Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modern computational studies of the glass transition

Abstract

The physics of the glass transition and amorphous materials continues to attract the attention of a wide research community after decades of effort. Supercooled liquids and glasses have been studied numerically since the advent of molecular dynamics and Monte Carlo simulations, and computer studies have greatly enhanced both experimental discoveries and theoretical developments. In this Review, we provide a modern perspective on this area. We describe the need to go beyond canonical methods when studying the glass transition — a problem that is notoriously difficult in terms of timescales, length scales and physical observables. We summarize recent algorithmic developments to achieve enhanced sampling and faster equilibration by using replica-exchange methods, cluster and swap Monte Carlo algorithms, and other techniques. We then review some major advances afforded by these tools regarding the statistical mechanical description of the liquid-to-glass transition, and the mechanical, vibrational and thermal properties of the glassy solid.

Key points

  • Simulations of glass-forming systems suffer from the rapidly growing relaxation times near the glass transition, which historically have limited simulations to the regime of very mild supercooling.

  • A variety of methods, including simulated tempering methods and cluster Monte Carlo approaches, have been developed to deal with issues relating to slow equilibration.

  • More recently, swap Monte Carlo methods, which augment standard local moves with swaps between particles that may be physically distant, have been shown to enable remarkably efficient equilibration in certain models of glass-forming systems.

  • The equilibration speed-up afforded by swap Monte Carlo makes it possible to study glassy properties and behaviours that were previously out of reach, such as the nature of low-energy excitations in well-annealed glasses, and the brittle-to-ductile transition.

  • Swap Monte Carlo has opened new vistas for the study of the behaviour of glassy systems, but new approaches for the simulation of dynamical behaviour as well as the equilibration of more complex glass-formers are still needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketch of various equilibration methods.
Fig. 2: Speed-up of equilibration offered by swap Monte Carlo.
Fig. 3: The evolution of experimental and numerical estimates of the configurational entropy offers a consistent view of the thermodynamics of 3D glasses.
Fig. 4: Brittle yielding of computer glasses via computer simulations.
Fig. 5: Low-temperature properties of glasses.

Similar content being viewed by others

References

  1. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  Google Scholar 

  2. Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).

  3. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000).

    Article  ADS  Google Scholar 

  4. Binder, K. & Young, A. P. Spin-glasses — experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).

    Article  ADS  Google Scholar 

  5. Bryngelson, J. D. & Wolynes, P. G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl Acad. Sci. USA 84, 7524–7528 (1987).

    Article  ADS  Google Scholar 

  6. Mezard, M. & Zecchina, R. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66, 056126 (2002).

    Article  ADS  Google Scholar 

  7. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).

    Article  ADS  Google Scholar 

  8. Frenkel, D. & Smit, B. Understanding Molecular Simulation from Algorithms to Applications (Academic, 1996).

  9. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon, 1987).

  10. Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys. Rev. E 51, 4626 (1995).

    Article  ADS  Google Scholar 

  11. Ninarello, A., Berthier, L. & Coslovich, D. Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017).

    Google Scholar 

  12. Bouchaud, J.-P. & Biroli, G. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    Article  ADS  Google Scholar 

  13. Franz, S. & Parisi, G. On non-linear susceptibility in supercooled liquids. J. Phys. Condens. Matter 12, 6335 (2000).

    Article  ADS  Google Scholar 

  14. Berthier, L. et al. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J. Chem. Phys. 126, 184503 (2007).

    Article  ADS  Google Scholar 

  15. Berthier, L. et al. Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations. J. Chem. Phys. 126, 184504 (2007).

    Article  ADS  Google Scholar 

  16. Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017).

    Article  ADS  Google Scholar 

  17. Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).

    Article  ADS  Google Scholar 

  18. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. J. Theor. Exp. Appl. Phys. 25, 1–9 (1972).

    Google Scholar 

  19. Phillips, W. A. Tunneling states in amorphous solids. J. Low Temp. Phys. 7, 351–360 (1972).

    Article  ADS  Google Scholar 

  20. Berthier, L. & Kob, W. The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. J. Phys. Condens. Matter 19, 205130 (2007).

    Article  ADS  Google Scholar 

  21. Bal, K. M. & Neyts, E. C. On the time scale associated with Monte Carlo simulations. J. Chem. Phys. 141, 204104 (2014).

    Article  ADS  Google Scholar 

  22. Luijten, E. in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Vol. 1 (eds Ferrario, M. et al.) 13–38 (Springer, 2006).

  23. van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 63, 1955–1958 (1990).

    Article  Google Scholar 

  24. Lewis, L. J. & Wahnstrom, G. Relaxation of a molecular glass at intermediate times. Solid State Commun. 86, 295–299 (1993).

    Article  ADS  Google Scholar 

  25. Weber, T. A. & Stillinger, F. H. Local order and structural transitions in amorphous metal-metalloid alloys. Phys. Rev. B 31, 1954 (1985).

    Article  ADS  Google Scholar 

  26. Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 52, 4134 (1995).

    Article  ADS  Google Scholar 

  27. Biroli, G. & Mezard, M. Lattice glass models. Phys. Rev. Lett. 88, 025501 (2001).

    Article  ADS  Google Scholar 

  28. Nishikawa, Y. & Hukushima, K. Lattice glass model in three spatial dimensions. Phys. Rev. Lett. 125, 065501 (2020).

    Article  ADS  Google Scholar 

  29. Mézard, M., Parisi, G. & Virasoro, M. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications (World Scientific, 1987).

  30. Friedrichs, M. S. et al. Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30, 864–872 (2009).

    Article  Google Scholar 

  31. Baxter, R. J. Exactly Solved Models in Statistical Mechanics (Academic, 1982).

  32. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. & Teller, A. H. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  ADS  MATH  Google Scholar 

  33. Yahata, H. & Suzuki, M. Critical slowing down in the kinetic Ising model. J. Phys. Soc. Jpn. 27, 1421–1438 (1969).

    Article  ADS  Google Scholar 

  34. Fosdick, L. D. Calculation of order parameters in a binary alloy by the Monte Carlo method. Phys. Rev. 116, 565–573 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  35. Salsburg, Z. W., Jacobson, J. D., Fickett, W. & Wood, W. W. Application of the Monte Carlo method to the lattice-gas model. I. Two-dimensional triangular lattice. J. Chem. Phys. 30, 65–72 (1959).

    Article  ADS  Google Scholar 

  36. Swendsen, R. & Wang, J. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  37. Geyer, C. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 1991156 (American Statistical Association, 1991).

  38. Marianari, E. & Parisi, G. Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451–458 (1992).

    Article  ADS  Google Scholar 

  39. Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn 65, 1604–1608 (1996).

    Article  ADS  Google Scholar 

  40. Earl, D. J. & Deem, M. W. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005).

    Article  Google Scholar 

  41. Yan, Q., Faller, R. & de Pablo, J. J. Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116, 8745–8749 (2002).

    Article  ADS  Google Scholar 

  42. Faller, R. & de Pablo, J. J. Density of states of a binary Lennard-Jones glass. J. Chem. Phys. 119, 4405–4408 (2003).

    Article  ADS  Google Scholar 

  43. Trebst, S., Huse, D. & Troyer, M. Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. Phys. Rev. E 70, 046701 (2004).

    Article  ADS  Google Scholar 

  44. Bogdan, T., Wales, D. & Calvo, F. Equilibrium thermodynamics from basin-sampling. J. Chem. Phys. 124, 044102 (2006).

    Article  ADS  Google Scholar 

  45. Yamamoto, R. & Kob, W. Replica-exchange molecular dynamics simulation for supercooled liquids. Phys. Rev. E 61, 5473 (2000).

    Article  ADS  Google Scholar 

  46. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).

    Article  ADS  Google Scholar 

  47. De Michele, C. & Sciortino, F. Equilibration times in numerical simulation of structural glasses: comparing parallel tempering and conventional molecular dynamics. Phys. Rev. E 65, 051202 (2002).

    Article  ADS  Google Scholar 

  48. Weber, T. A. & Stillinger, F. H. Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).

    Article  ADS  Google Scholar 

  49. Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article  ADS  Google Scholar 

  50. Ediger, M. D. Perspective: highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).

    Article  ADS  Google Scholar 

  51. Singh, S., Ediger, M. D. & de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 12, 139–144 (2013).

    Article  ADS  Google Scholar 

  52. Lyubimov, I., Ediger, M. D. & de Pablo, J. J. Model vapor-deposited glasses: growth front and composition effects. J. Chem. Phys. 139, 144505 (2013).

    Article  ADS  Google Scholar 

  53. Berthier, L., Charbonneau, P., Flenner, E. & Zamponi, F. Origin of ultrastability in vapor-deposited glasses. Phys. Rev. Lett. 119, 188002 (2017).

    Article  ADS  Google Scholar 

  54. Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proc. Natl Acad. Sci. USA 112, 4227–4232 (2015).

    Article  ADS  Google Scholar 

  55. Merolle, M., Garrahan, J. P. & Chandler, D. Space–time thermodynamics of the glass transition. Proc. Natl Acad. Sci. USA 102, 10837–10840 (2005).

    Article  ADS  Google Scholar 

  56. Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).

    Article  Google Scholar 

  57. Garrahan, J. P. et al. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories. J. Phys. A 42, 075007 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Jack, R. L., Hedges, L. O., Garrahan, J. P. & Chandler, D. Preparation and relaxation of very stable glassy states of a simulated liquid. Phys. Rev. Lett. 107, 275702 (2011).

    Article  ADS  Google Scholar 

  59. Keys, A. S., Chandler, D. & Garrahan, J. P. Using the s ensemble to probe glasses formed by cooling and aging. Phys. Rev. E 92, 022304 (2015).

    Article  ADS  Google Scholar 

  60. Turci, F., Royall, C. P. & Speck, T. Nonequilibrium phase transition in an atomistic glassformer: the connection to thermodynamics. Phys. Rev. X 7, 031028 (2017).

    Google Scholar 

  61. Swendsen, R. & Wang, J. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1986).

    Article  ADS  Google Scholar 

  62. Dress, C. & Krauth, W. Cluster algorithm for hard spheres and related systems. J. Phys. A 28, L587–L601 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  63. Fisher, M. The theory of condensation and the critical point. Physics 3, 255–283 (1967).

    Article  MathSciNet  Google Scholar 

  64. Fortuin, C. M. & Kasteleyn, P. W. On the random-cluster model: I. Introduction and relation to other models. Physica 57, 536–564 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  65. Santen, L. & Krauth, W. Absence of thermodynamic phase transition in a model glass former. Nature 405, 550–551 (2000).

    Article  ADS  Google Scholar 

  66. Kirkpatrick, T., Thirumalai, D. & Wolynes, P. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045 (1989).

    Article  ADS  Google Scholar 

  67. Brumer, Y. & Reichman, D. R. Numerical investigation of the entropy crisis in model glass formers. J. Phys. Chem. B 108, 6832–6837 (2004).

    Article  Google Scholar 

  68. Liu, J. & Luijten, E. Rejection-free geometric cluster algorithm for complex fluids. Phys. Rev. Lett. 92, 035504 (2004).

    Article  ADS  Google Scholar 

  69. Bernard, E. P., Krauth, W. & Wilson, D. B. Event-chain Monte Carlo algorithms for hard-sphere systems. Phys. Rev. E 80, 056704 (2009).

    Article  ADS  Google Scholar 

  70. Krauth, W. Event-chain Monte Carlo: foundations, applications, and prospects. Front. Phys. 9, 663457 (2021).

    Article  Google Scholar 

  71. Hung, J., Patra, T., Meenakshisundaram, V., Mangalara, J. & Simmons, D. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids. Soft Matter 16, 1223–1242 (2019).

    Article  ADS  Google Scholar 

  72. Eastwood, M. P. et al. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment. J. Phys. Chem. B 117, 12898–12907 (2013).

    Article  Google Scholar 

  73. Tsai, N.-H., Abraham, F. F. & Pound, G. The structure and thermodynamics of binary microclusters: a Monte Carlo simulation. Surf. Sci. 77, 465–492 (1978).

    Article  ADS  Google Scholar 

  74. Gazzillo, D. & Pastore, G. Equation of state for symmetric non-additive hard-sphere fluids: an approximate analytic expression and new Monte Carlo results. Chem. Phys. Lett. 159, 388–392 (1989).

    Article  ADS  Google Scholar 

  75. Grigera, T. & Parisi, G. Fast Monte Carlo algorithm for supercooled soft spheres. Phys. Rev. E 63, 045102R (2001).

    Article  ADS  Google Scholar 

  76. Mézard, M. & Parisi, G. A tentative replica study of the glass transition. J. Phys. A 29, 6515–6524 (1996).

    Article  ADS  MATH  Google Scholar 

  77. Fernandez, L. A., Martin-Mayor, V. & Verrocchio, P. Critical behavior of the specific heat in glass formers. Phys. Rev. E 73, 020501R (2006).

    Article  ADS  Google Scholar 

  78. Berthier, L., Charbonneau, P. & Yaida, S. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids. J. Chem. Phys. 144, 024501 (2016).

    Article  ADS  Google Scholar 

  79. Berthier, L., Flenner, E., Fullerton, C. J., Scalliet, C. & Singh, M. Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids. J. Stat. Mech. Theory Exp. 2019, 064004 (2019).

    Article  MathSciNet  Google Scholar 

  80. Parmar, A. D., Ozawa, M. & Berthier, L. Ultrastable metallic glasses in silico. Phys. Rev. Lett. 125, 085505 (2020).

    Article  ADS  Google Scholar 

  81. Wyart, M. & Cates, M. E. Does a growing static length scale control the glass transition? Phys. Rev. Lett. 119, 195501 (2017).

    Article  ADS  Google Scholar 

  82. Ikeda, H., Zamponi, F. & Ikeda, A. Mean field theory of the swap Monte Carlo algorithm. J. Chem. Phys. 147, 234506 (2017).

    Article  ADS  Google Scholar 

  83. Szamel, G. Theory for the dynamics of glassy mixtures with particle size swaps. Phys. Rev. E 98, 050601 (2018).

    Article  ADS  Google Scholar 

  84. Berthier, L., Biroli, G., Bouchaud, J.-P. & Tarjus, G. Can the glass transition be explained without a growing static length scale? J. Chem. Phys. 150, 094501 (2019).

    Article  ADS  Google Scholar 

  85. Brito, C., Lerner, E. & Wyart, M. Theory for swap acceleration near the glass and jamming transitions for continuously polydisperse particles. Phys. Rev. X 8, 031050 (2018).

    Google Scholar 

  86. Hagh, V. F., Nagel, S. R., Liu, A. J., Manning, M. L. & Corwin, E. I. Transient learning degrees of freedom for introducing function in materials. Proc. Natl Acad. Sci. USA 119, e2117622119 (2022).

    Article  MathSciNet  Google Scholar 

  87. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  Google Scholar 

  88. Berthier, L., Ozawa, M. & Scalliet, C. Configurational entropy of glass-forming liquids. J. Chem. Phys. 150, 160902 (2019).

    Article  ADS  Google Scholar 

  89. Parisi, G., Urbani, P. & Zamponi, F. Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge Univ. Press, 2020).

  90. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007).

    Article  ADS  Google Scholar 

  91. Biroli, G., Cammarota, C., Tarjus, G. & Tarzia, M. Random-field-like criticality in glass-forming liquids. Phys. Rev. Lett. 112, 175701 (2014).

    Article  ADS  Google Scholar 

  92. Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  ADS  Google Scholar 

  93. Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214 (1999).

    Article  ADS  Google Scholar 

  94. Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).

    Article  ADS  Google Scholar 

  95. Berthier, L. & Coslovich, D. Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Proc. Natl Acad. Sci. USA 111, 11668–11672 (2014).

    Article  ADS  Google Scholar 

  96. Ozawa, M., Parisi, G. & Berthier, L. Configurational entropy of polydisperse supercooled liquids. J. Chem. Phys. 149, 154501 (2018).

    Article  ADS  Google Scholar 

  97. Berthier, L. et al. Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling. Proc. Natl Acad. Sci. USA 114, 11356–11361 (2017).

    Article  ADS  Google Scholar 

  98. Berthier, L., Charbonneau, P., Ninarello, A., Ozawa, M. & Yaida, S. Zero-temperature glass transition in two dimensions. Nat. Commun. 10, 1–7 (2019).

    Article  Google Scholar 

  99. Franz, S. & Parisi, G. Phase diagram of coupled glassy systems: a mean-field study. Phys. Rev. Lett. 79, 2486 (1997).

    Article  ADS  Google Scholar 

  100. Berthier, L. Overlap fluctuations in glass-forming liquids. Phys. Rev. E 88, 022313 (2013).

    Article  ADS  Google Scholar 

  101. Franz, S. & Parisi, G. Effective potential in glassy systems: theory and simulations. Phys. A Stat. Mech. Appl. 261, 317–339 (1998).

    Article  Google Scholar 

  102. Cardenas, M., Franz, S. & Parisi, G. Constrained Boltzmann–Gibbs measures and effective potential for glasses in hypernetted chain approximation and numerical simulations. J. Chem. Phys. 110, 1726–1734 (1999).

    Article  ADS  Google Scholar 

  103. Berthier, L. & Jack, R. L. Evidence for a disordered critical point in a glass-forming liquid. Phys. Rev. Lett. 114, 205701 (2015).

    Article  ADS  Google Scholar 

  104. Guiselin, B., Berthier, L. & Tarjus, G. Random-field Ising model criticality in a glass-forming liquid. Phys. Rev. E 102, 042129 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  105. Guiselin, B., Berthier, L. & Tarjus, G. Statistical mechanics of coupled supercooled liquids in finite dimensions. SciPost Phys. 12, 091 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  106. Garrahan, J. P. Glassiness through the emergence of effective dynamical constraints in interacting systems. J. Phys. Condens. Matter 14, 1571 (2002).

    Article  ADS  Google Scholar 

  107. Jack, R. L. & Garrahan, J. P. Phase transition for quenched coupled replicas in a plaquette spin model of glasses. Phys. Rev. Lett. 116, 055702 (2016).

    Article  ADS  Google Scholar 

  108. Montanari, A. & Semerjian, G. Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23–54 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Cavagna, A., Grigera, T. S. & Verrocchio, P. Mosaic multistate scenario versus one-state description of supercooled liquids. Phys. Rev. Lett. 98, 187801 (2007).

    Article  ADS  Google Scholar 

  110. Biroli, G., Bouchaud, J.-P., Cavagna, A., Grigera, T. S. & Verrocchio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nat. Phys. 4, 771–775 (2008).

    Article  Google Scholar 

  111. Hocky, G. M., Markland, T. E. & Reichman, D. R. Growing point-to-set length scale correlates with growing relaxation times in model supercooled liquids. Phys. Rev. Lett. 108, 225506 (2012).

    Article  ADS  Google Scholar 

  112. Ozawa, M., Scalliet, C., Ninarello, A. & Berthier, L. Does the Adam–Gibbs relation hold in simulated supercooled liquids? J. Chem. Phys. 151, 084504 (2019).

    Article  ADS  Google Scholar 

  113. Berthier, L. & Kob, W. Static point-to-set correlations in glass-forming liquids. Phys. Rev. E 85, 011102 (2012).

    Article  ADS  Google Scholar 

  114. Scheidler, P., Kob, W., Binder, K. & Parisi, G. Growing length scales in a supercooled liquid close to an interface. Phil. Mag. B 82, 283–290 (2002).

    Article  ADS  Google Scholar 

  115. Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8, 164–167 (2012).

    Article  Google Scholar 

  116. Hocky, G. M., Berthier, L., Kob, W. & Reichman, D. R. Crossovers in the dynamics of supercooled liquids probed by an amorphous wall. Phys. Rev. E 89, 052311 (2014).

    Article  ADS  Google Scholar 

  117. Kim, K. Effects of pinned particles on the structural relaxation of supercooled liquids. Europhys. Lett. 61, 790 (2003).

    Article  ADS  Google Scholar 

  118. Cammarota, C. & Biroli, G. Ideal glass transitions by random pinning. Proc. Natl Acad. Sci. USA 109, 8850–8855 (2012).

    Article  ADS  Google Scholar 

  119. Kob, W. & Berthier, L. Probing a liquid to glass transition in equilibrium. Phys. Rev. Lett. 110, 245702 (2013).

    Article  ADS  Google Scholar 

  120. Ozawa, M., Kob, W., Ikeda, A. & Miyazaki, K. Equilibrium phase diagram of a randomly pinned glass-former. Proc. Natl Acad. Sci. USA 112, 6914–6919 (2015).

    Article  ADS  Google Scholar 

  121. Meijer, H. E. & Govaert, L. E. Mechanical performance of polymer systems: the relation between structure and properties. Prog. Polym. Sci. 30, 915–938 (2005).

    Article  Google Scholar 

  122. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    Article  ADS  Google Scholar 

  123. Rodney, D., Tanguy, A. & Vandembroucq, D. Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mater. Sci. Eng. 19, 083001 (2011).

    Article  ADS  Google Scholar 

  124. Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999).

    Article  ADS  Google Scholar 

  125. Utz, M., Debenedetti, P. G. & Stillinger, F. H. Atomistic simulation of aging and rejuvenation in glasses. Phys. Rev. Lett. 84, 1471 (2000).

    Article  ADS  Google Scholar 

  126. Maloney, C. E. & Lemaitre, A. Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006).

    Article  ADS  Google Scholar 

  127. Barrat, J.-L. & Lemaitre, A. in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (eds Berthier, L. et al.) 264–297 (2011).

  128. Ozawa, M., Berthier, L., Biroli, G., Rosso, A. & Tarjus, G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc. Natl Acad. Sci. USA 115, 6656–6661 (2018).

    Article  ADS  Google Scholar 

  129. Shi, Y. & Falk, M. L. Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).

    Article  ADS  Google Scholar 

  130. Rainone, C., Urbani, P., Yoshino, H. & Zamponi, F. Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: compression and shear strain. Phys. Rev. Lett. 114, 015701 (2015).

    Article  ADS  Google Scholar 

  131. Parisi, G., Procaccia, I., Rainone, C. & Singh, M. Shear bands as manifestation of a criticality in yielding amorphous solids. Proc. Natl Acad. Sci. USA 114, 5577–5582 (2017).

    Article  ADS  Google Scholar 

  132. Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Role of fluctuations in the yielding transition of two-dimensional glasses. Phys. Rev. Res. 2, 023203 (2020).

    Article  Google Scholar 

  133. Barlow, H. J., Cochran, J. O. & Fielding, S. M. Ductile and brittle yielding in thermal and athermal amorphous materials. Phys. Rev. Lett. 125, 168003 (2020).

    Article  ADS  Google Scholar 

  134. Richard, D., Rainone, C. & Lerner, E. Finite-size study of the athermal quasistatic yielding transition in structural glasses. J. Chem. Phys. 155, 056101 (2021).

    Article  ADS  Google Scholar 

  135. Rossi, S., Biroli, G., Ozawa, M., Tarjus, G. & Zamponi, F. Finite-disorder critical point in the yielding transition of elastoplastic models. Phys. Rev. Lett. 129, 228002 (2022).

    Article  ADS  Google Scholar 

  136. Yeh, W.-T., Ozawa, M., Miyazaki, K., Kawasaki, T. & Berthier, L. Glass stability changes the nature of yielding under oscillatory shear. Phys. Rev. Lett. 124, 225502 (2020).

    Article  ADS  Google Scholar 

  137. Bhaumik, H., Foffi, G. & Sastry, S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc. Natl Acad. Sci. USA 118, e2100227118 (2021).

    Article  Google Scholar 

  138. Singh, M., Ozawa, M. & Berthier, L. Brittle yielding of amorphous solids at finite shear rates. Phys. Rev. Mater. 4, 025603 (2020).

    Article  Google Scholar 

  139. Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).

    Article  Google Scholar 

  140. Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Rare events and disorder control the brittle yielding of well-annealed amorphous solids. Phys. Rev. Res. 4, 023227 (2022).

    Article  Google Scholar 

  141. Grigera, T. S., Martin-Mayor, V., Parisi, G. & Verrocchio, P. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature 422, 289–292 (2003).

    Article  ADS  Google Scholar 

  142. Schirmacher, W., Diezemann, G. & Ganter, C. Harmonic vibrational excitations in disordered solids and the ‘boson peak’. Phys. Rev. Lett. 81, 136–139 (1998).

    Article  ADS  Google Scholar 

  143. Elliott, S. A unified model for the low-energy vibrational behavior of amorphous solids. Europhys. Lett. 19, 201–206 (1992).

    Article  ADS  Google Scholar 

  144. Malinovsky, V. & Sokolov, A. The nature of boson peak in Raman-scattering in glasses. Solid State Commun. 57, 757–761 (1986).

    Article  ADS  Google Scholar 

  145. Gurevich, V., Parshin, D. & Schober, H. Anharmonicity, vibrational instability, and the boson peak in glasses. Phys. Rev. B 67, 094203 (2003).

    Article  ADS  Google Scholar 

  146. Lerner, E. & Bouchbinder, E. Low-energy quasilocalized excitations in structural glasses. J. Chem. Phys. 155, 200901 (2021).

    Article  ADS  Google Scholar 

  147. Laird, B. & Schober, H. Localized low-frequency vibrational-modes in a simple-model glass. Phys. Rev. Lett. 66, 636–639 (1991).

    Article  ADS  Google Scholar 

  148. Schober, H. & Ruocco, G. Size effects and quasilocalized vibrations. Phil. Mag. 84, 1361–1372 (2006).

    Article  ADS  Google Scholar 

  149. Wang, L. et al. Low-frequency vibrational modes of stable glasses. Nat. Commun. 10, 26 (2019).

    Article  ADS  Google Scholar 

  150. Kapteijns, G., Bouchbinder, E. & Lerner, E. Universal nonphononic density of states in 2D, 3D, and 4D glasses. Phys. Rev. Lett. 121, 055501 (2018).

    Article  ADS  Google Scholar 

  151. Lerner, E. & Bouchbinder, E. Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses. Phys. Rev. E 97, 032140 (2018).

    Article  ADS  Google Scholar 

  152. Zeller, R. & Pohl, R. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029 (1971).

    Article  ADS  Google Scholar 

  153. Heuer, A. & Silbey, R. Microscopic description of tunneling systems in a structural model. Phys. Rev. Lett. 70, 3911 (1993).

    Article  ADS  Google Scholar 

  154. Weber, T. A. & Stillinger, F. H. Interactions, local order, and atomic-rearrangement kinetics in amorphous nickel-phosphorous alloys. Phys. Rev. B 32, 5402 (1985).

    Article  ADS  Google Scholar 

  155. Daldoss, G., Pilla, O. & Viliani, G. Search for tunnelling centres in Lennard-Jones clusters. Phil. Mag. B 77, 689–698 (1998).

    Article  ADS  Google Scholar 

  156. Daldoss, G., Pilla, O., Viliani, C., Brangian, G. & Ruocco, G. Energy landscape, two-level systems, and entropy barriers in Lennard-Jones clusters. Phys. Rev. B 60, 3200 (1999).

    Article  ADS  Google Scholar 

  157. Reinisch, A. & Heuer, J. What is moving in silica at 1 K? A computer study of the low-temperature anomalies. Phys. Rev. Lett. 95, 155502 (2005).

    Article  ADS  Google Scholar 

  158. Jug, G., Bonfanti, S. & Kob, W. Realistic tunnelling states for the magnetic effects in non-metallic real glasses. Philos. Mag. 96, 648–703 (2016).

    Article  ADS  Google Scholar 

  159. Damart, T. & Rodney, D. Atomistic study of two-level systems in amorphous silica. Phys. Rev. B 97, 014201 (2018).

    Article  ADS  Google Scholar 

  160. Khomenko, D., Scalliet, C., Berthier, L., Reichman, D. R. & Zamponi, F. Depletion of two-level systems in ultrastable computer-generated glasses. Phys. Rev. Lett. 124, 225901 (2020).

    Article  ADS  Google Scholar 

  161. Mocanu, F. C. et al. Microscopic observation of two-level systems in a metallic glass model. J. Chem. Phys. 158, 014501 (2023).

    Article  ADS  Google Scholar 

  162. Queen, D. R., Liu, X., Karel, J., Metcalf, T. H. & Hellman, F. Excess specific heat in evaporated amorphous silicon. Phys. Rev. Lett. 110, 135901 (2013).

    Article  ADS  Google Scholar 

  163. Perez-Castaneda, T., Jimenez-Rioboo, R. & Ramos, M. Do two-level systems and boson peak persist or vanish in hyperaged geological glasses of amber? Phil. Mag. 96, 774–787 (2015).

    Article  ADS  Google Scholar 

  164. Perez-Castaneda, T., Rodríguez-Tinoco, C., Rodríguez-Viejo, J. & Ramos, M. Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. Proc. Natl Acad. Sci. USA 111, 11275–11280 (2014).

    Article  ADS  Google Scholar 

  165. Leggett, A. J. & Vural, D. C. ‘Tunneling two-level systems’ model of the low-temperature properties of glasses: are ‘smoking-gun’ tests possible? J. Phys. Chem. B 17, 12966–12971 (2013).

    Article  Google Scholar 

  166. Karpov, V., Klinger, M. & Ignatiev, F. Theory of low-temperature anomalies in thermal-properties of amorphic structures. Zh. Eksp. Teor. Fiz. 84, 760–775 (1983).

    Google Scholar 

  167. Karpov, V. G., Klinger, M. I. & Ignatiev, F. N. Victor Karpov Theory of low-temperature anomalies in thermal-properties of amorphic structures. Zh. Eksp. Teor. Fiz. 84, 760–775 (1983).

    Google Scholar 

  168. Khomenko, D., Reichman, D. R. & Zamponi, F. Relationship between two-level systems and quasilocalized normal modes in glasses. Phys. Rev. Mater. 5, 055602 (2021).

    Article  Google Scholar 

  169. Mills, G., Schenter, G., Makarov, D. & Jonsson, H. Chem. Phys. Lett. 278, 91–96 (1997).

    Article  ADS  Google Scholar 

  170. Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition. J. Phys. Chem. B 117, 12979–12994 (2013).

    Article  Google Scholar 

  171. Gardner, E. Spin glasses with p-spin interactions. Nucl. Phys. B 257, 747–765 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  172. Berthier, L. et al. Gardner physics in amorphous solids and beyond. J. Chem. Phys. 151, 010901 (2019).

    Article  ADS  Google Scholar 

  173. Berthier, L. et al. Growing timescales and lengthscales characterizing vibrations of amorphous solids. Proc. Natl Acad. Sci. USA 113, 8397–8401 (2016).

    Article  ADS  Google Scholar 

  174. Seoane, B. & Zamponi, F. Spin-glass-like aging in colloidal and granular glasses. Soft Matter 14, 5222 (2018).

    Article  ADS  Google Scholar 

  175. Jin, Y., Urbani, P., Zamponi, F. & Yoshino, H. A stability-reversibility map unifies elasticity, plasticity, yielding and jamming in hard sphere glasses. Sci. Adv. 4, eaat6387 (2018).

    Article  ADS  Google Scholar 

  176. Liao, Q. & Berthier, L. Hierarchical landscape of hard disk glasses. Phys. Rev. X 9, 011049 (2019).

    Google Scholar 

  177. Scalliet, C., Berthier, L. & Zamponi, F. Nature of excitations and defects in structural glasses. Nat. Commun. 10, 1–10 (2019).

    Article  Google Scholar 

  178. Scalliet, C., Berthier, L. & Zamponi, F. Absence of marginal stability in a structural glass. Phys. Rev. Lett. 119, 205501 (2017).

    Article  ADS  Google Scholar 

  179. Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).

    Article  ADS  Google Scholar 

  180. Paret, J., Jack, R. L. & Coslovich, D. Assessing the structural heterogeneity of supercooled liquids through community inference. J. Chem. Phys. 152, 144502 (2020).

    Article  ADS  Google Scholar 

  181. Boattini, E. et al. Autonomously revealing hidden local structures in supercooled liquids. Nat. Commun. 11, 1–9 (2020).

    Article  Google Scholar 

  182. Coslovich, D. & Pastore, G. Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures. J. Chem. Phys. 127, 124504 (2007).

    Article  ADS  Google Scholar 

  183. Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).

    Article  ADS  Google Scholar 

  184. Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).

    Google Scholar 

  185. Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).

    Article  Google Scholar 

  186. Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).

    Article  Google Scholar 

  187. Alkemade, R. M., Boattini, E., Filion, L. & Smallenburg, F. Comparing machine learning techniques for predicting glassy dynamics. J. Chem. Phys. 156, 204503 (2022).

    Article  ADS  Google Scholar 

  188. Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett. 114, 108001 (2015).

    Article  ADS  Google Scholar 

  189. Eaves, J. & Reichman, D. Spatial dimension and the dynamics of supercooled liquids. Proc. Natl Acad. Sci. USA 106, 15171–15175 (2009).

    Article  ADS  Google Scholar 

  190. Charbonneau, P., Ikeda, A., Parisi, G. & Zamponi, F. Dimensional study of the caging order parameter at the glass transition. Proc. Natl Acad. Sci. USA 109, 13939–13943 (2012).

    Article  ADS  Google Scholar 

  191. Hoy, R. S. & Interiano-Alberto, K. A. Efficient d-dimensional molecular dynamics simulations for studies of the glass-jamming transition. Phys. Rev. E 105, 055305 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  192. Berthier, L., Charbonneau, P. & Kundu, J. Bypassing sluggishness: swap algorithm and glassiness in high dimensions. Phys. Rev. E 99, 031301 (2019).

    Article  ADS  Google Scholar 

  193. Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic heterogeneities in a supercooled liquid? Phys. Rev. Lett. 93, 135701 (2004).

    Article  ADS  Google Scholar 

  194. Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 4, 711–715 (2008).

    Article  Google Scholar 

  195. Karmakar, S., Dasgupta, C. & Sastry, S. Growing length and time scales in glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 3675–3679 (2009).

    Article  ADS  Google Scholar 

  196. Berthier, L. Self-induced heterogeneity in deeply supercooled liquids. Phys. Rev. Lett. 127, 088002 (2021).

    Article  ADS  Google Scholar 

  197. Guiselin, B., Scalliet, C. & Berthier, L. Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nat. Phys. 18, 468–472 (2022).

    Article  Google Scholar 

  198. Scalliet, C., Guiselin, B. & Berthier, L. Thirty milliseconds in the life of a supercooled liquid. Phys. Rev. X 12, 041028 (2022).

    Google Scholar 

  199. Middleton, T. F. & Wales, D. J. Energy landscapes of some model glass formers. Phys. Rev. B 64, 024205 (2001).

    Article  ADS  Google Scholar 

  200. Heuer, A. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys. Condens. Matter 20, 373101 (2008).

    Article  Google Scholar 

  201. Isobe, M., Keys, A. S., Chandler, D. & Garrahan, J. P. Applicability of dynamic facilitation theory to binary hard disk systems. Phys. Rev. Lett. 117, 145701 (2016).

    Article  ADS  Google Scholar 

  202. Keys, A. S., Hedges, L. O., Garrahan, J. P., Glotzer, S. C. & Chandler, D. Excitations are localized and relaxation is hierarchical in glass-forming liquids. Phys. Rev. X 1, 021013 (2011).

    Google Scholar 

  203. Bergroth, M. N., Vogel, M. & Glotzer, S. C. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids. J. Phys. Chem. B 109, 6748–6753 (2005).

    Article  Google Scholar 

  204. Vogel, M. & Glotzer, S. C. Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica. Phys. Rev. Lett. 92, 255901 (2004).

    Article  ADS  Google Scholar 

  205. Luijten, E. Fluid simulation with the geometric cluster Monte Carlo algorithm. Comput. Sci. Eng. 8, 20–29 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Simons Foundation (454933 to L.B., 454951 to D.R.R.) and by a Visiting Professorship from the Leverhulme Trust (VP1-2019-029, LB). The authors thank all of the members of the Simons Foundation Collaboration on ‘Cracking the Glass Problem’ for six-plus years of stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of this work.

Corresponding author

Correspondence to Ludovic Berthier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous referees for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthier, L., Reichman, D.R. Modern computational studies of the glass transition. Nat Rev Phys 5, 102–116 (2023). https://doi.org/10.1038/s42254-022-00548-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00548-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing