoelectrodynamics of a Weyl metal. Proc. Natl Acad. Sci. USA 118, e2116366118 (2021).

    Article  Google Scholar 

  25. Mayes, D. et al. Current flux imaging of a micromagnetic electrofoil. Preprint at https://arXiv.org/2002.07902 (2020).

  26. Xu, X., Gabor, N. M., Alden, J. S., Van Der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  ADS  Google Scholar 

  27. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  ADS  Google Scholar 

  28. Seifert, P. et al. Spin Hall photoconductance in a three-dimensional topological insulator at room temperature. Nat. Commun. 9, 331 (2018).

    Article  ADS  Google Scholar 

  29. Dantscher, K.-M. et al. Photogalvanic probing of helical edge channels in two-dimensional HgTe topological insulators. Phys. Rev. B 95, 201103 (2017).

    Article  ADS  Google Scholar 

  30. Plank, H. & Ganichev, S. D. A review on terahertz photogalvanic spectroscopy of Bi2Te3- and Sb2Te3-based three dimensional topological insulators. Solid-State Electron. 147, 44–50 (2018).

    Article  ADS  Google Scholar 

  31. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  32. Ju, L. et al. Tunable excitons in bilayer graphene. Science 358, 907–910 (2017).

    Article  ADS  Google Scholar 

  33. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  ADS  Google Scholar 

  34. Yang, J. et al. Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice. Science 375, 1295–1299 (2022).

    Article  ADS  Google Scholar 

  35. Han, T. et al. Accurate measurement of the gap of graphene/h-BN moiré superlattice through photocurrent spectroscopy. Phys. Rev. Lett. 126, 146402 (2021).

    Article  ADS  Google Scholar 

  36. Song, J. C. & Levitov, L. S. Energy flows in graphene: hot carrier dynamics and cooling. J. Phys. Condens. Matter 27, 164201 (2015).

    Article  ADS  Google Scholar 

  37. Song, J. C., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  38. Nazin, G., Zhang, Y., Zhang, L., Sutter, E. & Sutter, P. Visualization of charge transport through Landau levels in graphene. Nat. Phys. 6, 870–874 (2010).

    Article  Google Scholar 

  39. Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene. Nat. Nanotechnol. 10, 135–139 (2015).

    Article  ADS  Google Scholar 

  40. Wang, Y.-X. et al. Visualizing the thermoelectric origin of photocurrent flow in anisotropic semimetals. Preprint at https://arXiv.org/2203.17176 (2022).

  41. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935 (2003).

    Article  ADS  Google Scholar 

  42. Ivchenko, E. L. & Ganichev, S. D. Spin-dependent photogalvanic effects (a review). Preprint at https://arXiv.org/1710.09223 (2017).

  43. McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96 (2012).

    Article  ADS  Google Scholar 

  44. Ganichev, S. D. & Golub, L. E. Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy — a review. Phys. Status Solidi (B) 251, 1801–1823 (2014).

    Article  Google Scholar 

  45. Du, W., Wang, T., Chu, H.-S. & Nijhuis, C. A. Highly efficient on-chip direct electronic–plasmonic transducers. Nat. Photon. 11, 623–627 (2017).

    Article  ADS  Google Scholar 

  46. Woessner, A. et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. npj 2D Mater. Appl. 1, 25 (2017).

    Article  Google Scholar 

  47. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article  ADS  Google Scholar 

  48. Bandurin, D. A. et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018).

    Article  ADS  Google Scholar 

  49. Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).

    Article  ADS  Google Scholar 

  50. Barati, F. et al. Hot carrier-enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells. Nat. Nanotechnol. 12, 1134–1139 (2017).

    Article  ADS  Google Scholar 

  51. Vialla, F. et al. Tuning of impurity-bound interlayer complexes in a van der Waals heterobilayer. 2D Mater. 6, 035032 (2019).

    Article  Google Scholar 

  52. Barati, F. et al. Vibronic exciton–phonon states in stack-engineered van der Waals heterojunction photodiodes. Nano Lett. 22, 5751–5758 (2022).

    Article  ADS  Google Scholar 

  53. Badioli, M. et al. Phonon-mediated mid-infrared photoresponse of graphene. Nano Lett. 14, 6374–6381 (2014).

    Article  ADS  Google Scholar 

  54. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289–301 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    Article  ADS  Google Scholar 

  57. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  Google Scholar 

  58. Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010). This paper uncovered the Berry phase origin of helicity-dependent photocurrents.

    Article  ADS  Google Scholar 

  59. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  Google Scholar 

  60. Ahn, J., Guo, G.-Y. & Nagaosa, N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys. Rev. X 10, 041041 (2020).

    Google Scholar 

  61. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  62. Song, J. C. & Kats, M. A. Giant Hall photoconductivity in narrow-gapped Dirac materials. Nano Lett. 16, 7346–7351 (2016).

    Article  ADS  Google Scholar 

  63. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  64. Yin, J. et al. Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science 375, 1398–1402 (2022).

    Article  ADS  Google Scholar 

  65. Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar materials — hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016).

    Article  ADS  Google Scholar 

  66. Fridkin, V. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 46, 654–658 (2001).

    Article  ADS  Google Scholar 

  67. Cook, A. M., Fregoso, B. M., De Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    Article  ADS  Google Scholar 

  68. von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590 (1981).

    Article  ADS  Google Scholar 

  69. de Juan, F. et al. Difference frequency generation in topological semimetals. Phys. Rev. Res. 2, 012017 (2020).

    Article  Google Scholar 

  70. Matsyshyn, O. & Sodemann, I. Nonlinear Hall acceleration and the quantum rectification sum rule. Phys. Rev. Lett. 123, 246602 (2019).

    Article  ADS  Google Scholar 

  71. Gao, L., Addison, Z., Mele, E. & Rappe, A. M. Intrinsic Fermi-surface contribution to the bulk photovoltaic effect. Phys. Rev. Res. 3, L042032 (2021).

    Article  Google Scholar 

  72. Watanabe, H. & Yanase, Y. Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X 11, 011001 (2021).

    Google Scholar 

  73. Shi, L.-K., Matsyshyn, O., Song, J. C. & Villadiego, I. S. The Berry dipole photovoltaic demon and the thermodynamics of photo-current generation within the optical gap of metals. Preprint at https://arXiv.org/2207.03496 (2022).

  74. Onishi, Y., Watanabe, H., Morimoto, T. & Nagaosa, N. Effects of relaxation on the photovoltaic effect and possibility for photocurrent within the transparent region. Phys. Rev. B 106, 235110 (2022).

    Article  ADS  Google Scholar 

  75. Shi, L.-K, Zhang, D., Chang, K. & Song, J. C. Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals. Phys. Rev. Lett. 126, 197402 (2021).

    Article  ADS  Google Scholar 

  76. Xiong, Y., Shi, L.-K. & Song, J. C. Polariton drag enabled quantum geometric photocurrents in high-symmetry materials. Phys. Rev. B 106, 205423 (2022).

    Article  ADS  Google Scholar 

  77. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017). This experiment realized helicity-dependent photocurrents in topological Weyl semimetals.

    Article  Google Scholar 

  78. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  ADS  Google Scholar 

  79. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  ADS  Google Scholar 

  80. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  Google Scholar 

  81. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article  ADS  Google Scholar 

  82. Avdoshkin, A., Kozii, V. & Moore, J. E. Interactions remove the quantization of the chiral photocurrent at Weyl points. Phys. Rev. Lett. 124, 196603 (2020).

    Article  ADS  Google Scholar 

  83. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article  ADS  Google Scholar 

  84. Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2021).

    Article  Google Scholar 

  85. Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).

    Article  ADS  Google Scholar 

  86. Kaplan, D., Holder, T. & Yan, B. Twisted photovoltaics at terahertz frequencies from momentum shift current. Phys. Rev. Res. 4, 013209 (2022).

    Article  Google Scholar 

  87. Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron–electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).

    Article  Google Scholar 

  88. Arora, A., Kong, J. F. & Song, J. C. Strain-induced large injection current in twisted bilayer graphene. Phys. Rev. B 104, L241404 (2021).

    Article  ADS  Google Scholar 

  89. Otteneder, M. et al. Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett. 20, 7152–7158 (2020).

    Article  ADS  Google Scholar 

  90. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  Google Scholar 

  91. Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 10, 3783 (2019).

    Article  ADS  Google Scholar 

  92. Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in PT-symmetric magnetic topological quantum materials. npj Comput. Mater. 6, 199 (2020).

    Article  ADS  Google Scholar 

  93. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  94. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  95. Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).

    Article  Google Scholar 

  96. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  97. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799 (1987).

    Article  ADS  Google Scholar 

  98. Fischer, M. C., Wilson, J. W., Robles, F. E. & Warren, W. S. Invited review article: pump-probe microscopy. Rev. Sci. Instrum. 87, 031101 (2016).

    Article  ADS  Google Scholar 

  99. Gabor, N. M., Zhong, Z., Bosnick, K. & McEuen, P. L. Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p–i–n photodiodes. Phys. Rev. Lett. 108, 087404 (2012).

    Article  ADS  Google Scholar 

  100. Vogt, K. T., Shi, S.-F., Wang, F. & Graham, M. W. Ultrafast photocurrent and absorption microscopy of few-layer transition metal dichalcogenide devices that isolate rate-limiting dynamics driving fast and efficient photoresponse. J. Phys. Chem. C 124, 15195–15204 (2020).

    Article  Google Scholar 

  101. Smith, F. et al. Picosecond GaAs-based photoconductive optoelectronic detectors. Appl. Phys. Lett. 54, 890–892 (1989).

    Article  ADS  Google Scholar 

  102. Downey, P. & Schwartz, B. Picosecond photoresponse in 3He+ bombarded InP photoconductors. Appl. Phys. Lett. 44, 207–209 (1984).

    Article  ADS  Google Scholar 

  103. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  ADS  Google Scholar 

  104. Song, J. C., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  105. Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    Article  ADS  Google Scholar 

  106. Song, J. C., Tielrooij, K. J., Koppens, F. H. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    Article  ADS  Google Scholar 

  107. Tielrooij, K.-J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  Google Scholar 

  108. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  ADS  Google Scholar 

  109. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  ADS  Google Scholar 

  110. Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    Article  ADS  Google Scholar 

  111. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  112. Wang, H., Zhang, C., Chan, W., Tiwari, S. & Rana, F. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun. 6, 8831 (2015).

    Article  ADS  Google Scholar 

  113. Massicotte, M. et al. Dissociation of two-dimensional excitons in monolayer WSe2. Nat. Commun. 9, 1633 (2018).

    Article  ADS  Google Scholar 

  114. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    Article  ADS  Google Scholar 

  115. Dexheimer, S. L. Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).

  116. Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).

    Article  ADS  Google Scholar 

  117. Cheng, L. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys. 15, 347–351 (2019).

    Article  Google Scholar 

  118. Prechtel, L. et al. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. Nano Lett. 12, 2337–2341 (2012).

    Article  ADS  Google Scholar 

  119. Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Prechtel, L. et al. Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett. 11, 269–272 (2011).

    Article  ADS  Google Scholar 

  121. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020). This experiment demonstrated the ultrafast Floquet engineering of band structure in graphene using an ultrafast time-domain photocurrent technique.

    Article  Google Scholar 

  122. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    Article  ADS  Google Scholar 

  123. Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).

    Article  ADS  Google Scholar 

  124. Liu, J., Xia, F., Xiao, D., Garcia de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).

    Article  ADS  Google Scholar 

  125. Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  ADS  Google Scholar 

  126. Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).

    Article  ADS  Google Scholar 

  127. Lundeberg, M. B. & Koppens, F. H. Thermodynamic reciprocity in scanning photocurrent maps. Preprint at https://arXiv.org/2011.04311 (2020).

  128. Xiong, Y., Shi, L.-K. & Song, J. C. Atomic configuration controlled photocurrent in van der Waals homostructures. 2D Mater. 8, 035008 (2021).

    Article  Google Scholar 

  129. Wang, H., Tang, X., Xu, H., Li, J. & Qian, X. Generalized Wilson loop method for nonlinear light–matter interaction. npj Quantum Mater. 7, 61 (2022).

    Article  ADS  Google Scholar 

  130. Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  131. Zhang, Y. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Wang and Z. Huang from Ma Laboratory for COMSOL simulations and figure assistance. Q.M. was supported through NSF Career DMR-2143426 and the CIFAR Azrieli Global Scholars programme. R.K.K. acknowledges the EU Horizon 2020 programme under the MarieSkłodowska-Curie grant numbers 754510 and 893030. S.-Y.X. was supported through NSF Career (Harvard fund 129522) DMR-2143177. F.H.L.K. acknowledges support from the ERC TOPONANOP (726001), the Government of Spain (PID2019-106875GB-I00; Severo Ochoa CEX2019-000910-S (MCIN/AEI/10.13039/501100011033)), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement numbers 881603 (Graphene flagship Core3) and 820378 (Quantum flagship). J.C.W.S. acknowledges support from the Singapore MOE Academic Research Fund Tier 3 Grant number MOE2018-T3-1-002.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding authors

Correspondence to Qiong Ma or Justin C. W. Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks James McIver and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Krishna Kumar, R., Xu, SY. et al. Photocurrent as a multiphysics diagnostic of quantum materials. Nat Rev Phys 5, 170–184 (2023). https://doi.org/10.1038/s42254-022-00551-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00551-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing