Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical review
  • Published:

First-principles calculations for Dzyaloshinskii–Moriya interaction

Abstract

Understanding the magnetic interactions is of fundamental importance in condensed-matter physics as well as in the application of spintronic devices. In the past 13 years, the Dzyaloshinskii–Moriya interaction (DMI) has attracted increasing attention, as it can trigger topological chiral magnetism, such as magnetic skyrmions, which is of particular interest from both fundamental and applied points of view. First-principles calculations have played an essential role in figuring out the microscopic properties of DMI and helped to search for the materials with strong DMI. In this Technical Review, we present a comprehensive and systematic survey of the first-principles-calculations methods for DMI, along with an overview of the first-principles calculations of the DMI properties of typical material systems and the DMI-induced magnetic phenomena.

Key points

  • The Dzyaloshinskii–Moriya interaction (DMI) is a kind of antisymmetric exchange coupling that arises as a consequence of the spin–orbit coupling in the magnetic system with broken inversion symmetry.

  • First-principles calculations of DMI can be based on the methods of mapping of total energies or mapping of energy derivatives.

  • First-principles calculations with spin–orbit coupling for the noncollinear magnetic structure is the critical step to obtaining the DMI parameter.

  • DMI resides in many magnetic bulk and thin-film systems with broken inversion symmetry.

  • DMI favours twisted spin pairs, leading to the formation of many chiral topological magnetic structures, such as skyrmions, and has a strong impact on the spin dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin configurations for the total-energy mapping method of Dzyaloshinskii–Moriya interaction calculations.
Fig. 2: Dzyaloshinskii–Moriya interaction properties of bulk materials.
Fig. 3: Dzyaloshinskii–Moriya interaction properties of magnetic thin-film heterostructures.
Fig. 4: Dzyaloshinskii–Moriya interaction properties of 2D magnets.
Fig. 5: Illustration of Dzyaloshinskii–Moriya-interaction-induced phenomena.

Similar content being viewed by others

References

  1. Dzyaloshinskii, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958). This paper is the first work that introduced DMI to explain the canting of moments in weak ferromagnets.

    Article  ADS  Google Scholar 

  2. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960).

    Article  ADS  Google Scholar 

  3. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960). References 2 and 3 present the first microscopic theory for the origin of DMI.

    Article  ADS  Google Scholar 

  4. Smith, D. New mechanisms for magnetic anisotropy in localised S-state moment materials. J. Magn. Magn. Mater. 1, 214–225 (1976).

    Article  ADS  Google Scholar 

  5. Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538 (1980).

    Article  ADS  Google Scholar 

  6. Levy, P. M. & Fert, A. Anisotropy induced by nonmagnetic impurities in CuMn spin-glass alloys. Phys. Rev. B 23, 4667 (1981). References 5 and 6 proposed a three-site DMI mechanism in spin glasses, which was extended to magnetic thin-film surfaces and interfaces.

    Article  ADS  Google Scholar 

  7. Kataoka, M. et al. Antisymmetric spin interaction in metals. J. Phys. Soc. Jpn. 53, 3624–3633 (1984).

    Article  ADS  Google Scholar 

  8. Dmitrienko, V. E. & Chizhikov, V. A. Weak antiferromagnetic ordering induced by Dzyaloshinskii-Moriya interaction and pure magnetic reflections in MnSi-type crystals. Phys. Rev. Lett. 108, 187203 (2012).

    Article  ADS  Google Scholar 

  9. Dmitrienko, V. et al. Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet. Nat. Phys. 10, 202–206 (2014).

    Article  Google Scholar 

  10. Beutier, G. et al. Band filling control of the Dzyaloshinskii-Moriya interaction in weakly ferromagnetic insulators. Phys. Rev. Lett. 119, 167201 (2017).

    Article  ADS  Google Scholar 

  11. Thoma, H. et al. Revealing the absolute direction of the Dzyaloshinskii-Moriya interaction in prototypical weak ferromagnets by polarized neutrons. Phys. Rev. X 11, 011060 (2021).

    Google Scholar 

  12. Coffey, D. et al. Dzyaloshinskii-Moriya interaction in the cuprates. Phys. Rev. B 44, 10112 (1991).

    Article  ADS  Google Scholar 

  13. Wu, C. et al. Spin-orbit coupling-induced magnetic phase in the d-density-wave phase of La2−xBaxCuO4 superconductors. Phys. Rev. Lett. 95, 247007 (2005).

    Article  ADS  Google Scholar 

  14. Moskvin, A. S. Field-induced staggered magnetization and 17O Knight shift anomaly in La2CuO4. Phys. Rev. B 75, 054505 (2007).

    Article  ADS  Google Scholar 

  15. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  ADS  Google Scholar 

  16. Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Article  ADS  Google Scholar 

  17. Cheong, S. W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article  ADS  Google Scholar 

  18. Zhao, J. Z. et al. Effects of the Dzyaloshinskii-Moriya interaction on low-energy magnetic excitations in copper benzoate. Phys. Rev. Lett. 90, 207204 (2003).

    Article  ADS  Google Scholar 

  19. De Raedt, H. et al. Dzyaloshinskii-Moriya interactions and adiabatic magnetization dynamics in molecular magnets. Phys. Rev. B 70, 064401 (2004).

    Article  ADS  Google Scholar 

  20. Belinsky, M. I. Electric polarization, toroidal moment, spin canting, and chirality induced by Dzialoshinsky–Moriya interactions in a V3 cluster analog of multiferroics. Phys. Rev. B 84, 064425 (2011).

    Article  ADS  Google Scholar 

  21. Boudalis, A. K. Half-integer spin triangles: old dogs, new tricks. Chem. Eur. J. 27, 7022–7042 (2021).

    Article  Google Scholar 

  22. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007). This work presented the first example of the interfacial DMI.

    Article  ADS  Google Scholar 

  23. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  Google Scholar 

  24. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  ADS  Google Scholar 

  25. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  ADS  Google Scholar 

  26. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  ADS  Google Scholar 

  27. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  28. Togawa, Y. Chiral magnetic soliton lattice on a chiral helimagnet. Phys. Rev. Lett. 108, 107202 (2012).

    Article  ADS  Google Scholar 

  29. Grigoriev, S. V. et al. Chiral properties of structure and magnetism in Mn1−xFexGe compounds: when the left and the right are fighting, who wins? Phys. Rev. Lett. 110, 207201 (2013).

    Article  ADS  Google Scholar 

  30. Rößler, U. et al. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  ADS  Google Scholar 

  31. Yu, X. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  32. Yu, X. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article  ADS  Google Scholar 

  33. Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling. Nat. Nanotechnol. 8, 723–728 (2013).

    Article  ADS  Google Scholar 

  34. Park, H. et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotechnol. 9, 337–342 (2014).

    Article  ADS  Google Scholar 

  35. Nayak, A. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  ADS  Google Scholar 

  36. Zhang, S. et al. Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure. Nano Lett. 18, 1057–1063 (2018).

    Article  ADS  Google Scholar 

  37. Zheng, F. et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).

    Article  ADS  Google Scholar 

  38. Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).

    Article  Google Scholar 

  39. Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article  ADS  Google Scholar 

  40. Tai, J.-S. B. & Smalyukh, I. I. Static Hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures. Phys. Rev. Lett. 121, 187201 (2018).

    Article  ADS  Google Scholar 

  41. Kent, N. et al. Creation and observation of Hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

    Article  ADS  Google Scholar 

  42. Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).

    Article  Google Scholar 

  43. Chen, G. et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys. Rev. Lett. 110, 177204 (2013).

    Article  ADS  Google Scholar 

  44. Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013).

    Article  ADS  Google Scholar 

  45. Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 214401 (2013).

    Article  ADS  Google Scholar 

  46. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402(R) (2014).

    Article  ADS  Google Scholar 

  47. Soucaille, R. et al. Probing the Dzyaloshinskii-Moriya interaction in CoFeB ultrathin films using domain wall creep and Brillouin light spectroscopy. Phys. Rev. B 94, 104431 (2016).

    Article  ADS  Google Scholar 

  48. Jué, E. et al. Chiral damping of magnetic domain walls. Nat. Mater. 15, 272–277 (2016).

    Article  ADS  Google Scholar 

  49. Han, D.-S. et al. Asymmetric hysteresis for probing Dzyaloshinskii–Moriya interaction. Nano Lett. 16, 4438–4446 (2016).

    Article  ADS  Google Scholar 

  50. Pham, T. H. et al. Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction. Europhys. Lett. 113, 67001 (2016).

    Article  ADS  Google Scholar 

  51. Ajejas, F. et al. Tuning domain wall velocity with Dzyaloshinskii-Moriya interaction. Appl. Phys. Lett. 111, 202402 (2017).

    Article  ADS  Google Scholar 

  52. Kuswik, P. et al. Determination of the Dzyaloshinskii-Moriya interaction in exchange biased Au/Co/NiO systems. J. Magn. Magn. Mater. 472, 29–33 (2019).

    Article  ADS  Google Scholar 

  53. Lu, J. et al. Quantifying the bulk and interfacial Dzyaloshinskii-Moriya interactions. Phys. Rev. B 101, 134431 (2020).

    Article  ADS  Google Scholar 

  54. Cortés-Ortuño, D. & Landeros, P. Influence of the Dzyaloshinskii–Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter 25, 156001 (2013).

    Article  ADS  Google Scholar 

  55. Belmeguenai, M. et al. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405(R) (2015).

    Article  ADS  Google Scholar 

  56. Di, K. et al. Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015).

    Article  ADS  Google Scholar 

  57. Cho, J. et al. Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015).

    Article  ADS  Google Scholar 

  58. Nembach, H. T. et al. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).

    Article  Google Scholar 

  59. Lee, J. M. All-electrical measurement of interfacial Dzyaloshinskii-Moriya interaction using collective spin-wave dynamics. Nano Lett. 16, 62–67 (2016).

    Article  ADS  Google Scholar 

  60. Wang, Z. et al. Probing the Dzyaloshinskii-Moriya interaction via the propagation of spin waves in ferromagnetic thin films. Phys. Rev. Appl. 10, 054018 (2018).

    Article  ADS  Google Scholar 

  61. Zhang, B. et al. Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes. Phys. Rev. B 97, 094421 (2018).

    Article  ADS  Google Scholar 

  62. Mazurenko, V. V. & Anisimov, V. I. Weak ferromagnetism in antiferromagnets: α-Fe2O3 and La2CuO4. Phys. Rev. B 71, 184434 (2005).

    Article  ADS  Google Scholar 

  63. Heide, M. et al. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403(R) (2008).

    Article  ADS  Google Scholar 

  64. Xiang, H. J. et al. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 84, 224429 (2011).

    Article  ADS  Google Scholar 

  65. Zimmermann, B. et al. First-principles analysis of a homochiral cycloidal magnetic structure in a monolayer Cr on W(110). Phys. Rev. B 90, 115427 (2014).

    Article  ADS  Google Scholar 

  66. Yang, H. X. et al. Anatomy of Dzyaloshinskii-Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015). This paper presented the real-space spiral method for the DMI calculation.

    Article  ADS  Google Scholar 

  67. Kikuchi, T. et al. Dzyaloshinskii-Moriya interaction as a consequence of a Doppler shift due to spin-orbit-induced intrinsic spin current. Phys. Rev. Lett. 116, 247201 (2016).

    Article  ADS  Google Scholar 

  68. Schweflinghaus, B. et al. Role of Dzyaloshinskii-Moriya interaction for magnetism in transition-metal chains at Pt step edges. Phys. Rev. B 94, 024403 (2016).

    Article  ADS  Google Scholar 

  69. Belabbes, A. et al. Hund’s rule-driven Dzyaloshinskii-Moriya interaction at 3d–5d interfaces. Phys. Rev. Lett. 117, 247202 (2016).

    Article  ADS  Google Scholar 

  70. Yang, H. X. et al. Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect. Nat. Mater. 17, 605–609 (2018).

    Article  ADS  Google Scholar 

  71. Liang, J. H. et al. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 101, 184401 (2020).

    Article  ADS  Google Scholar 

  72. Belabbes, A. et al. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films. Sci. Rep. 6, 24634 (2016).

    Article  ADS  Google Scholar 

  73. Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions. Nat. Commun. 8, 308 (2017).

    Article  ADS  Google Scholar 

  74. Yang, H. et al. Controlling Dzyaloshinskii-Moriya interaction via chirality dependent atomic-layer stacking, insulator capping and electric field. Sci. Rep. 8, 12356 (2018).

    Article  ADS  Google Scholar 

  75. Yang, B. et al. Reversible control of Dzyaloshinskii-Moriya interaction at the graphene/Co interface via hydrogen absorption. Phys. Rev. B 101, 014406 (2020).

    Article  ADS  Google Scholar 

  76. Zhang, B. H. et al. Tuning Dzyaloshinskii-Moriya interactions in magnetic bilayers with a ferroelectric substrate. Phys. Rev. B 103, 054417 (2021).

    Article  ADS  Google Scholar 

  77. Zheng, G. et al. Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation. Nat. Commun. 12, 3639 (2021).

    Article  ADS  Google Scholar 

  78. Xiang, H. J. et al. Magnetic properties and energy-mapping analysis. Dalton Trans. 42, 823–853 (2013). References 64 and 78 presented the four-states method for the DMI calculation.

    Article  Google Scholar 

  79. Šabani, D. et al. Ab initio methodology for magnetic exchange parameters: generic four-state energy mapping onto a Heisenberg spin Hamiltonian. Phys. Rev. B 102, 014457 (2020).

    Article  ADS  Google Scholar 

  80. Ujfalussy, B. et al. Constrained density functional theory for first principles spin dynamics. J. Appl. Phys. 85, 4824–4826 (1999).

    Article  ADS  Google Scholar 

  81. Stocks, G. M. et al. Towards a constrained local moment model for first principles spin dynamics. Philos. Mag. B 78, 665–673 (1998).

    Article  ADS  Google Scholar 

  82. Dederichs, P. H. et al. Ground states of constrained systems: application to cerium impurities. Phys. Rev. Lett. 53, 2512 (1984).

    Article  ADS  Google Scholar 

  83. Kurz, P. et al. Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Phys. Rev. B 69, 024415 (2004).

    Article  ADS  Google Scholar 

  84. Singer, R. et al. Constrained spin-density functional theory for excited magnetic configurations in an adiabatic approximation. Phys. Rev. B 71, 214435 (2005).

    Article  ADS  Google Scholar 

  85. Ma, P.-W. & Dudarev, S. L. Constrained density functional for noncollinear magnetism. Phys. Rev. B 91, 054420 (2015).

    Article  ADS  Google Scholar 

  86. VASP. I_CONSTRAINED_M. https://www.vasp.at/wiki/index.php/I_CONSTRAINED_M (2022).

  87. Li, Z.-L. et al. Helicoidal magnetic structure and ferroelectric polarization in Cu3Nb2O8. Phys. Rev. B 86, 174401 (2012).

    Article  ADS  Google Scholar 

  88. Lu, X. Z. et al. Giant ferroelectric polarization of CaMn7O12 induced by a combined effect of Dzyaloshinskii-Moriya interaction and exchange striction. Phys. Rev. Lett. 108, 187204 (2012).

    Article  ADS  Google Scholar 

  89. Yang, J. H. et al. Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3. Phys. Rev. Lett. 109, 107203 (2012).

    Article  ADS  Google Scholar 

  90. Rousochatzakis, I. et al. Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites Cu3Bi(SeO3)2O2X (X = Br, Cl). Phys. Rev. B 91, 024416 (2015).

    Article  ADS  Google Scholar 

  91. Wang, P.  S. et al. Predicting a ferrimagnetic phase of Zn2FeOsO6 with strong magnetoelectric coupling. Phys. Rev. Lett. 114, 147204 (2015).

    Article  ADS  Google Scholar 

  92. Bhowal, S. et al. A comparative study of electronic, structural, and magnetic properties of α-, β-, and γ-Cu2V2O7. Phys. Rev. B 95, 075110 (2017).

    Article  ADS  Google Scholar 

  93. Xu, C. et al. Magnetic interactions in BiFeO3: a first-principles study. Phys. Rev. B 99, 104420 (2019).

    Article  ADS  Google Scholar 

  94. Xu, C. et al. Topological spin texture in Janus monolayers of the chromium trihalides Cr(I, X)3. Phys. Rev. B 101, 060404 (2020).

    Article  ADS  Google Scholar 

  95. Zhang, Y. et al. Emergence of skyrmionium in a two-dimensional CrGe(Se,Te)3 Janus monolayer. Phys. Rev. B 102, 241107(R) (2020).

    Article  ADS  Google Scholar 

  96. Sun, W. et al. Controlling bimerons as skyrmion analogues by ferroelectric polarization in 2D van der Waals multiferroic heterostructures. Nat. Commun. 11, 5930 (2020).

    Article  ADS  Google Scholar 

  97. Xu, C. et al. Electric-field switching of magnetic topological charge in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).

    Article  ADS  Google Scholar 

  98. Sandratskii, L. M. Symmetry analysis of electronic states for crystals with spiral magnetic order. I. General properties. J. Phys. Condens. Matter 3, 8565 (1991).

    Article  ADS  Google Scholar 

  99. Wang, L. et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 17, 1087–1094 (2018).

    Article  ADS  Google Scholar 

  100. Han, X. et al. Interfacial magnetic anisotropy and Dzyaloshinskii-Moriya interaction at two-dimensional SiC/Fe4N(111) interfaces. J. Appl. Phys. 128, 063903 (2020).

    Article  ADS  Google Scholar 

  101. Akanda, M. R. K. et al. Interfacial Dzyaloshinskii-Moriya interaction of antiferromagnetic materials. Phys. Rev. B 102, 224414 (2020).

    Article  ADS  Google Scholar 

  102. Deger, C. Strain-enhanced Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Sci. Rep. 10, 12314 (2020).

    Article  ADS  Google Scholar 

  103. Lin, W. et al. Perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction at an oxide/ferromagnetic metal interface. Phys. Rev. Lett. 124, 217202 (2020).

    Article  ADS  Google Scholar 

  104. Chen, R. Large Dzyaloshinskii-Moriya interaction and room-temperature nanoscale skyrmions in CoFeB/MgO heterostructures. Cell Rep. Phys. Sci. 2, 100618 (2021).

    Article  Google Scholar 

  105. Hallal, A. et al. Rashba-type Dzyaloshinskii–Moriya interaction, perpendicular magnetic anisotropy, and skyrmion states at 2D materials/Co interfaces. Nano Lett. 21, 7138–7144 (2021).

    Article  ADS  Google Scholar 

  106. Chen, R. et al. Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets. Nat. Commun. 12, 3113 (2021).

    Article  ADS  Google Scholar 

  107. Li, Z. et al. Electric field induced reversal of spin polarization, magnetic anisotropy and tailored Dzyaloshinskii–Moriya interaction in underoxidized SrRuO3/SrTiO3 heterostructures. Phys. Chem. Chem. Phys. 23, 3008–3018 (2021).

    Article  Google Scholar 

  108. Morshed, M. G. et al. Tuning Dzyaloshinskii-Moriya interaction in ferrimagnetic GdCo: a first-principles approach. Phys. Rev. B 103, 174414 (2021).

    Article  ADS  Google Scholar 

  109. Yuan, J. et al. Intrinsic skyrmions in monolayer Janus magnets. Phys. Rev. B 101, 094420 (2020).

    Article  ADS  Google Scholar 

  110. Zhang, F. et al. Electronic structure, magnetic anisotropy and Dzyaloshinskii–Moriya interaction in Janus Cr2I3X3 (X = Br, Cl) bilayers. Phys. Chem. Chem. Phys. 22, 8647–8657 (2020).

    Article  Google Scholar 

  111. Qi, S. et al. Tunable valley polarization, magnetic anisotropy and Dzyaloshinskii–Moriya interaction in two-dimensional intrinsic ferromagnetic Janus 2H-VSeX (X = S, Te) monolayers. Phys. Chem. Chem. Phys. 22, 23597–23608 (2020).

    Article  Google Scholar 

  112. Cui, Q. et al. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys. Rev. B 102, 094425 (2020).

    Article  ADS  Google Scholar 

  113. Cui, Q. et al. Ferroelectrically controlled topological magnetic phase in a Janus-magnet-based multiferroic heterostructure. Phys. Rev. Res. 3, 043011 (2021).

    Article  Google Scholar 

  114. Jiang, J. et al. Electrical control of topological spin textures in two-dimensional multiferroics. Nanoscale 13, 20609–20614 (2021).

    Article  Google Scholar 

  115. Xu, Y. et al. Electronic structure and magnetic properties of two-dimensional h-BN/Janus 2H-VSeX (X = S, Te) van der Waals heterostructures. Appl. Surf. Sci. 537, 147898 (2021).

    Article  Google Scholar 

  116. Qi, S. et al. Valley polarization, magnetic anisotropy and Dzyaloshinskii-Moriya interaction of two-dimensional graphene/Janus 2H-VSeX (X = S, Te) heterostructures. Carbon 174, 540–555 (2021).

    Article  Google Scholar 

  117. Debbichi, M. A new ternary pentagonal monolayer based on Bi with large intrinsic Dzyaloshinskii–Moriya interaction. J. Phys. D Appl. Phys. 55, 015002 (2022).

    Article  ADS  Google Scholar 

  118. Gao, Y. et al. Manipulation of topological spin configuration via tailoring thickness in van der Waals ferromagnetic. Phys. Rev. B 105, 014426 (2022).

    Article  ADS  Google Scholar 

  119. Shao, Z. J. et al. Multiferroic materials based on transition-metal dichalcogenides: potential platform for reversible control of Dzyaloshinskii-Moriya interaction and skyrmion via electric field. Phys. Rev. B 105, 174404 (2022).

    Article  ADS  Google Scholar 

  120. Huang, K. et al. Ferroelectric control of magnetic skyrmions in two-dimensional van der Waals heterostructures. Nano Lett. 22, 3349–3355 (2022).

    Article  ADS  Google Scholar 

  121. Du, W. et al. Spontaneous magnetic skyrmions in single-layer CrInX3 (X = Te, Se). Nano Lett. 22, 3440–3446 (2022).

    Article  ADS  Google Scholar 

  122. Cui, Q. et al. Anisotropic Dzyaloshinskii–Moriya interaction and topological magnetism in two-dimensional magnets protected by Pm2 crystal symmetry. Nano Lett. 22, 2334–2341 (2022).

    Article  ADS  Google Scholar 

  123. Sandratskii, L. M. Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv. Phys. 47, 91–160 (1998).

    Article  ADS  Google Scholar 

  124. Heide, M. Magnetic Domain Walls in Ultrathin Films: Contribution of the Dzyaloshinskii-Moriya Interaction PhD thesis, RWTH Aachen (2006).

  125. Heide, M. et al. Describing Dzyaloshinskii–Moriya spirals from first principles. Physica B Condens. Matter 404, 2678–2683 (2009). References 63, 124 and 125 presented the reciprocal-space spiral method for the DMI calculation.

    Article  ADS  Google Scholar 

  126. Mackintosh, A. R. & Andersen, O. K. Electrons at the Fermi Surface (eds Springford, M. & Shoenberg, D.) Ch. 5 (Cambridge Univ. Press, 1980).

  127. Methfessel, M. & Kubler, J. Bond analysis of heats of formation: application to some group VIII and IB hydrides. J. Phys. F Met. Phys. 12, 141 (1982).

    Article  ADS  Google Scholar 

  128. VASP. Spin spirals. https://www.vasp.at/wiki/index.php/Spin_spirals (2019).

  129. Sandratskii, L. M. Insight into the Dzyaloshinskii-Moriya interaction through first-principles study of chiral magnetic structures. Phys. Rev. B 96, 024450 (2017).

    Article  ADS  Google Scholar 

  130. Gayles, J. et al. Dzyaloshinskii-Moriya interaction and Hall effects in the skyrmion phase of Mn1−xFexGe. Phys. Rev. Lett. 115, 036602 (2015).

    Article  ADS  Google Scholar 

  131. Grytsiuk, S. et al. Ab initio analysis of magnetic properties of the prototype B20 chiral magnet FeGe. Phys. Rev. B 100, 214406 (2019).

    Article  ADS  Google Scholar 

  132. Ferriani, P. et al. Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008).

    Article  ADS  Google Scholar 

  133. Meyer, S. Dzyaloshinskii-Moriya interaction at an antiferromagnetic interface: first-principles study of Fe/Ir bilayers on Rh(001). Phys. Rev. B 96, 094408 (2017).

    Article  ADS  Google Scholar 

  134. Haldar, S. et al. First-principles prediction of sub-10-nm skyrmions in Pd/Fe bilayers on Rh(111). Phys. Rev. B 98, 060413(R) (2018).

    Article  ADS  Google Scholar 

  135. Zimmermann, B. et al. Dzyaloshinskii-Moriya interaction at disordered interfaces from ab initio theory: robustness against intermixing and tunability through dusting. Appl. Phys. Lett. 113, 232403 (2018).

    Article  ADS  Google Scholar 

  136. Kim, S. et al. Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity. Nat. Commun. 9, 1648 (2018).

    Article  ADS  Google Scholar 

  137. Romming, N. et al. Competition of Dzyaloshinskii-Moriya and higher-order exchange interactions in Rh/Fe in atomic bilayers on Ir(111). Phys. Rev. Lett. 120, 207201 (2018).

    Article  ADS  Google Scholar 

  138. Han, D.-S. et al. Long-range chiral exchange interaction in synthetic antiferromagnets. Nat. Mater. 18, 703–708 (2019).

    Article  ADS  Google Scholar 

  139. Meyer, S. et al. Isolated zero field sub-10 nm skyrmions in ultrathin Co films. Nat. Commun. 10, 3823 (2019).

    Article  ADS  Google Scholar 

  140. Jia, H. et al. Electric dipole moment as descriptor for interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. Mater. 4, 024405 (2020).

    Article  Google Scholar 

  141. Li, W. et al. Stacking-dependent spin interactions in Pd/Fe bilayers on Re(0001) bilayers on Re(0001). Phys. Rev. Lett. 125, 227205 (2020).

    Article  ADS  Google Scholar 

  142. Jia, H. et al. Material systems for FM-/AFM-coupled skyrmions in Co/Pt-based multilayers. Phys. Rev. Mater. 4, 094407 (2020).

    Article  Google Scholar 

  143. Petersen, N. et al. Tuning exchange interactions in antiferromagnetic Fe/W(001) transition-metal overlayers. Phys. Rev. B 104, 104416 (2021).

    Article  ADS  Google Scholar 

  144. Ham, W. S. et al. Dzyaloshinskii–Moriya interaction in noncentrosymmetric superlattices. npj Comput. Mater. 7, 129 (2021).

    Article  ADS  Google Scholar 

  145. Liang, J. H. et al. Electrically switchable Rashba-type Dzyaloshinskii-Moriya interaction and skyrmion in two-dimensional magnetoelectric multiferroics. Phys. Rev. B 102, 220409 (2020).

    Article  ADS  Google Scholar 

  146. Jiang, J. et al. Topological spin textures in a two-dimensional MnBi2(Se, Te)4 Janus material. Appl. Phys. Lett. 119, 072401 (2021).

    Article  ADS  Google Scholar 

  147. Menzel, M. et al. Information transfer by vector spin chirality in finite magnetic chains. Phys. Rev. Lett. 108, 197204 (2012).

    Article  ADS  Google Scholar 

  148. Kashid, V. et al. Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d–5d zigzag chains: tight-binding model and ab initio calculations. Phys. Rev. B 90, 054412 (2014).

    Article  ADS  Google Scholar 

  149. Liechtenstein, A. I. et al. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    Article  ADS  Google Scholar 

  150. Ebert, H. & Mankovsky, S. Anisotropic exchange coupling in diluted magnetic semiconductors: ab initio spin-density functional theory. Phys. Rev. B 79, 045209 (2009).

    Article  ADS  Google Scholar 

  151. Solovyev, I. et al. Crucial role of the lattice distortion in the magnetism of LaMnO3. Phys. Rev. Lett. 76, 4825 (1996).

    Article  ADS  Google Scholar 

  152. Antropov, V. et al. Exchange interactions in magnets. Physica B Condens. Matter 237, 336–340 (1997).

    Article  ADS  Google Scholar 

  153. Katsnelson, M. I. & Lichtenstein, A. I. First-principles calculations of magnetic interactions in correlated systems. Phys. Rev. B 61, 8906 (2000).

    Article  ADS  Google Scholar 

  154. Udvardi, L. et al. First-principles relativistic study of spin waves in thin magnetic films. Phys. Rev. B 68, 104436 (2003).

    Article  ADS  Google Scholar 

  155. Mazurenko, V. V. et al. A DMI guide to magnets micro-world. J. Exp. Theor. Phys. 132, 506–516 (2021).

    Article  ADS  Google Scholar 

  156. Mankovsky, S. et al. Spin-wave stiffness and micromagnetic exchange interactions expressed by means of the KKR Green function approach. Phys. Rev. B 99, 104427 (2019).

    Article  ADS  Google Scholar 

  157. Simon, E. & Szunyogh, L. Spin-spiral formalism based on the multiple-scattering Green’s function technique with applications to ultrathin magnetic films and multilayers. Phys. Rev. B 100, 134428 (2019).

    Article  ADS  Google Scholar 

  158. Mankovsky, S. et al. Exchange coupling constants at finite temperature. Phys. Rev. B 102, 134434 (2020).

    Article  ADS  Google Scholar 

  159. Andersen, O. K. & Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  160. Cardias, R. et al. First-principles Dzyaloshinskii–Moriya interaction in a non-collinear framework. Sci. Rep. 10, 20339 (2020).

    Article  Google Scholar 

  161. Mahfouzi, F. & Kioussis, N. First-principles calculation of the Dzyaloshinskii-Moriya interaction: a Green’s function approach. Phys. Rev. B 103, 094410 (2021).

    Article  ADS  Google Scholar 

  162. Katsnelson, M. I. et al. Correlated band theory of spin and orbital contributions to Dzyaloshinskii-Moriya interactions. Phys. Rev. B 82, 100403(R) (2010).

    Article  ADS  Google Scholar 

  163. He, X. et al. TB2J: a python package for computing magnetic interaction parameters. Comput. Phys. Commun. 264, 107938 (2021).

    Article  MathSciNet  Google Scholar 

  164. Wan, X. et al. Calculation of magnetic exchange interactions in Mott-Hubbard systems. Phys. Rev. Lett. 97, 266403 (2006).

    Article  ADS  Google Scholar 

  165. Ntallis, N. et al. Connection between magnetic interactions and the spin-wave gap of the insulating phase of NaOsO3. Phys. Rev. B 104, 134433 (2021).

    Article  ADS  Google Scholar 

  166. Borisov, V. et al. Heisenberg and anisotropic exchange interactions in magnetic materials with correlated electronic structure and significant spin-orbit coupling. Phys. Rev. B 103, 174422 (2021).

    Article  ADS  Google Scholar 

  167. Grytsiuk, S. & Blügel, S. Micromagnetic description of twisted spin spirals in the B20 chiral magnet FeGe from first principles. Phys. Rev. B 104, 064420 (2021).

    Article  ADS  Google Scholar 

  168. Bergqvist, L. et al. Atomistic spin dynamics of low-dimensional magnets. Phys. Rev. B 87, 144401 (2013).

    Article  ADS  Google Scholar 

  169. Rózsa, L. et al. Magnetic phase diagram of an Fe monolayer on W(110) and Ta(110) surfaces based on ab initio calculations. Phys. Rev. B 91, 144424 (2015).

    Article  ADS  Google Scholar 

  170. Vida, Gy. J. et al. Domain-wall profiles in Co/Irn/Pt(111) ultrathin films: influence of the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 94, 214422 (2016).

    Article  ADS  Google Scholar 

  171. Simon, E. et al. Magnetism of a Co monolayer on Pt(111) capped by overlayers of 5d elements: a spin-model study. Phys. Rev. B 97, 134405 (2018).

    Article  ADS  Google Scholar 

  172. Zimmermann, B. et al. Comparison of first-principles methods to extract magnetic parameters in ultrathin films: Co/Pt(111). Phys. Rev. B 99, 214426 (2019).

    Article  ADS  Google Scholar 

  173. Nagyfalusi, B. et al. Spin reorientation transition in an ultrathin Fe film on W(110) induced by Dzyaloshinsky-Moriya interactions. Phys. Rev. B 102, 134413 (2020).

    Article  ADS  Google Scholar 

  174. Carvalho, P. C. et al. Complex magnetic textures in Ni/Irn/Pt(111) ultrathin films. Phys. Rev. Mater. 5, 124406 (2021).

    Article  Google Scholar 

  175. Rudenko, A. N. Weak ferromagnetism in Mn nanochains on the CuN surface. Phys. Rev. B 79, 144418 (2009).

    Article  ADS  Google Scholar 

  176. Drautz, R. & Fähnle, M. Spin-cluster expansion: parametrization of the general adiabatic magnetic energy surface with ab initio accuracy. Phys. Rev. B 69, 104404 (2004).

    Article  ADS  Google Scholar 

  177. Drautz, R. & Fähnle, M. Parametrization of the magnetic energy at the atomic level. Phys. Rev. B 72, 212405 (2005).

    Article  ADS  Google Scholar 

  178. Szunyogh, L. et al. Atomistic spin model based on a spin-cluster expansion technique: application to the IrMn3/Co interface. Phys. Rev. B 83, 024401 (2011).

    Article  ADS  Google Scholar 

  179. Yanes, R. et al. Exchange bias driven by Dzyaloshinskii-Moriya interactions. Phys. Rev. Lett. 111, 217202 (2013).

    Article  ADS  Google Scholar 

  180. Simon, E. et al. Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir(111). Phys. Rev. B 90, 094410 (2014).

    Article  ADS  Google Scholar 

  181. Hasselberg, G. et al. Thermal properties of a spin spiral: manganese on tungsten(110). Phys. Rev. B 91, 064402 (2015).

    Article  ADS  Google Scholar 

  182. Freimuth, F. et al. Phase-space Berry phases in chiral magnets: Dzyaloshinskii-Moriya interaction and the charge of skyrmions. Phys. Rev. B 88, 214409 (2013).

    Article  ADS  Google Scholar 

  183. Freimuth, F. et al. Berry phase theory of Dzyaloshinskii–Moriya interaction and spin–orbit torques. J. Phys. Condens. Matter 26, 104202 (2014).

    Article  Google Scholar 

  184. Freimuth, F. et al. Relation of the Dzyaloshinskii-Moriya interaction to spin currents and to the spin-orbit field. Phys. Rev. B 96, 054403 (2017).

    Article  ADS  Google Scholar 

  185. Mankovsky, S. & Ebert, H. Accurate scheme to calculate the interatomic Dzyaloshinskii-Moriya interaction parameters. Phys. Rev. B 96, 104416 (2017).

    Article  ADS  Google Scholar 

  186. Mankovsky, S. et al. Composition-dependent magnetic response properties of Mn1−xFexGe alloys. Phys. Rev. B 97, 024403 (2018).

    Article  ADS  Google Scholar 

  187. Koretsune, T. et al. First-principles evaluation of the Dzyaloshinskii–Moriya interaction. J. Phys. Soc. Jpn. 87, 041011 (2018).

    Article  ADS  Google Scholar 

  188. Koretsune, T. et al. Control of Dzyaloshinskii-Moriya interaction in Mn1−xFexGe: a first-principles study. Sci. Rep. 5, 13302 (2015).

    Article  ADS  Google Scholar 

  189. Liu, P. et al. Anisotropic magnetic couplings and structure-driven canted to collinear transitions in Sr2IrO4 by magnetically constrained noncollinear DFT. Phys. Rev. B 92, 054428 (2015).

    Article  ADS  Google Scholar 

  190. Liu, J. et al. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Phys. Rev. B 97, 054416 (2018).

    Article  ADS  Google Scholar 

  191. Siegfried, S.-A. et al. Controlling the Dzyaloshinskii-Moriya interaction to alter the chiral link between structure and magnetism for Fe1−xCoxSi. Phys. Rev. B 91, 184406 (2015).

    Article  ADS  Google Scholar 

  192. Xu, B. et al. Revisiting spin cycloids in multiferroic BiFeO3. Phys. Rev. B 98, 184420 (2018).

    Article  ADS  Google Scholar 

  193. Xu, B. et al. First-principles study of spin spirals in the multiferroic BiFeO3. Phys. Rev. B 103, 214423 (2021).

    Article  ADS  Google Scholar 

  194. Sosnowska, I. et al. Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835 (1982).

    Article  ADS  Google Scholar 

  195. Sosnowska, I. et al. Investigation of the unusual magnetic spiral arrangement in BiFeO3. Physica B Condens. Matter 180–181, 117–118 (1992).

    Article  ADS  Google Scholar 

  196. Seki, S. et al. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  ADS  Google Scholar 

  197. Hu, T. & Kan, E. Progress and prospects in low-dimensional multiferroic materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 9, e1409 (2019).

    Article  Google Scholar 

  198. Ying, Y. & Zülicke, U. Magnetoelectricity in two-dimensional materials. Adv. Phys. X 7, 2032343 (2022).

    Google Scholar 

  199. Ding, N. et al. Ferroelectricity and ferromagnetism in a VOI2 monolayer: role of the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 102, 165129 (2020).

    Article  ADS  Google Scholar 

  200. Fiebig, M. et al. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  ADS  Google Scholar 

  201. Kim, K.-W. et al. Chirality from interfacial spin-orbit coupling effects in magnetic bilayers. Phys. Rev. Lett. 111, 216601 (2013).

    Article  ADS  Google Scholar 

  202. Kundu, A. & Zhang, S. Dzyaloshinskii-Moriya interaction mediated by spin-polarized band with Rashba spin-orbit coupling. Phys. Rev. B 92, 094434 (2015).

    Article  ADS  Google Scholar 

  203. Ado, I. A. et al. Asymmetric and symmetric exchange in a generalized 2D Rashba ferromagnet. Phys. Rev. Lett. 121, 086802 (2018).

    Article  ADS  Google Scholar 

  204. Qaiumzadeh, A. et al. Theory of the interfacial Dzyaloshinskii-Moriya interaction in Rashba antiferromagnets. Phys. Rev. Lett. 120, 197202 (2018). References 201–204 proposed the microscopic mechanism for the DMI induced by the Rashba effect.

    Article  ADS  Google Scholar 

  205. Ma, X. et al. Interfacial Dzyaloshinskii-Moriya interaction: effect of 5d band filling and correlation with spin mixing conductance. Phys. Rev. Lett. 120, 157204 (2018).

    Article  ADS  Google Scholar 

  206. Dupé, B. et al. Engineering skyrmions in transition-metal multilayers for spintronics. Nat. Commun. 7, 11779 (2016).

    Article  ADS  Google Scholar 

  207. Jia, H. et al. First-principles investigation of chiral magnetic properties in multilayers: Rh/Co/Pt and Pd/Co/Pt. Phys. Rev. B 98, 144427 (2018).

    Article  ADS  Google Scholar 

  208. Jadaun, P. et al. The microscopic origin of DMI in magnetic bilayers and prediction of giant DMI in new bilayers. npj Comput. Mater. 6, 88 (2020).

    Article  ADS  Google Scholar 

  209. Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    Article  ADS  Google Scholar 

  210. Davydenko, A. V. et al. Dzyaloshinskii-Moriya interaction in symmetric epitaxial [Co/Pd(111)]N superlattices with different numbers of Co/Pd bilayers. Phys. Rev. B 99, 014433 (2019).

    Article  ADS  Google Scholar 

  211. Chen, G. et al. Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface. Sci. Adv. 6, eaba4924 (2020).

    Article  ADS  Google Scholar 

  212. Hsu, P.-J. et al. Inducing skyrmions in ultrathin Fe films by hydrogen exposure. Nat. Commun. 9, 1571 (2018).

    Article  ADS  Google Scholar 

  213. Finco, A. et al. Tuning noncollinear magnetic states by hydrogenation. Phys. Rev. B 99, 064436 (2019).

    Article  ADS  Google Scholar 

  214. Chen, G. et al. Observation of hydrogen-induced Dzyaloshinskii-Moriya interaction and reversible switching of magnetic chirality. Phys. Rev. X 11, 021015 (2020).

    Google Scholar 

  215. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  216. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  217. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  Google Scholar 

  218. Edström, A. et al. Curved magnetism in CrI3. Phys. Rev. Lett. 128, 177202 (2022).

    Article  ADS  Google Scholar 

  219. Ga, Y. L. et al. Dzyaloshinskii-Moriya interaction and magnetic skyrmions induced by curvature. Phys. Rev. B 106, 054426 (2022).

    Article  ADS  Google Scholar 

  220. Mazurenko, V. V. et al. Role of direct exchange and Dzyaloshinskii-Moriya interactions in magnetic properties of graphene derivatives: C2H and C2F. Phys. Rev. B 94, 214411 (2016).

    Article  ADS  Google Scholar 

  221. Romming, N. et al. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  ADS  Google Scholar 

  222. Wu, Y. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).

    Article  ADS  Google Scholar 

  223. Karube, K. et al. Room-temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry. Nat. Mater. 20, 335–340 (2021).

    Article  ADS  Google Scholar 

  224. Wang, X. S. et al. Current-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 123, 147203 (2019).

    Article  ADS  Google Scholar 

  225. Voinescu, R. et al. Hopf solitons in helical and conical backgrounds of chiral magnetic solids. Phys. Rev. Lett. 125, 057201 (2020).

    Article  ADS  Google Scholar 

  226. Li, S. et al. Mutual conversion between a magnetic Néel hopfion and a Néel toron. Phys. Rev. B 105, 174407 (2022).

    Article  ADS  Google Scholar 

  227. Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Article  ADS  Google Scholar 

  228. Kurz, P. et al. Three-dimensional spin structure on a two-dimensional lattice: Mn/Cu(111). Phys. Rev. Lett. 86, 1106 (2001).

    Article  ADS  Google Scholar 

  229. Yoshida, Y. et al. Conical spin-spiral state in an ultrathin film driven by higher-order spin interactions. Phys. Rev. Lett. 108, 087205 (2012).

    Article  ADS  Google Scholar 

  230. Xu, C. et al. Assembling diverse skyrmionic phases in Fe3GeTe2 monolayer. Adv. Mater. 34, 2107779 (2022).

    Article  Google Scholar 

  231. Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  232. Göbel, B. et al. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  233. Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021).

    Article  Google Scholar 

  234. Shen, M. et al. Effects of interfacial Dzyaloshinskii–Moriya interaction on magnetic dynamics. J. Phys. D Appl. Phys. 55, 213002 (2022).

    ADS  Google Scholar 

  235. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  236. Mikuszeit, N. et al. Spin-orbit torque driven chiral magnetization reversal in ultrathin nanostructures. Phys. Rev. B 92, 144424 (2015).

    Article  ADS  Google Scholar 

  237. Chen, B. et al. Field-free spin-orbit torque switching of a perpendicular ferromagnet with Dzyaloshinskii-Moriya interaction. Appl. Phys. Lett. 114, 022401 (2019).

    Article  ADS  Google Scholar 

  238. Dai, M. & Hu, J. M. Field-free spin–orbit torque perpendicular magnetization switching in ultrathin nanostructures. npj Comput. Mater. 6, 78 (2020).

    Article  ADS  Google Scholar 

  239. Cao, Y. et al. Deterministic magnetization switching using lateral spin–orbit torque. Adv. Mater. 32, 1907929 (2020).

    Article  Google Scholar 

  240. Wu, H. et al. Chiral symmetry breaking for deterministic switching of perpendicular magnetization by spin–orbit torque. Nano Lett. 21, 515–521 (2021).

    Article  ADS  Google Scholar 

  241. Zhang, Q. et al. Quantifying the Dzyaloshinskii-Moriya interaction induced by the bulk magnetic asymmetry. Phys. Rev. Lett. 128, 167202 (2022).

    Article  ADS  Google Scholar 

  242. Owerre, S. Topological honeycomb magnon Hall effect: a calculation of thermal Hall conductivity of magnetic spin excitations. J. Appl. Phys. 120, 043903 (2016).

    Article  ADS  Google Scholar 

  243. Pershoguba, S. S. et al. Dirac magnons in honeycomb ferromagnets. Phys. Rev. X 8, 011010 (2018).

    Google Scholar 

  244. Kartsev, A. et al. Biquadratic exchange interactions in two-dimensional magnets. npj Comput. Mater. 6, 150 (2020).

    Article  ADS  Google Scholar 

  245. Costa, A. T. et al. Topological magnons in CrI3 monolayers: an itinerant fermion description. 2D Mater. 7, 045031 (2020).

    Article  Google Scholar 

  246. Katsura, H. et al. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    Article  ADS  Google Scholar 

  247. Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    Article  ADS  Google Scholar 

  248. Matsumoto, R. & Murakami, S. Theoretical prediction of a rotating magnon wave packet in ferromagnets. Phys. Rev. Lett. 106, 197202 (2011).

    Article  ADS  Google Scholar 

  249. Chisnell, R. et al. Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015).

    Article  ADS  Google Scholar 

  250. Chisnell, R. et al. Magnetic transitions in the topological magnon insulator Cu(1,3-bdc). Phys. Rev. B 93, 214403 (2016).

    Article  ADS  Google Scholar 

  251. Zhu, F. et al. Topological magnon insulators in two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: toward intrinsic gap-tunability. Sci. Adv. 7, eabi7532 (2021).

    Article  ADS  Google Scholar 

  252. Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018).

    Google Scholar 

  253. Di, K. et al. Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 106, 052403 (2015).

    Article  ADS  Google Scholar 

  254. Santos, F. J. et al. Nonreciprocity of spin waves in noncollinear magnets due to the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 102, 104401 (2020).

    Article  ADS  Google Scholar 

  255. Vedmedenko, E. Y. et al. Interlayer Dzyaloshinskii-Moriya interactions. Phys. Rev. Lett. 122, 257202 (2019).

    Article  ADS  Google Scholar 

  256. Pollard, S. D. et al. Bloch chirality induced by an interlayer Dzyaloshinskii-Moriya interaction in ferromagnetic multilayers. Phys. Rev. Lett. 125, 227203 (2020).

    Article  ADS  Google Scholar 

  257. Guo, Y. et al. Effect of interlayer Dzyaloshinskii-Moriya interaction on spin structure in synthetic antiferromagnetic multilayers. Phys. Rev. B 105, 184405 (2022).

    Article  ADS  Google Scholar 

  258. Masuda, H. et al. Large antisymmetric interlayer exchange coupling enabling perpendicular magnetization switching by an in-plane magnetic field. Phys. Rev. Appl. 17, 054036 (2022).

    Article  ADS  Google Scholar 

  259. He, W. et al. Field-free spin–orbit torque switching enabled by the interlayer Dzyaloshinskii–Moriya interaction. Nano Lett. 22, 6857–6865 (2022).

    Article  ADS  Google Scholar 

  260. Fernández-Pacheco, A. et al. Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets. Nat. Mater. 18, 679–684 (2019).

    Article  Google Scholar 

  261. Sampaio, J. et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    Article  ADS  Google Scholar 

  262. Zhang, S. et al. Topological computation based on direct magnetic logic communication. Sci. Rep. 5, 15773 (2015).

    Article  ADS  Google Scholar 

  263. Zhang, X. et al. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article  Google Scholar 

  264. Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    Article  ADS  Google Scholar 

  265. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article  Google Scholar 

  266. Yu, D. et al. Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier. Nat. Sci. Rev. https://doi.org/10.1093/nsr/nwac021 (2022).

    Article  Google Scholar 

  267. Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 178–182 (1989).

    Google Scholar 

  268. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos. 11874059 and 12174405); Key Research Program of Frontier Sciences, CAS (grant no. ZDBS-LY-7021), Pioneer and Leading Goose R&D Program of Zhejiang Province (grant no. 2022C01053), Ningbo Key Scientific and Technological Project (grant no. 2021000215), Zhejiang Provincial Natural Science Foundation (grant no. LR19A040002) and Beijing National Laboratory for Condensed Matter Physics (grant no. 2021000123).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. conceived the Technical Review. H.Y., J.L. and Q.C. cowrote the manuscript.

Corresponding author

Correspondence to Hongxin Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Yan Zhou, Wenbo Mi and another anonymous reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Berry curvature

The Berry curvature Ω encodes how the eigenstate \(|n({\bf{R}})\rangle \) evolves as a local function of parameter R and is defined as \(\varOmega ={\nabla }_{{\bf{R}}}\times {{\bf{A}}}_{n}\) with \({{\bf{A}}}_{n}=i\langle n({\bf{R}})| \frac{\partial }{\partial {\bf{R}}}| n({\bf{R}})\rangle \).

Bloch-type spiral

The spin spiral can be classified as Bloch-type spiral, in which the spins rotate in a helical way around an axis that is parallel or antiparallel to the propagation direction.

Fert–Levy model

In the magnetic metallic system, the DMI between two magnetic atoms can be mediated by a third heavy atom. The resultant DMI parameter depends on the SOC strength of the heavy atom and the relative orientation of the three atoms involved.

Lifshitz invariants

In Landau’s theory of phase transitions, the free-energy expansion with respect to the order parameter η can include terms of the form ηikηj, in which ηi is a component of η. Invariant polynomials in the expansion that contain terms of this form are called Lifshitz invariants.

Néel-type spiral

The spin spiral can be classified as Néel-type spiral, in which the spins rotate in a cycloidal way around an axis that is perpendicular to the propagation direction.

Rashba SOC

The Rashba effect is a momentum-dependent splitting of spin bands in two-dimensional condensed matter systems caused by SOC. The Rashba SOC Hamiltonian reads as \({H}_{{\rm{R}}}={\alpha }_{{\rm{R}}}(\widehat{{\bf{z}}}\times {\bf{k}})\cdot {\boldsymbol{\sigma }}\), in which αR characterizes the strength of Rashba SOC and σ is the vector of the Pauli matrices.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liang, J. & Cui, Q. First-principles calculations for Dzyaloshinskii–Moriya interaction. Nat Rev Phys 5, 43–61 (2023). https://doi.org/10.1038/s42254-022-00529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00529-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing