Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Directed percolation and the transition to turbulence

Abstract

It may come as a surprise that a phenomenon as ubiquitous and prominent as the transition from laminar to turbulent flow has resisted combined efforts by physicists, engineers and mathematicians, and remained unresolved for almost one and a half centuries. In recent years, various studies have proposed analogies to directed percolation, a well-known universality class in statistical mechanics, which describes a non-equilibrium phase transition from a fluctuating active phase into an absorbing state. It is this unlikely relation between the multiscale, high-dimensional dynamics that signify the transition process in virtually all flows of practical relevance, and the arguably most basic non-equilibrium phase transition, that so far has mainly been the subject of model studies, which I review in this Perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analogy between directed percolation and proliferation of turbulent puffs.
Fig. 2: Laminar–turbulent co-existence patterns.
Fig. 3: Median lifetimes (left branch) and splitting times (right branch) of isolated turbulent puffs in pipe flow.
Fig. 4: Definitions of active sites and the order parameter.
Fig. 5: Comparison of measurements of critical exponents from recent years.
Fig. 6: Dangers in disregarding non-zero data points.

Similar content being viewed by others

References

  1. Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 35, 84–99 (1883).

    Article  MATH  Google Scholar 

  2. Rayleigh, L. On the convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916).

    Article  MATH  Google Scholar 

  3. Taylor, G. I. Stability of a viscous liquid contained between two rotating cylinders. Proc. R. Soc. Lond. A 223, 289–343 (1923).

    ADS  MATH  Google Scholar 

  4. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, 1961).

  5. Drazin, P. G. & Reid, W. H. Hydrodynamic Stability (Cambridge Univ. Press, 2004).

  6. Meseguer, A. & Trefethen, L. N. Linearized pipe flow to Reynolds number 107. J. Comput. Phys. 186, 178–197 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Pomeau, Y. Front motion, metastability and subcritical bifurcations in hydrodynamics. Phys. D 23, 3–11 (1986).

    Article  Google Scholar 

  8. Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192–196 (2011).

    Article  ADS  MATH  Google Scholar 

  9. Pfenninger, W. in Boundary Layer and Flow Control (ed. Lachman, G. V.) 970 (Pergamon, 1961).

  10. Mukund, V. & Hof, B. The critical point of the transition to turbulence in pipe flow. J. Fluid Mech. 839, 76–94 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Coles, D. Transition in circular Couette flow. J. Fluid Mech. 21, 385–425 (1965).

    Article  ADS  MATH  Google Scholar 

  12. Prigent, A., Grégoire, G., Chaté, H., Dauchot, O. & van Saarloos, W. Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 14501 (2002).

    Article  ADS  Google Scholar 

  13. Tuckerman, L. S., Chantry, M. & Barkley, D. Patterns in wall-bounded shear flows. Annu. Rev. Fluid Mech. 52, 343–367 (2020).

    Article  ADS  MATH  Google Scholar 

  14. Kaneko, K. Spatiotemporal intermittency in coupled map lattices. Prog. Theor. Phys. 74, 1033–1044 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chate, H. & Manneville, P. Spatio-temproal intermittency in coupled map lattices. Phys. D. Nonlin. Phenom. 32, 409–422 (1988).

    Article  ADS  MATH  Google Scholar 

  16. Kaneko, K. Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos. Phys. Lett. A 149, 105–112 (1990).

    Article  ADS  Google Scholar 

  17. Rolf, J., Bohr, T. & Jensen, M. H. Directed percolation universality in asynchronous evolution of spatiotemporal intermittency. Phys. Rev. E 57, R2503–R2506 (1998).

    Article  ADS  Google Scholar 

  18. Hof, B., De Lozar, A., Avila, M., Tu, X. Y. & Schneider, T. M. Eliminating turbulence in spatially intermittent flows. Science 327, 1491–1494 (2010).

    Article  ADS  Google Scholar 

  19. Samanta, D., de Lozar, A. & Hof, B. Experimental investigation of laminar turbulent intermittency in pipe flow. J. Fluid Mech. 681, 193–204 (2011).

    Article  ADS  MATH  Google Scholar 

  20. Van Doorne, C. W. H. & Westerweel, J. The flow structure of a puff. Phil. Trans. R. Soc. A 367, 489–507 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Shimizu, M. & Kida, S. A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 045501, 27 (2009).

    MATH  Google Scholar 

  22. Wygnanski, I. & Champagne, F. On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973).

    Article  ADS  Google Scholar 

  23. Barkley, D. Simplifying the complexity of pipe flow. Phys. Rev. E 84, 016309 (2011).

    Article  ADS  Google Scholar 

  24. Barkley, D. Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shih, H.-Y., Hsieh, T.-L. & Goldenfeld, N. Ecological collapse and the emergence of traveling waves at the onset of shear turbulence. Nat. Phys. 12, 245–248 (2016).

    Article  Google Scholar 

  26. Wang, X., Shih, H. & Goldenfeld, N. Stochastic model for quasi-one-dimensional transitional turbulence with streamwise shear interactions. Phys. Rev. Lett. 129, 34501 (2022).

    Article  ADS  Google Scholar 

  27. Barkley, D. et al. The rise of fully turbulent flow. Nature 526, 550–553 (2015).

    Article  ADS  Google Scholar 

  28. Wygnanski, I., Sokolov, M. & Friedman, D. On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283–304 (1975).

    Article  ADS  Google Scholar 

  29. Bottin, S., Daviaud, F., Manneville, P. & Dauchot, O. Discontinuous transition to spatiotemporal intermittency in plane Couette flow. Eur. Lett. 43, 171–176 (1998).

    Article  ADS  Google Scholar 

  30. Faisst, H. & Eckhardt, B. Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343–352 (2004).

    Article  ADS  MATH  Google Scholar 

  31. Peixinho, J. & Mullin, T. Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 94501 (2006).

    Article  ADS  Google Scholar 

  32. Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. Finite lifetime of turbulence in shear flows. Nature 443, 59–62 (2006).

    Article  ADS  Google Scholar 

  33. Willis, A. P. & Kerswell, R. R. Critical behavior in the relaminarization of localized turbulence in pipe flow. Phys. Rev. Lett. 98, 14501 (2007).

    Article  ADS  Google Scholar 

  34. Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 25301 (2010).

    Article  ADS  Google Scholar 

  35. Hof, B., De Lozar, A., Kuik, D. J. & Westerweel, J. Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101, 214501 (2008).

    Article  ADS  Google Scholar 

  36. Kuik, D. J., Poelma, C. & Westerweel, J. Quantitative measurement of the lifetime of localized turbulence in pipe flow. J. Fluid Mech. 645, 529–539 (2010).

    Article  ADS  MATH  Google Scholar 

  37. Avila, M., Willis, A. P. & Hof, B. On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127–136 (2010).

    Article  ADS  MATH  Google Scholar 

  38. Avila, K. & Hof, B. Second-order phase transition in counter-rotating Taylor–Couette flow experiment. Entropy 23, 58 (2021).

    Article  ADS  Google Scholar 

  39. Shi, L., Avila, M. & Hof, B. Scale invariance at the onset of turbulence in Couette Flow. Phys. Rev. Lett. 110, 204502 (2013).

    Article  ADS  Google Scholar 

  40. Shimizu, M., Kanazawa, T. & Kawahara, G. Exponential growth of lifetime of localized turbulence with its extent in channel flow. Fluid Dyn. Res. 51, 011404 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  41. Gomé, S., Tuckerman, L. & Barkley, D. Statistical transition to turbulence in plane channel flow. Phys. Rev. Fluids 5, 083905 (2020).

    Article  ADS  Google Scholar 

  42. Schneider, T. M. et al. Transient turbulence in plane Couette flow. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 015301 (2010).

    Article  Google Scholar 

  43. Tél, T. & Lai, Y. C. Chaotic transients in spatially extended systems. Phys. Rep. 460, 245–275 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  44. Goldenfeld, N., Guttenberg, N. & Gioia, G. Extreme fluctuations and the finite lifetime of the turbulent state. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 22–24 (2010).

    Article  Google Scholar 

  45. Gomé, S., Tuckerman, L. S. & Barkley, D. Gome Tuckerman Barkley Phil Trans 2021.pdf. Phil. Trans. R. Soc. A 380, 20210036 (2022).

    Article  ADS  Google Scholar 

  46. Nemoto, T. & Alexakis, A. Do extreme events trigger turbulence decay? A numerical study of turbulence decay time in pipe flows. J. Fluid Mech. 912, A38 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Sipos, M. & Goldenfeld, N. Directed percolation describes lifetime and growth of turbulent puffs and slugs. Phys. Rev. E 84, 035304 (2011).

    Article  ADS  Google Scholar 

  48. Manneville, P. Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E 79, 25301 (2009).

    Article  ADS  Google Scholar 

  49. Moxey, D. & Barkley, D. Distinct large-scale turbulent–laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA 107, 8091–8096 (2010).

    Article  ADS  Google Scholar 

  50. Nishi, M., Ünsal, B., Durst, F. & Biswas, G. Laminar-to-turbulent transition of pipe flows through puffs and slugs. J. Fluid Mech. 614, 425–446 (2008).

    Article  ADS  MATH  Google Scholar 

  51. Janssen, H. On the nonequilibrium phase transition in reaction-diffusion system with an absorbing stationary state. Z. Phys. B 42, 151–154 (1981).

    Article  ADS  Google Scholar 

  52. Grassberger, P. On phase transitions in Schlögl’s second model. Z. Phys. B 47, 365–374 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  53. Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958 (2000).

    Article  ADS  Google Scholar 

  54. Manneville, P. Transition to turbulence in wall-bounded flows: where do we stand? Mech. Eng. Rev. 3, 15-00684 (2016).

    Article  Google Scholar 

  55. Klotz, L., Lemoult, G., Avila, K. & Hof, B. Phase transition to turbulence in spatially extended shear flows. Phys. Rev. Lett. 128, 014502 (2022).

    Article  ADS  Google Scholar 

  56. Prigent, A., Grégoire, G., Chaté, H. & Dauchot, O. Long-wavelength modulation of turbulent shear flows. Phys. D 174, 100–113 (2003).

    Article  MATH  Google Scholar 

  57. Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Bottin, S. & Chate, H. Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6, 143–155 (1998).

    Article  ADS  Google Scholar 

  59. Cros, A. & Le Gal, P. Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk. Phys. Fluids 14, 3755 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Daviaud, F., Bonetti, M. & Dubois, M. Transition to turbulence via spatiotemporal intermittency in one-dimensional Rayleigh–Bénard convection. Phys. Rev. A 42, 3388–3399 (1990).

    Article  ADS  Google Scholar 

  61. Duguet, Y., Schlatter, P. & Henningson, D. S. Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech. 650, 119–129 (2010).

    Article  ADS  MATH  Google Scholar 

  62. Lemoult, G. et al. Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12, 254–258 (2016).

    Article  Google Scholar 

  63. Sano, M. & Tamai, K. A universal transition to turbulence in channel flow turbulence. Nat. Phys. 12, 249–253 (2016).

    Article  Google Scholar 

  64. Traphan, D., Wester, T. T. B., Gülker, G., Peinke, J. & Lind, P. G. Aerodynamics and percolation: unfolding laminar separation bubble on airfoils. Phys. Rev. X 8, 21015 (2018).

    Google Scholar 

  65. Hiruta, Y. & Toh, S. Subcritical laminar–turbulent transition as nonequilibrium phase transition in two-dimensional Kolmogorov flow. J. Phys. Soc. Jpn 89, 044402 (2020).

    Article  ADS  Google Scholar 

  66. Chantry, M., Tuckerman, L. S. & Barkley, D. Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech. 824, R1 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Takeda, K., Duguet, Y. & Tsukahara, T. Intermittency and critical scaling in annular Couette flow. Entropy 22, 988 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  68. Xiong, X., Tao, J., Chen, S. & Brandt, L. Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers. Phys. Fluids 27, 041702 (2015).

    Article  ADS  Google Scholar 

  69. Tsukahara, T., Seki, Y., Kawamura, H. & Tochio, D. in Fourth Int. Symp. Turbulence Shear Flow Phenomena (Begel House, 2005).

  70. Hashimoto, S., Hasobe, A., Tsukahara, T., Kawaguchi, Y. & Kawamura, H. in Proc. Sixth Int. Symp. Turbulence Heat Mass Transfer (Begel House, 2009).

  71. Mukund, V., Paranjape, C., Sitte, M. P. & Hof, B. Aging and memory of trans itional turbulence. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.06537 (2021).

    Article  Google Scholar 

  72. Kühnen, J. et al. Destabilizing turbulence in pipe flow. Nat. Phys. 14, 386–390 (2018).

    Article  Google Scholar 

  73. Shimizu, M. & Manneville, P. Bifurcations to turbulence in transitional channel flow. Phys. Rev. Fluids 4, 113903 (2019).

    Article  ADS  Google Scholar 

  74. Manneville, P. & Shimizu, M. Transitional channel flow: a minimal stochastic model. Entropy 22, 1348 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  75. Xiao, X. & Song, B. The growth mechanism of turbulent bands in channel flow at low Reynolds numbers. J. Fluid Mech. 883, R1 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Stumpf, M. P. H. & Porter, M. A. Critical truths about power laws. Science 335, 665–666 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Rotta, J. Experimenteller beitrag zur entstehung turbulenter strömung im rohr. Ing. Arch. 24, 258–281 (1956).

    Article  Google Scholar 

  78. Eckert, M. The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem. Eur. Phys. J. H 35, 29–51 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks M. Avila and M. Vasudevan for their comments on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Hof.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Takahiro Tsukahara, Kazuki Kohyama and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hof, B. Directed percolation and the transition to turbulence. Nat Rev Phys 5, 62–72 (2023). https://doi.org/10.1038/s42254-022-00539-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00539-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing