Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling covalent chemistry on graphene oxide

Abstract

Graphene has attracted intensive research interest in many fields, owing to its remarkable physicochemical properties. Nevertheless, its low dispersibility in most organic solvents and in water, and its tendency to aggregate, prevent full exploitation of its properties. Graphene oxide (GO) is an alternative material that exhibits high dispersibility in polar solvents. GO contains abundant oxygen-containing groups, mainly epoxide and hydroxy groups, which can be further chemically derivatized. However, because of GO’s high reactivity, several reactions may occur simultaneously, often leading to uncontrolled GO derivatives. Moreover, because GO can be easily reduced, functionalization should be performed under mild conditions. In this Review, we discuss the chemical reactivity of GO and explore issues that hamper precise control of its functionalization, such as its instability, the lack of a well-defined chemical structure and the presence of impurities. We focus on strategies for the selective derivatization of the oxygenated groups and C=C bonds, along with the challenges for unambiguous characterization of the resulting structures. We briefly review applications of GO materials, relating their chemistry and nanostructure to desired physical properties and function, and chart future directions for improving the control of GO chemistry.

Key points

  • Graphene oxide (GO) contains abundant oxygenated groups, mainly epoxide and hydroxy groups on the basal plane, with a small number of carboxyl moieties at the edges.

  • The functionalization of GO must be performed under mild conditions to avoid dehydration and reduction, which can occur upon heating or in the presence of a strong base.

  • The high reactivity of the different oxygenated groups gives rise to potential side reactions and, thus, uncontrolled GO chemical structures. Chemoselective reactions are, therefore, crucial in controlling the derivatization of GO.

  • Unambiguous characterization of GO is challenging. The conjugation of elements or functional groups that can be unambiguously identified onto the surface of GO can facilitate characterization.

  • The intrinsic properties of GO, including a high proton conductivity and water dispersibility, must be preserved after functionalization for some applications, such as proton-exchange membranes for fuel cells or membranes for water filtration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of GO.
Fig. 2: Derivatization of the epoxide and carboxyl groups and C=C bonds of GO.
Fig. 3: Strategies for derivatizing the hydroxy groups of GO.
Fig. 4: Characterization of functionalized GO.
Fig. 5: Environmental and energy-related applications of functionalized GO.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  2. Konios, D., Stylianakis, M. M., Stratakis, E. & Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014).

    Article  ADS  Google Scholar 

  3. Clancy, A. J., Au, H., Rubio, N., Coulter, G. O. & Shaffer, M. S. P. Understanding and controlling the covalent functionalisation of graphene. Dalton Trans. 49, 10308–10318 (2020).

    Article  Google Scholar 

  4. Brisebois, P. P. & Siaj, M. Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 8, 1517–1547 (2020). This review gives a comprehensive overview of the synthetic methods used to prepare GO and details its molecular structure.

    Article  Google Scholar 

  5. Johari, P. & Shenoy, V. B. Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5, 7640–7647 (2011).

    Article  Google Scholar 

  6. Lin, S. & Buehler, M. J. Thermal transport in monolayer graphene oxide: atomistic insights into phonon engineering through surface chemistry. Carbon 77, 351–359 (2014).

    Article  Google Scholar 

  7. Mei, Q. et al. Graphene oxide: from tunable structures to diverse luminescence behaviors. Adv. Sci. 6, 1900855 (2019).

    Article  Google Scholar 

  8. Huang, Y. et al. Graphene oxide assemblies for sustainable clean-water harvesting and green-electricity generation. Acc. Mater. Res. 2, 97–107 (2021).

    Article  Google Scholar 

  9. Li, F., Jiang, X., Zhao, J. & Zhang, S. Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015).

    Article  Google Scholar 

  10. Kim, F., Cote, L. J. & Huang, J. Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 22, 1954–1958 (2010).

    Article  Google Scholar 

  11. Ménard-Moyon, C., Bianco, A. & Kalantar-Zadeh, K. Two-dimensional material-based biosensors for virus detection. ACS Sens. 5, 3739–3769 (2020).

    Article  Google Scholar 

  12. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  ADS  Google Scholar 

  13. Lombardi, L. & Bandini, M. Graphene oxide as a mediator in organic synthesis: a mechanistic focus. Angew. Chem. Int. Ed. 59, 20767–20778 (2020).

    Article  Google Scholar 

  14. Soltani, R., Guo, S., Bianco, A. & Ménard-Moyon, C. Carbon nanomaterials applied for the treatment of inflammatory diseases: preclinical evidence. Adv. Ther. 3, 2000051 (2020).

    Article  Google Scholar 

  15. Georgakilas, V. et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016).

    Article  Google Scholar 

  16. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  Google Scholar 

  17. Nishina, Y. & Eigler, S. Chemical and electrochemical synthesis of graphene oxide – a generalized view. Nanoscale 12, 12731–12740 (2020). This review summarizes the recent progress made in the controlled synthesis of GO.

    Article  Google Scholar 

  18. Zhang, Q. et al. The realistic domain structure of as-synthesized graphene oxide from ultrafast spectroscopy. J. Am. Chem. Soc. 135, 12468–12474 (2013).

    Article  Google Scholar 

  19. Chouhan, A., Mungse, H. P. & Khatri, O. P. Surface chemistry of graphene and graphene oxide: a versatile route for their dispersion and tribological applications. Adv. Colloid Interface Sci. 283, 102215 (2020).

    Article  Google Scholar 

  20. Motevalli, B., Parker, A. J., Sun, B. & Barnard, A. S. The representative structure of graphene oxide nanoflakes from machine learning. Nano Futures 3, 045001 (2019).

    Article  ADS  Google Scholar 

  21. He, H., Klinowski, J., Forster, M. & Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    Article  ADS  Google Scholar 

  22. Casabianca, L. B. et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J. Am. Chem. Soc. 132, 5672–5676 (2010).

    Article  Google Scholar 

  23. De Jesus, L. R. et al. Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene oxide. J. Phys. Chem. Lett. 4, 3144–3151 (2013).

    Article  Google Scholar 

  24. Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009).

    Article  Google Scholar 

  25. Erickson, K. et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010). This work uses ultra-high-resolution transmission electron microscopy to reveal the local atomic structure of GO.

    Article  Google Scholar 

  26. Aliyev, E. et al. Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris. Nanomaterials 9, 1180 (2019).

    Article  Google Scholar 

  27. Eigler, S., Dotzer, C. & Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 50, 3666–3673 (2012).

    Article  Google Scholar 

  28. Feicht, P. & Eigler, S. Defects in graphene oxide as structural motifs. ChemNanoMat 4, 244–252 (2018).

    Article  Google Scholar 

  29. Dimiev, A., Kosynkin, D. V., Alemany, L. B., Chaguine, P. & Tour, J. M. Pristine graphite oxide. J. Am. Chem. Soc. 134, 2815–2822 (2012). This work proposes a mechanism for the reaction of GO with water.

    Article  Google Scholar 

  30. Eigler, S., Dotzer, C., Hof, F., Bauer, W. & Hirsch, A. Sulfur species in graphene oxide. Chem. Eur. J. 19, 9490–9496 (2013).

    Article  Google Scholar 

  31. Dimiev, A. M. in Graphene Oxide: Fundamentals and Applications Ch. 2 (eds Dimiev, A. M. & Eigler, S.) 36–84 (Wiley, 2017).

  32. Yang, L. et al. π-Conjugated carbon radicals at graphene oxide to initiate ultrastrong chemiluminescence. Angew. Chem. Int. Ed. 53, 10109–10113 (2014).

    Article  Google Scholar 

  33. Hou, X.-L. et al. Tuning radical species in graphene oxide in aqueous solution by photoirradiation. J. Phys. Chem. C 117, 6788–6793 (2013).

    Article  Google Scholar 

  34. Pieper, H. et al. Endoperoxides revealed as origin of the toxicity of graphene oxide. Angew. Chem. Int. Ed. 55, 405–407 (2016).

    Article  Google Scholar 

  35. Shin, D. S. et al. Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Adv. 7, 13979–13984 (2017).

    Article  ADS  Google Scholar 

  36. Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  Google Scholar 

  37. Szabó, T. et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).

    Article  Google Scholar 

  38. Chua, C. K., Sofer, Z. & Pumera, M. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem. Eur. J. 18, 13453–13459 (2012).

    Article  Google Scholar 

  39. Feicht, P. et al. Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide. Chem. Eur. J. 25, 8955–8959 (2019).

    Article  Google Scholar 

  40. Chen, Z.-L. et al. Influence of graphite source on chemical oxidative reactivity. Chem. Mater. 25, 2944–2949 (2013).

    Article  Google Scholar 

  41. Mkhoyan, K. A. et al. Atomic and electronic structure of graphene-oxide. Nano Lett. 9, 1058–1063 (2009).

    Article  ADS  Google Scholar 

  42. Bissett, M. A., Konabe, S., Okada, S., Tsuji, M. & Ago, H. Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7, 10335–10343 (2013).

    Article  Google Scholar 

  43. Komeily-Nia, Z., Qu, L.-T. & Li, J.-L. Progress in the understanding and applications of the intrinsic reactivity of graphene-based materials. Small Sci. 1, 2000026 (2021).

    Article  Google Scholar 

  44. Xin, G. et al. Tunable photoluminescence of graphene oxide from near-ultraviolet to blue. Mater. Lett. 74, 71–73 (2012).

    Article  Google Scholar 

  45. Rourke, J. P. et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011).

    Article  Google Scholar 

  46. Thomas, H. R. et al. Deoxygenation of graphene oxide: reduction or cleaning? Chem. Mater. 25, 3580–3588 (2013).

    Article  Google Scholar 

  47. Naumov, A. et al. Graphene oxide: a one- versus two-component material. J. Am. Chem. Soc. 138, 11445–11448 (2016).

    Article  Google Scholar 

  48. Rourke, J. P. & Wilson, N. R. Letter to the Editor: a defence of the two-component model of graphene oxide. Carbon 96, 339–341 (2016).

    Article  Google Scholar 

  49. Gudarzi, M. M. Colloidal stability of graphene oxide: aggregation in two dimensions. Langmuir 32, 5058–5068 (2016).

    Article  Google Scholar 

  50. Whitby, R. L. D. et al. Driving forces of conformational changes in single-layer graphene oxide. ACS Nano 6, 3967–3973 (2012).

    Article  Google Scholar 

  51. Du, W., Wu, H., Chen, H., Xu, G. & Li, C. Graphene oxide in aqueous and nonaqueous media: dispersion behaviour and solution chemistry. Carbon 158, 568–579 (2020).

    Article  Google Scholar 

  52. Dimiev, A. M., Alemany, L. B. & Tour, J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7, 576–588 (2013). Complementary to Dimiev A. et al. (2012), this article includes a reaction scheme that illustrates the transformation of GO caused by reaction with water.

    Article  Google Scholar 

  53. Chua, C. K. & Pumera, M. Graphene oxide: light and atmosphere affect the quasi-equilibrium states of graphite oxide and graphene oxide powders. Small 11, 1266–1272 (2015).

    Article  Google Scholar 

  54. Taniguchi, T. et al. pH-driven, reversible epoxy ring opening/closing in graphene oxide. Carbon 84, 560–566 (2015).

    Article  Google Scholar 

  55. Eigler, S., Grimm, S., Hof, F. & Hirsch, A. Graphene oxide: a stable carbon framework for functionalization. J. Mater. Chem. A 1, 11559–11562 (2013).

    Article  Google Scholar 

  56. Fan, X. et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490–4493 (2008).

    Article  Google Scholar 

  57. Dimiev, A. M. & Polson, T. A. Contesting the two-component structural model of graphene oxide and reexamining the chemistry of graphene oxide in basic media. Carbon 93, 544–554 (2015).

    Article  Google Scholar 

  58. Chen, C., Kong, W., Duan, H. M. & Zhang, J. Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution. Phys. Chem. Chem. Phys. 16, 12858–12864 (2014).

    Article  Google Scholar 

  59. Kumar, P. V. et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6, 151–158 (2014).

    Article  Google Scholar 

  60. Eigler, S., Dotzer, C., Hirsch, A., Enzelberger, M. & Müller, P. Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 24, 1276–1282 (2012).

    Article  Google Scholar 

  61. Vacchi, I. A., Spinato, C., Raya, J., Bianco, A. & Ménard-Moyon, C. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR. Nanoscale 8, 13714–13721 (2016). This study elucidates the reactivity of GO towards amine derivatives (epoxide ring opening) and the low content of carboxylic acids at the edges.

    Article  ADS  Google Scholar 

  62. Guo, S., Nishina, Y., Bianco, A. & Ménard-Moyon, C. A flexible method for covalent double functionalization of graphene oxide. Angew. Chem. Int. Ed. 59, 1542–1547 (2020).

    Article  Google Scholar 

  63. Eigler, S., Hu, Y., Ishii, Y. & Hirsch, A. Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5, 12136–12139 (2013).

    Article  ADS  Google Scholar 

  64. Mei, K.-C. et al. Synthesis of double-clickable functionalised graphene oxide for biological applications. Chem. Commun. 51, 14981–14984 (2015).

    Article  Google Scholar 

  65. Collins, W. R., Schmois, E. & Swager, T. M. Graphene oxide as an electrophile for carbon nucleophiles. Chem. Commun. 47, 8790–8792 (2011).

    Article  Google Scholar 

  66. Liu, Y. et al. Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. J. Power Sources 269, 898–911 (2014).

    Article  ADS  Google Scholar 

  67. Mondal, S., Papiya, F., Ash, S. N. & Kundu, P. P. Composite membrane of sulfonated polybenzimidazole and sulfonated graphene oxide for potential application in microbial fuel cell. J. Environ. Chem. Eng. 9, 104945 (2021).

    Article  Google Scholar 

  68. Gao, T., Wu, H., Tao, L., Qu, L. & Li, C. Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. J. Mater. Chem. A 6, 19563–19569 (2018).

    Article  Google Scholar 

  69. Srinivas, G., Burress, J. W., Ford, J. & Yildirim, T. Porous graphene oxide frameworks: synthesis and gas sorption properties. J. Mater. Chem. 21, 11323–11329 (2011).

    Article  Google Scholar 

  70. Pourazadi, E., Haque, E., Zhang, W., Harris, A. T. & Minett, A. I. Synergistically enhanced electrochemical (ORR) activity of graphene oxide using boronic acid as an interlayer spacer. Chem. Commun. 49, 11068–11070 (2013).

    Article  Google Scholar 

  71. Sun, J. et al. A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage. Angew. Chem. Int. Ed. 57, 1034–1038 (2018).

    Article  Google Scholar 

  72. Vacchi, I. A., Raya, J., Bianco, A. & Ménard-Moyon, C. Controlled derivatization of hydroxyl groups of graphene oxide in mild conditions. 2D Mater. 5, 035037 (2018).

    Article  Google Scholar 

  73. Stankovich, S., Piner, R. D., Nguyen, S. T. & Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006).

    Article  Google Scholar 

  74. Zhang, P. et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 322, 657–666 (2017).

    Article  Google Scholar 

  75. Song, W. et al. Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon 77, 1020–1030 (2014).

    Article  Google Scholar 

  76. Tang, L., Lu, Y., Yao, L. & Cui, P. A highly hydrophilic benzenesulfonic-grafted graphene oxide-based hybrid membrane for ethanol dehydration. RSC Adv. 10, 20358–20367 (2020).

    Article  ADS  Google Scholar 

  77. Shen, J. et al. Upper-critical solution temperature (UCST) polymer functionalized graphene oxide as thermally responsive ion permeable membrane for energy storage devices. J. Mater. Chem. A 2, 18204–18207 (2014).

    Article  Google Scholar 

  78. Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).

    Article  Google Scholar 

  79. Li, D. et al. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv. Colloid Interface Sci. 294, 102479 (2021).

    Article  Google Scholar 

  80. Hossain, Md. Z., Walsh, M. A. & Hersam, M. C. Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J. Am. Chem. Soc. 132, 15399–15403 (2010).

    Article  Google Scholar 

  81. Jankovský, O. et al. Introduction of sulfur to graphene oxide by Friedel-Crafts reaction. FlatChem 6, 28–36 (2017).

    Article  Google Scholar 

  82. Brisebois, P. P., Kuss, C., Schougaard, S. B., Izquierdo, R. & Siaj, M. New insights into the Diels–Alder reaction of graphene oxide. Chem. Eur. J. 22, 5849–5852 (2016).

    Article  Google Scholar 

  83. Peng, K.-J., Lai, J.-Y. & Liu, Y.-L. Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J. Membr. Sci. 514, 86–94 (2016).

    Article  Google Scholar 

  84. Peng, K.-J., Wang, K.-H., Hsu, K.-Y. & Liu, Y.-L. Building up polymer architectures on graphene oxide sheet surfaces through sequential atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 52, 1588–1596 (2014).

    Article  ADS  Google Scholar 

  85. Vacchi, I. A., Guo, S., Raya, J., Bianco, A. & Ménard-Moyon, C. Strategies for the controlled covalent double functionalization of graphene oxide. Chem. Eur. J. 26, 6591–6598 (2020).

    Article  Google Scholar 

  86. Amadei, C. A., Arribas, P. & Vecitis, C. D. Graphene oxide standardization and classification: methods to support the leap from lab to industry. Carbon 133, 398–409 (2018).

    Article  Google Scholar 

  87. Zhang, Z., Schniepp, H. C. & Adamson, D. H. Characterization of graphene oxide: variations in reported approaches. Carbon 154, 510–521 (2019). This review highlights the consistencies and inconsistencies of the techniques used to characterize GO.

    Article  Google Scholar 

  88. Dimiev, A. M. & Eigler, S. in Graphene Oxide: Fundamentals and Applications Ch. 3 (eds Dimiev, A. M. & Eigler, S.) 85–120 (Wiley, 2017).

  89. Kovtun, A. et al. Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy. Carbon 143, 268–275 (2019).

    Article  Google Scholar 

  90. Greczynski, G. & Hultman, L. Compromising science by ignorant instrument calibration — need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 59, 5002–5006 (2020).

    Article  Google Scholar 

  91. Deng, Y., Li, Y., Dai, J., Lang, M. & Huang, X. Functionalization of graphene oxide towards thermo-sensitive nanocomposites via moderate in situ SET-LRP. J. Polym. Sci. A Polym. Chem. 49, 4747–4755 (2011).

    Article  ADS  Google Scholar 

  92. Abbas, S. S. et al. Facile silane functionalization of graphene oxide. Nanoscale 10, 16231–16242 (2018).

    Article  Google Scholar 

  93. Szabó, T., Berkesi, O. & Dékány, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon 43, 3186–3189 (2005).

    Article  Google Scholar 

  94. Meng, D. et al. Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT composites due to different grafting approaches. J. Mater. Chem. 22, 21583–21591 (2012).

    Article  Google Scholar 

  95. Barrejón, M. et al. A photoresponsive graphene oxide–C60 conjugate. Chem. Commun. 50, 9053–9055 (2014).

    Article  Google Scholar 

  96. Avinash, M. B., Subrahmanyam, K. S., Sundarayya, Y. & Govindaraju, T. Covalent modification and exfoliation of graphene oxide using ferrocene. Nanoscale 2, 1762–1766 (2010).

    Article  ADS  Google Scholar 

  97. Su, W., Kumar, N., Krayev, A. & Chaigneau, M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun. 9, 2891 (2018).

    Article  ADS  Google Scholar 

  98. Lu, Y. et al. Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization. J. Mater. Chem. 22, 2929–2934 (2012).

    Article  Google Scholar 

  99. Melucci, M. et al. Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem. 20, 9052–9060 (2010).

    Article  Google Scholar 

  100. Dave, S. H., Gong, C., Robertson, A. W., Warner, J. H. & Grossman, J. C. Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10, 7515–7522 (2016).

    Article  Google Scholar 

  101. Thomas, H. R., Marsden, A. J., Walker, M., Wilson, N. R. & Rourke, J. P. Sulfur-functionalized graphene oxide by epoxide ring-opening. Angew. Chem. Int. Ed. 53, 7613–7618 (2014).

    Article  Google Scholar 

  102. Tararan, A., Zobelli, A., Benito, A. M., Maser, W. K. & Stéphan, O. Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy. Chem. Mater. 28, 3741–3748 (2016).

    Article  Google Scholar 

  103. Treossi, E. et al. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576–15577 (2009).

    Article  Google Scholar 

  104. Layek, R. K., Samanta, S., Chatterjee, D. P. & Nandi, A. K. Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer 51, 5846–5856 (2010).

    Article  Google Scholar 

  105. Liu, Z. et al. Direct observation of oxygen configuration on individual graphene oxide sheets. Carbon 127, 141–148 (2018).

    Article  Google Scholar 

  106. Li, H., Xue, S., Shang, Y., Li, J. & Zeng, X. Research and application progress based on the interfacial properties of graphene oxide. Adv. Mater. Interfaces 7, 2000881 (2020).

    Article  Google Scholar 

  107. Sharif, S., Ahmad, K. S., Rehman, F., Bhatti, Z. & Thebo, K. H. Two-dimensional graphene oxide based membranes for ionic and molecular separation: current status and challenges. J. Environ. Chem. Eng. 9, 105605 (2021).

    Article  Google Scholar 

  108. Karki, N. et al. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J. Mater. Chem. B 8, 8116–8148 (2020).

    Article  Google Scholar 

  109. Lee, J., Kim, J., Kim, S. & Min, D.-H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 105, 275–287 (2016).

    Article  Google Scholar 

  110. Bhol, P. et al. Graphene-based membranes for water and wastewater treatment: a review. ACS Appl. Nano Mater. 4, 3274–3293 (2021).

    Article  Google Scholar 

  111. Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2014).

    Article  Google Scholar 

  112. Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).

    Article  Google Scholar 

  113. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  ADS  Google Scholar 

  114. Mouhat, F., Coudert, F.-X. & Bocquet, M.-L. Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566 (2020).

    Article  ADS  Google Scholar 

  115. Wei, N., Peng, X. & Xu, Z. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6, 5877–5883 (2014).

    Article  Google Scholar 

  116. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  ADS  Google Scholar 

  117. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article  ADS  Google Scholar 

  118. Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).

    Article  ADS  Google Scholar 

  119. Sun, P. et al. Selective ion transport through functionalized graphene membranes based on delicate ion–graphene interactions. J. Phys. Chem. C 118, 19396–19401 (2014).

    Article  Google Scholar 

  120. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  121. Ran, J. et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A 7, 8085–8091 (2019).

    Article  Google Scholar 

  122. Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  Google Scholar 

  123. Nie, L. et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Sci. Adv. 6, eaaz9184 (2020).

    Article  ADS  Google Scholar 

  124. Guan, K., Liu, G., Matsuyama, H. & Jin, W. Graphene-based membranes for pervaporation processes. Chin. J. Chem. Eng. 28, 1755–1766 (2020).

    Article  Google Scholar 

  125. Chabot, V. et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014).

    Article  Google Scholar 

  126. Luo, J. et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011).

    Article  Google Scholar 

  127. Kumar, M., Baniowda, H. M., Sreedhar, N., Curcio, E. & Arafat, H. A. Fouling resistant, high flux, charge tunable hybrid ultrafiltration membranes using polymer chains grafted graphene oxide for NOM removal. Chem. Eng. J. 408, 127300 (2021).

    Article  Google Scholar 

  128. Kong, F. et al. Rejection of pharmaceuticals by graphene oxide membranes: role of crosslinker and rejection mechanism. J. Membr. Sci. 612, 118338 (2020).

    Article  Google Scholar 

  129. Madadrang, C. J. et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 4, 1186–1193 (2012).

    Article  Google Scholar 

  130. Mejias Carpio, I. E., Mangadlao, J. D., Nguyen, H. N., Advincula, R. C. & Rodrigues, D. F. Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon 77, 289–301 (2014).

    Article  Google Scholar 

  131. Zou, X., Zhang, L., Wang, Z. & Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138, 2064–2077 (2016).

    Article  Google Scholar 

  132. Lu, X. et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl Acad. Sci. USA 114, E9793–E9801 (2017).

    Article  Google Scholar 

  133. Ye, S. et al. Antiviral activity of graphene oxide: how sharp edged structure and charge matter. ACS Appl. Mater. Interfaces 7, 21571–21579 (2015).

    Article  Google Scholar 

  134. Yousefi, N., Lu, X., Elimelech, M. & Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 14, 107–119 (2019).

    Article  ADS  Google Scholar 

  135. Dekel, D. R. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375, 158–169 (2018).

    Article  ADS  Google Scholar 

  136. Xiang, Y. et al. Advances in the applications of graphene-based nanocomposites in clean energy materials. Crystals 11, 47 (2021).

    Article  Google Scholar 

  137. Wang, C. et al. Graphene’s role in emerging trends of capacitive energy storage. Small 17, e2006875 (2021).

    Article  Google Scholar 

  138. Tian, Y. et al. Graphene oxide: an emerging electromaterial for energy storage and conversion. J. Energy Chem. 55, 323–344 (2021).

    Article  Google Scholar 

  139. Eftekhari, A., Shulga, Y. M., Baskakov, S. A. & Gutsev, G. L. Graphene oxide membranes for electrochemical energy storage and conversion. Int. J. Hydrog. Energy 43, 2307–2326 (2018).

    Article  Google Scholar 

  140. Yadav, R., Subhash, A., Chemmenchery, N. & Kandasubramanian, B. Graphene and graphene oxide for fuel cell technology. Ind. Eng. Chem. Res. 57, 9333–9350 (2018).

    Article  Google Scholar 

  141. Hatakeyama, K. et al. Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew. Chem. Int. Ed. 53, 6997–7000 (2014).

    Article  Google Scholar 

  142. Karim, M. R. et al. Effect of interlayer distance and oxygen content on proton conductivity of graphite oxide. J. Phys. Chem. C 120, 21976–21982 (2016).

    Article  Google Scholar 

  143. Tseng, C.-Y. et al. Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. Adv. Energy Mater. 1, 1220–1224 (2011).

    Article  Google Scholar 

  144. Jiang, Z., Zhao, X. & Manthiram, A. Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int. J. Hydrog. Energy 38, 5875–5884 (2013).

    Article  Google Scholar 

  145. Kumar, R., Mamlouk, M. & Scott, K. Sulfonated polyether ether ketone–sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Adv. 4, 617–623 (2014).

    Article  ADS  Google Scholar 

  146. Bao, C. et al. Graphene oxide beads for fast clean-up of hazardous chemicals. J. Mater. Chem. A 4, 9437–9446 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Centre National de la Recherche Scientifique (CNRS) and the International Center for Frontier Research in Chemistry (icFRC), as well as financial support from the Agence Nationale de la Recherche (ANR) through the Interdisciplinary Thematic Institute ITI-CSC via the IdEx Unistra (ANR-10-IDEX-0002) within the programme ‘Investissements d’Avenir’ and from the European Commission through the Graphene Flagship Core 3 project (award no. 881603). S. Garaj acknowledges support from the National Research Foundation, Prime Minister’s Office, Singapore, under the Competitive Research Program (award no. NRF-CRP13-2014-03) and from the Agency for Science, Technology and Research (A*STAR), Singapore, under its Advanced Manufacturing and Engineering (AME) Programmatic grant (award no. A18A9b0060). S. Guo is indebted to the Chinese Scholarship Council for supporting his PhD internship.

Author information

Authors and Affiliations

Authors

Contributions

C.M.-M. conceptualized the manuscript. S. Guo, S. Garaj and C.M.-M. wrote the initial draft. All authors edited the manuscript prior to submission.

Corresponding author

Correspondence to Cécilia Ménard-Moyon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks S. Szunerits, E. V. Fernández-Pacheco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Epoxide

Three-membered C–O–C ring that possesses considerable strain, making it highly reactive towards nucleophiles.

Nucleophile

A species with an electron-rich atom that can donate an electron pair to form a new covalent bond.

Chemoselective derivatization

The selective reaction of a chemical reagent with a specific functional group without affecting others.

Multifunctionalization

Functionalization with multiple different functional groups; in the case of graphene oxide, this involves different oxygenated groups and/or the C=C bonds.

Carbanion

A molecule in which the carbon atom is trivalent (linked to three substituents) and bears a negative charge.

Electrophiles

Electron-poor species that have a high affinity for electrons and can form covalent bonds by accepting electrons from a nucleophile.

Boronic acids

Trivalent boron-containing organic compounds with one alkyl or aryl substituent and two hydroxy groups.

1,2-Diols

Moiety with two hydroxy groups that occupy vicinal positions.

1,3-Diols

Moiety with two hydroxy groups separated by three carbon atoms.

Michael addition

Nucleophilic addition reaction of a carbanion (or nucleophile) to an α,β-unsaturated carbonyl compound that contains an electron-withdrawing group.

Wittig reaction

Reaction between an aldehyde or ketone with a triphenylphosphonium ylide, leading to the formation of an alkene.

Nafion

A sulfonated tetrafluoroethylene-based fluoropolymer-copolymer with excellent proton conductivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Garaj, S., Bianco, A. et al. Controlling covalent chemistry on graphene oxide. Nat Rev Phys 4, 247–262 (2022). https://doi.org/10.1038/s42254-022-00422-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00422-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing