Abstract
The physics of the glass transition and amorphous materials continues to attract the attention of a wide research community after decades of effort. Supercooled liquids and glasses have been studied numerically since the advent of molecular dynamics and Monte Carlo simulations, and computer studies have greatly enhanced both experimental discoveries and theoretical developments. In this Review, we provide a modern perspective on this area. We describe the need to go beyond canonical methods when studying the glass transition — a problem that is notoriously difficult in terms of timescales, length scales and physical observables. We summarize recent algorithmic developments to achieve enhanced sampling and faster equilibration by using replica-exchange methods, cluster and swap Monte Carlo algorithms, and other techniques. We then review some major advances afforded by these tools regarding the statistical mechanical description of the liquid-to-glass transition, and the mechanical, vibrational and thermal properties of the glassy solid.
Key points
-
Simulations of glass-forming systems suffer from the rapidly growing relaxation times near the glass transition, which historically have limited simulations to the regime of very mild supercooling.
-
A variety of methods, including simulated tempering methods and cluster Monte Carlo approaches, have been developed to deal with issues relating to slow equilibration.
-
More recently, swap Monte Carlo methods, which augment standard local moves with swaps between particles that may be physically distant, have been shown to enable remarkably efficient equilibration in certain models of glass-forming systems.
-
The equilibration speed-up afforded by swap Monte Carlo makes it possible to study glassy properties and behaviours that were previously out of reach, such as the nature of low-energy excitations in well-annealed glasses, and the brittle-to-ductile transition.
-
Swap Monte Carlo has opened new vistas for the study of the behaviour of glassy systems, but new approaches for the simulation of dynamical behaviour as well as the equilibration of more complex glass-formers are still needed.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000).
Binder, K. & Young, A. P. Spin-glasses — experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).
Bryngelson, J. D. & Wolynes, P. G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl Acad. Sci. USA 84, 7524–7528 (1987).
Mezard, M. & Zecchina, R. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66, 056126 (2002).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).
Frenkel, D. & Smit, B. Understanding Molecular Simulation from Algorithms to Applications (Academic, 1996).
Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon, 1987).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys. Rev. E 51, 4626 (1995).
Ninarello, A., Berthier, L. & Coslovich, D. Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017).
Bouchaud, J.-P. & Biroli, G. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).
Franz, S. & Parisi, G. On non-linear susceptibility in supercooled liquids. J. Phys. Condens. Matter 12, 6335 (2000).
Berthier, L. et al. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J. Chem. Phys. 126, 184503 (2007).
Berthier, L. et al. Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations. J. Chem. Phys. 126, 184504 (2007).
Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017).
Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).
Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. J. Theor. Exp. Appl. Phys. 25, 1–9 (1972).
Phillips, W. A. Tunneling states in amorphous solids. J. Low Temp. Phys. 7, 351–360 (1972).
Berthier, L. & Kob, W. The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. J. Phys. Condens. Matter 19, 205130 (2007).
Bal, K. M. & Neyts, E. C. On the time scale associated with Monte Carlo simulations. J. Chem. Phys. 141, 204104 (2014).
Luijten, E. in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Vol. 1 (eds Ferrario, M. et al.) 13–38 (Springer, 2006).
van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 63, 1955–1958 (1990).
Lewis, L. J. & Wahnstrom, G. Relaxation of a molecular glass at intermediate times. Solid State Commun. 86, 295–299 (1993).
Weber, T. A. & Stillinger, F. H. Local order and structural transitions in amorphous metal-metalloid alloys. Phys. Rev. B 31, 1954 (1985).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 52, 4134 (1995).
Biroli, G. & Mezard, M. Lattice glass models. Phys. Rev. Lett. 88, 025501 (2001).
Nishikawa, Y. & Hukushima, K. Lattice glass model in three spatial dimensions. Phys. Rev. Lett. 125, 065501 (2020).
Mézard, M., Parisi, G. & Virasoro, M. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific, 1987).
Friedrichs, M. S. et al. Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30, 864–872 (2009).
Baxter, R. J. Exactly Solved Models in Statistical Mechanics (Academic, 1982).
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. & Teller, A. H. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
Yahata, H. & Suzuki, M. Critical slowing down in the kinetic Ising model. J. Phys. Soc. Jpn. 27, 1421–1438 (1969).
Fosdick, L. D. Calculation of order parameters in a binary alloy by the Monte Carlo method. Phys. Rev. 116, 565–573 (1959).
Salsburg, Z. W., Jacobson, J. D., Fickett, W. & Wood, W. W. Application of the Monte Carlo method to the lattice-gas model. I. Two-dimensional triangular lattice. J. Chem. Phys. 30, 65–72 (1959).
Swendsen, R. & Wang, J. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986).
Geyer, C. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 1991156 (American Statistical Association, 1991).
Marianari, E. & Parisi, G. Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451–458 (1992).
Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn 65, 1604–1608 (1996).
Earl, D. J. & Deem, M. W. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005).
Yan, Q., Faller, R. & de Pablo, J. J. Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116, 8745–8749 (2002).
Faller, R. & de Pablo, J. J. Density of states of a binary Lennard-Jones glass. J. Chem. Phys. 119, 4405–4408 (2003).
Trebst, S., Huse, D. & Troyer, M. Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. Phys. Rev. E 70, 046701 (2004).
Bogdan, T., Wales, D. & Calvo, F. Equilibrium thermodynamics from basin-sampling. J. Chem. Phys. 124, 044102 (2006).
Yamamoto, R. & Kob, W. Replica-exchange molecular dynamics simulation for supercooled liquids. Phys. Rev. E 61, 5473 (2000).
Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).
De Michele, C. & Sciortino, F. Equilibration times in numerical simulation of structural glasses: comparing parallel tempering and conventional molecular dynamics. Phys. Rev. E 65, 051202 (2002).
Weber, T. A. & Stillinger, F. H. Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).
Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).
Ediger, M. D. Perspective: highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).
Singh, S., Ediger, M. D. & de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 12, 139–144 (2013).
Lyubimov, I., Ediger, M. D. & de Pablo, J. J. Model vapor-deposited glasses: growth front and composition effects. J. Chem. Phys. 139, 144505 (2013).
Berthier, L., Charbonneau, P., Flenner, E. & Zamponi, F. Origin of ultrastability in vapor-deposited glasses. Phys. Rev. Lett. 119, 188002 (2017).
Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proc. Natl Acad. Sci. USA 112, 4227–4232 (2015).
Merolle, M., Garrahan, J. P. & Chandler, D. Space–time thermodynamics of the glass transition. Proc. Natl Acad. Sci. USA 102, 10837–10840 (2005).
Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).
Garrahan, J. P. et al. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories. J. Phys. A 42, 075007 (2009).
Jack, R. L., Hedges, L. O., Garrahan, J. P. & Chandler, D. Preparation and relaxation of very stable glassy states of a simulated liquid. Phys. Rev. Lett. 107, 275702 (2011).
Keys, A. S., Chandler, D. & Garrahan, J. P. Using the s ensemble to probe glasses formed by cooling and aging. Phys. Rev. E 92, 022304 (2015).
Turci, F., Royall, C. P. & Speck, T. Nonequilibrium phase transition in an atomistic glassformer: the connection to thermodynamics. Phys. Rev. X 7, 031028 (2017).
Swendsen, R. & Wang, J. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1986).
Dress, C. & Krauth, W. Cluster algorithm for hard spheres and related systems. J. Phys. A 28, L587–L601 (1995).
Fisher, M. The theory of condensation and the critical point. Physics 3, 255–283 (1967).
Fortuin, C. M. & Kasteleyn, P. W. On the random-cluster model: I. Introduction and relation to other models. Physica 57, 536–564 (1972).
Santen, L. & Krauth, W. Absence of thermodynamic phase transition in a model glass former. Nature 405, 550–551 (2000).
Kirkpatrick, T., Thirumalai, D. & Wolynes, P. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045 (1989).
Brumer, Y. & Reichman, D. R. Numerical investigation of the entropy crisis in model glass formers. J. Phys. Chem. B 108, 6832–6837 (2004).
Liu, J. & Luijten, E. Rejection-free geometric cluster algorithm for complex fluids. Phys. Rev. Lett. 92, 035504 (2004).
Bernard, E. P., Krauth, W. & Wilson, D. B. Event-chain Monte Carlo algorithms for hard-sphere systems. Phys. Rev. E 80, 056704 (2009).
Krauth, W. Event-chain Monte Carlo: foundations, applications, and prospects. Front. Phys. 9, 663457 (2021).
Hung, J., Patra, T., Meenakshisundaram, V., Mangalara, J. & Simmons, D. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids. Soft Matter 16, 1223–1242 (2019).
Eastwood, M. P. et al. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment. J. Phys. Chem. B 117, 12898–12907 (2013).
Tsai, N.-H., Abraham, F. F. & Pound, G. The structure and thermodynamics of binary microclusters: a Monte Carlo simulation. Surf. Sci. 77, 465–492 (1978).
Gazzillo, D. & Pastore, G. Equation of state for symmetric non-additive hard-sphere fluids: an approximate analytic expression and new Monte Carlo results. Chem. Phys. Lett. 159, 388–392 (1989).
Grigera, T. & Parisi, G. Fast Monte Carlo algorithm for supercooled soft spheres. Phys. Rev. E 63, 045102R (2001).
Mézard, M. & Parisi, G. A tentative replica study of the glass transition. J. Phys. A 29, 6515–6524 (1996).
Fernandez, L. A., Martin-Mayor, V. & Verrocchio, P. Critical behavior of the specific heat in glass formers. Phys. Rev. E 73, 020501R (2006).
Berthier, L., Charbonneau, P. & Yaida, S. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids. J. Chem. Phys. 144, 024501 (2016).
Berthier, L., Flenner, E., Fullerton, C. J., Scalliet, C. & Singh, M. Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids. J. Stat. Mech. Theory Exp. 2019, 064004 (2019).
Parmar, A. D., Ozawa, M. & Berthier, L. Ultrastable metallic glasses in silico. Phys. Rev. Lett. 125, 085505 (2020).
Wyart, M. & Cates, M. E. Does a growing static length scale control the glass transition? Phys. Rev. Lett. 119, 195501 (2017).
Ikeda, H., Zamponi, F. & Ikeda, A. Mean field theory of the swap Monte Carlo algorithm. J. Chem. Phys. 147, 234506 (2017).
Szamel, G. Theory for the dynamics of glassy mixtures with particle size swaps. Phys. Rev. E 98, 050601 (2018).
Berthier, L., Biroli, G., Bouchaud, J.-P. & Tarjus, G. Can the glass transition be explained without a growing static length scale? J. Chem. Phys. 150, 094501 (2019).
Brito, C., Lerner, E. & Wyart, M. Theory for swap acceleration near the glass and jamming transitions for continuously polydisperse particles. Phys. Rev. X 8, 031050 (2018).
Hagh, V. F., Nagel, S. R., Liu, A. J., Manning, M. L. & Corwin, E. I. Transient learning degrees of freedom for introducing function in materials. Proc. Natl Acad. Sci. USA 119, e2117622119 (2022).
Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).
Berthier, L., Ozawa, M. & Scalliet, C. Configurational entropy of glass-forming liquids. J. Chem. Phys. 150, 160902 (2019).
Parisi, G., Urbani, P. & Zamponi, F. Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge Univ. Press, 2020).
Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007).
Biroli, G., Cammarota, C., Tarjus, G. & Tarzia, M. Random-field-like criticality in glass-forming liquids. Phys. Rev. Lett. 112, 175701 (2014).
Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).
Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214 (1999).
Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).
Berthier, L. & Coslovich, D. Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Proc. Natl Acad. Sci. USA 111, 11668–11672 (2014).
Ozawa, M., Parisi, G. & Berthier, L. Configurational entropy of polydisperse supercooled liquids. J. Chem. Phys. 149, 154501 (2018).
Berthier, L. et al. Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling. Proc. Natl Acad. Sci. USA 114, 11356–11361 (2017).
Berthier, L., Charbonneau, P., Ninarello, A., Ozawa, M. & Yaida, S. Zero-temperature glass transition in two dimensions. Nat. Commun. 10, 1–7 (2019).
Franz, S. & Parisi, G. Phase diagram of coupled glassy systems: a mean-field study. Phys. Rev. Lett. 79, 2486 (1997).
Berthier, L. Overlap fluctuations in glass-forming liquids. Phys. Rev. E 88, 022313 (2013).
Franz, S. & Parisi, G. Effective potential in glassy systems: theory and simulations. Phys. A Stat. Mech. Appl. 261, 317–339 (1998).
Cardenas, M., Franz, S. & Parisi, G. Constrained Boltzmann–Gibbs measures and effective potential for glasses in hypernetted chain approximation and numerical simulations. J. Chem. Phys. 110, 1726–1734 (1999).
Berthier, L. & Jack, R. L. Evidence for a disordered critical point in a glass-forming liquid. Phys. Rev. Lett. 114, 205701 (2015).
Guiselin, B., Berthier, L. & Tarjus, G. Random-field Ising model criticality in a glass-forming liquid. Phys. Rev. E 102, 042129 (2020).
Guiselin, B., Berthier, L. & Tarjus, G. Statistical mechanics of coupled supercooled liquids in finite dimensions. SciPost Phys. 12, 091 (2022).
Garrahan, J. P. Glassiness through the emergence of effective dynamical constraints in interacting systems. J. Phys. Condens. Matter 14, 1571 (2002).
Jack, R. L. & Garrahan, J. P. Phase transition for quenched coupled replicas in a plaquette spin model of glasses. Phys. Rev. Lett. 116, 055702 (2016).
Montanari, A. & Semerjian, G. Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23–54 (2006).
Cavagna, A., Grigera, T. S. & Verrocchio, P. Mosaic multistate scenario versus one-state description of supercooled liquids. Phys. Rev. Lett. 98, 187801 (2007).
Biroli, G., Bouchaud, J.-P., Cavagna, A., Grigera, T. S. & Verrocchio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nat. Phys. 4, 771–775 (2008).
Hocky, G. M., Markland, T. E. & Reichman, D. R. Growing point-to-set length scale correlates with growing relaxation times in model supercooled liquids. Phys. Rev. Lett. 108, 225506 (2012).
Ozawa, M., Scalliet, C., Ninarello, A. & Berthier, L. Does the Adam–Gibbs relation hold in simulated supercooled liquids? J. Chem. Phys. 151, 084504 (2019).
Berthier, L. & Kob, W. Static point-to-set correlations in glass-forming liquids. Phys. Rev. E 85, 011102 (2012).
Scheidler, P., Kob, W., Binder, K. & Parisi, G. Growing length scales in a supercooled liquid close to an interface. Phil. Mag. B 82, 283–290 (2002).
Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8, 164–167 (2012).
Hocky, G. M., Berthier, L., Kob, W. & Reichman, D. R. Crossovers in the dynamics of supercooled liquids probed by an amorphous wall. Phys. Rev. E 89, 052311 (2014).
Kim, K. Effects of pinned particles on the structural relaxation of supercooled liquids. Europhys. Lett. 61, 790 (2003).
Cammarota, C. & Biroli, G. Ideal glass transitions by random pinning. Proc. Natl Acad. Sci. USA 109, 8850–8855 (2012).
Kob, W. & Berthier, L. Probing a liquid to glass transition in equilibrium. Phys. Rev. Lett. 110, 245702 (2013).
Ozawa, M., Kob, W., Ikeda, A. & Miyazaki, K. Equilibrium phase diagram of a randomly pinned glass-former. Proc. Natl Acad. Sci. USA 112, 6914–6919 (2015).
Meijer, H. E. & Govaert, L. E. Mechanical performance of polymer systems: the relation between structure and properties. Prog. Polym. Sci. 30, 915–938 (2005).
Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).
Rodney, D., Tanguy, A. & Vandembroucq, D. Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mater. Sci. Eng. 19, 083001 (2011).
Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999).
Utz, M., Debenedetti, P. G. & Stillinger, F. H. Atomistic simulation of aging and rejuvenation in glasses. Phys. Rev. Lett. 84, 1471 (2000).
Maloney, C. E. & Lemaitre, A. Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006).
Barrat, J.-L. & Lemaitre, A. in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (eds Berthier, L. et al.) 264–297 (2011).
Ozawa, M., Berthier, L., Biroli, G., Rosso, A. & Tarjus, G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc. Natl Acad. Sci. USA 115, 6656–6661 (2018).
Shi, Y. & Falk, M. L. Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).
Rainone, C., Urbani, P., Yoshino, H. & Zamponi, F. Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: compression and shear strain. Phys. Rev. Lett. 114, 015701 (2015).
Parisi, G., Procaccia, I., Rainone, C. & Singh, M. Shear bands as manifestation of a criticality in yielding amorphous solids. Proc. Natl Acad. Sci. USA 114, 5577–5582 (2017).
Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Role of fluctuations in the yielding transition of two-dimensional glasses. Phys. Rev. Res. 2, 023203 (2020).
Barlow, H. J., Cochran, J. O. & Fielding, S. M. Ductile and brittle yielding in thermal and athermal amorphous materials. Phys. Rev. Lett. 125, 168003 (2020).
Richard, D., Rainone, C. & Lerner, E. Finite-size study of the athermal quasistatic yielding transition in structural glasses. J. Chem. Phys. 155, 056101 (2021).
Rossi, S., Biroli, G., Ozawa, M., Tarjus, G. & Zamponi, F. Finite-disorder critical point in the yielding transition of elastoplastic models. Phys. Rev. Lett. 129, 228002 (2022).
Yeh, W.-T., Ozawa, M., Miyazaki, K., Kawasaki, T. & Berthier, L. Glass stability changes the nature of yielding under oscillatory shear. Phys. Rev. Lett. 124, 225502 (2020).
Bhaumik, H., Foffi, G. & Sastry, S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc. Natl Acad. Sci. USA 118, e2100227118 (2021).
Singh, M., Ozawa, M. & Berthier, L. Brittle yielding of amorphous solids at finite shear rates. Phys. Rev. Mater. 4, 025603 (2020).
Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).
Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Rare events and disorder control the brittle yielding of well-annealed amorphous solids. Phys. Rev. Res. 4, 023227 (2022).
Grigera, T. S., Martin-Mayor, V., Parisi, G. & Verrocchio, P. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature 422, 289–292 (2003).
Schirmacher, W., Diezemann, G. & Ganter, C. Harmonic vibrational excitations in disordered solids and the ‘boson peak’. Phys. Rev. Lett. 81, 136–139 (1998).
Elliott, S. A unified model for the low-energy vibrational behavior of amorphous solids. Europhys. Lett. 19, 201–206 (1992).
Malinovsky, V. & Sokolov, A. The nature of boson peak in Raman-scattering in glasses. Solid State Commun. 57, 757–761 (1986).
Gurevich, V., Parshin, D. & Schober, H. Anharmonicity, vibrational instability, and the boson peak in glasses. Phys. Rev. B 67, 094203 (2003).
Lerner, E. & Bouchbinder, E. Low-energy quasilocalized excitations in structural glasses. J. Chem. Phys. 155, 200901 (2021).
Laird, B. & Schober, H. Localized low-frequency vibrational-modes in a simple-model glass. Phys. Rev. Lett. 66, 636–639 (1991).
Schober, H. & Ruocco, G. Size effects and quasilocalized vibrations. Phil. Mag. 84, 1361–1372 (2006).
Wang, L. et al. Low-frequency vibrational modes of stable glasses. Nat. Commun. 10, 26 (2019).
Kapteijns, G., Bouchbinder, E. & Lerner, E. Universal nonphononic density of states in 2D, 3D, and 4D glasses. Phys. Rev. Lett. 121, 055501 (2018).
Lerner, E. & Bouchbinder, E. Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses. Phys. Rev. E 97, 032140 (2018).
Zeller, R. & Pohl, R. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029 (1971).
Heuer, A. & Silbey, R. Microscopic description of tunneling systems in a structural model. Phys. Rev. Lett. 70, 3911 (1993).
Weber, T. A. & Stillinger, F. H. Interactions, local order, and atomic-rearrangement kinetics in amorphous nickel-phosphorous alloys. Phys. Rev. B 32, 5402 (1985).
Daldoss, G., Pilla, O. & Viliani, G. Search for tunnelling centres in Lennard-Jones clusters. Phil. Mag. B 77, 689–698 (1998).
Daldoss, G., Pilla, O., Viliani, C., Brangian, G. & Ruocco, G. Energy landscape, two-level systems, and entropy barriers in Lennard-Jones clusters. Phys. Rev. B 60, 3200 (1999).
Reinisch, A. & Heuer, J. What is moving in silica at 1 K? A computer study of the low-temperature anomalies. Phys. Rev. Lett. 95, 155502 (2005).
Jug, G., Bonfanti, S. & Kob, W. Realistic tunnelling states for the magnetic effects in non-metallic real glasses. Philos. Mag. 96, 648–703 (2016).
Damart, T. & Rodney, D. Atomistic study of two-level systems in amorphous silica. Phys. Rev. B 97, 014201 (2018).
Khomenko, D., Scalliet, C., Berthier, L., Reichman, D. R. & Zamponi, F. Depletion of two-level systems in ultrastable computer-generated glasses. Phys. Rev. Lett. 124, 225901 (2020).
Mocanu, F. C. et al. Microscopic observation of two-level systems in a metallic glass model. J. Chem. Phys. 158, 014501 (2023).
Queen, D. R., Liu, X., Karel, J., Metcalf, T. H. & Hellman, F. Excess specific heat in evaporated amorphous silicon. Phys. Rev. Lett. 110, 135901 (2013).
Perez-Castaneda, T., Jimenez-Rioboo, R. & Ramos, M. Do two-level systems and boson peak persist or vanish in hyperaged geological glasses of amber? Phil. Mag. 96, 774–787 (2015).
Perez-Castaneda, T., Rodríguez-Tinoco, C., Rodríguez-Viejo, J. & Ramos, M. Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. Proc. Natl Acad. Sci. USA 111, 11275–11280 (2014).
Leggett, A. J. & Vural, D. C. ‘Tunneling two-level systems’ model of the low-temperature properties of glasses: are ‘smoking-gun’ tests possible? J. Phys. Chem. B 17, 12966–12971 (2013).
Karpov, V., Klinger, M. & Ignatiev, F. Theory of low-temperature anomalies in thermal-properties of amorphic structures. Zh. Eksp. Teor. Fiz. 84, 760–775 (1983).
Karpov, V. G., Klinger, M. I. & Ignatiev, F. N. Victor Karpov Theory of low-temperature anomalies in thermal-properties of amorphic structures. Zh. Eksp. Teor. Fiz. 84, 760–775 (1983).
Khomenko, D., Reichman, D. R. & Zamponi, F. Relationship between two-level systems and quasilocalized normal modes in glasses. Phys. Rev. Mater. 5, 055602 (2021).
Mills, G., Schenter, G., Makarov, D. & Jonsson, H. Chem. Phys. Lett. 278, 91–96 (1997).
Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition. J. Phys. Chem. B 117, 12979–12994 (2013).
Gardner, E. Spin glasses with p-spin interactions. Nucl. Phys. B 257, 747–765 (1985).
Berthier, L. et al. Gardner physics in amorphous solids and beyond. J. Chem. Phys. 151, 010901 (2019).
Berthier, L. et al. Growing timescales and lengthscales characterizing vibrations of amorphous solids. Proc. Natl Acad. Sci. USA 113, 8397–8401 (2016).
Seoane, B. & Zamponi, F. Spin-glass-like aging in colloidal and granular glasses. Soft Matter 14, 5222 (2018).
Jin, Y., Urbani, P., Zamponi, F. & Yoshino, H. A stability-reversibility map unifies elasticity, plasticity, yielding and jamming in hard sphere glasses. Sci. Adv. 4, eaat6387 (2018).
Liao, Q. & Berthier, L. Hierarchical landscape of hard disk glasses. Phys. Rev. X 9, 011049 (2019).
Scalliet, C., Berthier, L. & Zamponi, F. Nature of excitations and defects in structural glasses. Nat. Commun. 10, 1–10 (2019).
Scalliet, C., Berthier, L. & Zamponi, F. Absence of marginal stability in a structural glass. Phys. Rev. Lett. 119, 205501 (2017).
Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).
Paret, J., Jack, R. L. & Coslovich, D. Assessing the structural heterogeneity of supercooled liquids through community inference. J. Chem. Phys. 152, 144502 (2020).
Boattini, E. et al. Autonomously revealing hidden local structures in supercooled liquids. Nat. Commun. 11, 1–9 (2020).
Coslovich, D. & Pastore, G. Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures. J. Chem. Phys. 127, 124504 (2007).
Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).
Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).
Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).
Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).
Alkemade, R. M., Boattini, E., Filion, L. & Smallenburg, F. Comparing machine learning techniques for predicting glassy dynamics. J. Chem. Phys. 156, 204503 (2022).
Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett. 114, 108001 (2015).
Eaves, J. & Reichman, D. Spatial dimension and the dynamics of supercooled liquids. Proc. Natl Acad. Sci. USA 106, 15171–15175 (2009).
Charbonneau, P., Ikeda, A., Parisi, G. & Zamponi, F. Dimensional study of the caging order parameter at the glass transition. Proc. Natl Acad. Sci. USA 109, 13939–13943 (2012).
Hoy, R. S. & Interiano-Alberto, K. A. Efficient d-dimensional molecular dynamics simulations for studies of the glass-jamming transition. Phys. Rev. E 105, 055305 (2022).
Berthier, L., Charbonneau, P. & Kundu, J. Bypassing sluggishness: swap algorithm and glassiness in high dimensions. Phys. Rev. E 99, 031301 (2019).
Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic heterogeneities in a supercooled liquid? Phys. Rev. Lett. 93, 135701 (2004).
Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 4, 711–715 (2008).
Karmakar, S., Dasgupta, C. & Sastry, S. Growing length and time scales in glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 3675–3679 (2009).
Berthier, L. Self-induced heterogeneity in deeply supercooled liquids. Phys. Rev. Lett. 127, 088002 (2021).
Guiselin, B., Scalliet, C. & Berthier, L. Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nat. Phys. 18, 468–472 (2022).
Scalliet, C., Guiselin, B. & Berthier, L. Thirty milliseconds in the life of a supercooled liquid. Phys. Rev. X 12, 041028 (2022).
Middleton, T. F. & Wales, D. J. Energy landscapes of some model glass formers. Phys. Rev. B 64, 024205 (2001).
Heuer, A. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys. Condens. Matter 20, 373101 (2008).
Isobe, M., Keys, A. S., Chandler, D. & Garrahan, J. P. Applicability of dynamic facilitation theory to binary hard disk systems. Phys. Rev. Lett. 117, 145701 (2016).
Keys, A. S., Hedges, L. O., Garrahan, J. P., Glotzer, S. C. & Chandler, D. Excitations are localized and relaxation is hierarchical in glass-forming liquids. Phys. Rev. X 1, 021013 (2011).
Bergroth, M. N., Vogel, M. & Glotzer, S. C. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids. J. Phys. Chem. B 109, 6748–6753 (2005).
Vogel, M. & Glotzer, S. C. Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica. Phys. Rev. Lett. 92, 255901 (2004).
Luijten, E. Fluid simulation with the geometric cluster Monte Carlo algorithm. Comput. Sci. Eng. 8, 20–29 (2006).
Acknowledgements
This work was supported by grants from the Simons Foundation (454933 to L.B., 454951 to D.R.R.) and by a Visiting Professorship from the Leverhulme Trust (VP1-2019-029, LB). The authors thank all of the members of the Simons Foundation Collaboration on ‘Cracking the Glass Problem’ for six-plus years of stimulating discussions.
Author information
Authors and Affiliations
Contributions
Both authors contributed to all aspects of this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous referees for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Berthier, L., Reichman, D.R. Modern computational studies of the glass transition. Nat Rev Phys 5, 102–116 (2023). https://doi.org/10.1038/s42254-022-00548-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-022-00548-x