Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetism, symmetry and spin transport in van der Waals layered systems

Abstract

The discovery of an ever-increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin–orbit coupling and topological systems, calls for some guiding principles to tailor and optimize novel spin transport and optical properties at their interfaces. Here, we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals magnetism and spin–orbit coupling effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D-materials-based van der Waals heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin–orbit torque phenomena combine at interfaces with well-defined symmetries and how this dictates the nature and figures of merit of spin–orbit torque and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.

Key points

  • Fabrication of 2D van der Waals magnetic systems offers unprecedented opportunities for controlling magnetism and spin transport phenomena down to the monolayer limit.

  • Many van der Waals magnetic systems possess a low-symmetry crystalline structure, providing an array of exotic spin–orbit Hamiltonians, together with added richness arising from interface phenomena driven by layer-to-layer registry.

  • Understanding the intertwined contribution of spin–spin interaction and interfacial symmetries is crucial for maximizing the full potential of their spin–orbit torque efficiency.

  • This exciting research field of spin transport at the frontier of layered spin–orbit coupling and magnetism will lead to discoveries of new materials, novel transport effects, topological phenomena and unconventional electron correlation physics.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: SOT in 2D materials.
Fig. 2: Experimentally validated critical magnetic transition temperature for various 2D van der Waals magnetic systems.
Fig. 3: Experimental observation of electric field control of magnetism in different van der Waals magnets.
Fig. 4: Illustration of spin–orbit torque mechanisms for different spin textures and their effects on the magnetic energy profile.
Fig. 5: Distributions of magnetic materials predicted using first-principle calculations as a function of their symmetry.

References

  1. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Google Scholar 

  2. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Google Scholar 

  3. Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).

    Google Scholar 

  4. Kawahara, T., Ito, K., Takemura, R. & Ohno, H. Spin-transfer torque RAM technology: review and prospect. Microelectron. Reliab. 52, 613–627 (2012).

    Google Scholar 

  5. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Google Scholar 

  6. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Google Scholar 

  7. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    ADS  Google Scholar 

  8. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    ADS  Google Scholar 

  9. Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. 54, 9300204 (2018).

    Google Scholar 

  10. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Google Scholar 

  11. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Google Scholar 

  12. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    MathSciNet  ADS  Google Scholar 

  13. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS  Google Scholar 

  14. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  Google Scholar 

  15. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS  Google Scholar 

  16. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    ADS  Google Scholar 

  17. Li, H., Ruan, S. & Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv. Mater. 31, 1900065 (2019).

    Google Scholar 

  18. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    ADS  Google Scholar 

  19. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  20. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    ADS  Google Scholar 

  21. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    ADS  Google Scholar 

  22. Freitas, D. C. et al. Ferromagnetism in layered metastable 1T-CrTe2. J. Phys. Condens. Matter 27, 176002 (2015).

    ADS  Google Scholar 

  23. Freitas, D. C. et al. Antiferromagnetism and ferromagnetism in layered 1T-CrSe2 with V and Ti replacements. Phys. Rev. B 87, 014420 (2013).

    ADS  Google Scholar 

  24. Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C.-H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3, 12457–12468 (2015).

    Google Scholar 

  25. McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Google Scholar 

  26. McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater. 1, 14001 (2017).

    Google Scholar 

  27. Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    ADS  Google Scholar 

  28. Lin, W., Chen, K., Zhang, S. & Chien, C. L. Enhancement of thermally injected spin current through an antiferromagnetic insulator. Phys. Rev. Lett. 116, 186601 (2016).

    ADS  Google Scholar 

  29. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    ADS  Google Scholar 

  30. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS  Google Scholar 

  31. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    ADS  Google Scholar 

  32. O’Hara, D. J., Zhu, T. & Kawakami, R. K. Importance of paramagnetic background subtraction for determining the magnetic moment in epitaxially grown ultrathin van der Waals magnets. IEEE Magn. Lett. 9, 1405805 (2018).

    Google Scholar 

  33. Walker, M. B. & Withers, R. L. Stacking of charge-density waves in 1T transition-metal dichalcogenides. Phys. Rev. B 28, 2766–2774 (1983).

    ADS  Google Scholar 

  34. Eaglesham, D. J., Withers, R. L. & Bird, D. M. Charge-density-wave transitions in 1T-VSe2. J. Phys. C 19, 359–367 (1986).

    ADS  Google Scholar 

  35. Feng, J. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 18, 4493–4499 (2018).

    ADS  Google Scholar 

  36. Yang, J. et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 105, 063109 (2014).

    ADS  Google Scholar 

  37. Coelho, P. M. et al. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123, 14089–14096 (2019).

    Google Scholar 

  38. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS  Google Scholar 

  39. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    ADS  Google Scholar 

  40. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Google Scholar 

  41. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Google Scholar 

  42. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    ADS  Google Scholar 

  43. Huang, P. et al. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale 12, 2309–2327 (2020).

    Google Scholar 

  44. Wei, S. et al. Emerging intrinsic magnetism in two-dimensional materials: theory and applications. 2D Mater. 8, 012005 (2020).

    Google Scholar 

  45. Han, W. Perspectives for spintronics in 2D materials. APL Mater. 4, 032401 (2016).

    ADS  Google Scholar 

  46. Avsar, A. et al. Colloquium: spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020).

    ADS  Google Scholar 

  47. Husain, S. et al. Emergence of spin–orbit torques in 2D transition metal dichalcogenides: a status update. Appl. Phys. Rev. 7, 041312 (2020).

    ADS  Google Scholar 

  48. Ahn, E. C. 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4, 17 (2020).

    Google Scholar 

  49. Anderson, P. W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356 (1950).

    MATH  ADS  Google Scholar 

  50. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 35002 (2017).

    Google Scholar 

  51. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    ADS  Google Scholar 

  52. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    ADS  Google Scholar 

  53. Huang, C. et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc. 140, 11519–11525 (2018).

    Google Scholar 

  54. Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 166, 11131–11136 (2019).

    ADS  Google Scholar 

  55. Wang, F. et al. New frontiers on van der Waals layered metal phosphorous trichalcogenides. Adv. Funct. Mater. 28, 1802151 (2018).

    Google Scholar 

  56. Ur Rehman, Z. et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines 9, 292 (2018).

    Google Scholar 

  57. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    ADS  Google Scholar 

  58. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    ADS  Google Scholar 

  59. Jonker, G. & Van Santen, J. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).

    ADS  Google Scholar 

  60. Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

    Google Scholar 

  61. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Google Scholar 

  62. Blundell, S. & Thouless, D. Magnetism in condensed matter. Am. J. Phys. 71, 94–95 (2003).

    ADS  Google Scholar 

  63. Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Theor. Appl. 6, 661–690 (1907).

    MATH  Google Scholar 

  64. Watanabe, H. Collective electron ferromagnetism, II. J. Phys. Soc. Jpn. 3, 317–322 (1948).

    ADS  Google Scholar 

  65. Stoner, E. C. Collective electron ferromagnetism II. Energy and specific heat. Proc. R. Soc. Lond. A 169, 339–371 (1939).

    MATH  ADS  Google Scholar 

  66. Nakano, M. et al. Intrinsic 2D ferromagnetism in V5Se8 epitaxial thin films. Nano Lett. 19, 8806–8810 (2019).

    ADS  Google Scholar 

  67. May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys. Rev. B 93, 14411 (2016).

    ADS  Google Scholar 

  68. May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Google Scholar 

  69. Morosan, E. et al. Sharp switching of the magnetization in Fe0.25TaS2. Phys. Rev. B 75, 104401 (2007).

    ADS  Google Scholar 

  70. McGuire, M. A. et al. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B 95, 144421 (2017).

    ADS  Google Scholar 

  71. Wang, Y. et al. Magnetic anisotropy and topological Hall effect in the trigonal chromium tellurides Cr5Te8. Phys. Rev. B 100, 24434 (2019).

    ADS  Google Scholar 

  72. Yan, J. et al. Anomalous Hall effect of the quasi-two-dimensional weak itinerant ferromagnet CR4.14Te8. EPL 124, 67005 (2019).

    ADS  Google Scholar 

  73. Zhuang, H. L., Kent, P. R. & Hennig, R. G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B 93, 134407 (2016).

    ADS  Google Scholar 

  74. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    ADS  Google Scholar 

  75. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    ADS  Google Scholar 

  76. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    ADS  Google Scholar 

  77. McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Google Scholar 

  78. Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    ADS  Google Scholar 

  79. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    ADS  Google Scholar 

  80. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    ADS  Google Scholar 

  81. Song, T. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

    ADS  Google Scholar 

  82. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    ADS  Google Scholar 

  83. Sun, Y. et al. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Appl. Phys. Lett. 112, 72409 (2018).

    Google Scholar 

  84. Mondal, S. et al. Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI3. Phys. Rev. B 99, 180407 (2019).

    ADS  Google Scholar 

  85. Son, S. et al. Bulk properties of the van der Waals hard ferromagnet VI3. Phys. Rev. B 99, 41402 (2019).

    ADS  Google Scholar 

  86. Lin, Z. et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6. Phys. Rev. Mater. 2, 51004 (2018).

    Google Scholar 

  87. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    ADS  Google Scholar 

  88. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    ADS  Google Scholar 

  89. Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    ADS  Google Scholar 

  90. Jang, S. W., Jeong, M. Y., Yoon, H., Ryee, S. & Han, M. J. Microscopic understanding of magnetic interactions in bilayer CrI3. Phys. Rev. Mater. 3, 31001 (2019).

    Google Scholar 

  91. Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    ADS  Google Scholar 

  92. Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).

    Google Scholar 

  93. Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260 (2019).

    Google Scholar 

  94. Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 10, 187–191 (2015).

    ADS  Google Scholar 

  95. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Google Scholar 

  96. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Google Scholar 

  97. Guimarães, M. H., Stiehl, G. M., MacNeill, D., Reynolds, N. D. & Ralph, D. C. Spin–orbit torques in NbSe2/Permalloy bilayers. Nano Lett. 18, 1311–1316 (2018).

    ADS  Google Scholar 

  98. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    ADS  Google Scholar 

  99. Alghamdi, M. et al. Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 19, 4400–4405 (2019).

    ADS  Google Scholar 

  100. Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019).

    ADS  Google Scholar 

  101. Ostwal, V., Shen, T. & Appenzeller, J. Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 32, 1906021 (2020).

    Google Scholar 

  102. Ralph, D. & Stiles, M. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    ADS  Google Scholar 

  103. Avci, C. O. et al. Current-induced switching in a magnetic insulator. Nat. Mater. 16, 309–314 (2017).

    ADS  Google Scholar 

  104. Shin, I. et al. Spin-orbit torque switching in an all-van der Waals heterostructure. Preprint at arXiv http://arxiv.org/abs/2102.09300 (2021).

  105. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).

    ADS  Google Scholar 

  106. Ciccarelli, C. et al. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).

    Google Scholar 

  107. Yoshimi, R. et al. Current-driven magnetization switching in ferromagnetic bulk Rashba semiconductor (Ge,Mn)Te. Sci. Adv. 4, eaat9989 (2018).

    ADS  Google Scholar 

  108. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).

    ADS  Google Scholar 

  109. Bradley, C. J. & Cracknell, A. P. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford Univ. Press, 1972).

  110. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    ADS  Google Scholar 

  111. Bandyopadhyay, S. & Cahay, M. Introduction to Spintronics 1st edn (CRC, 2008).

  112. Kurz, P., Förster, F., Nordström, L., Bihlmayer, G. & Blügel, S. Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Phys. Rev. B 69, 024415 (2004).

    ADS  Google Scholar 

  113. Freimuth, F., Blügel, S. & Mokrousov, Y. Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B 90, 174423 (2014).

    ADS  Google Scholar 

  114. Haney, P. M. et al. Current-induced order parameter dynamics: microscopic theory applied to Co/Cu/Co. Phys. Rev. B 76, 024404 (2007).

    ADS  Google Scholar 

  115. Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009).

    ADS  Google Scholar 

  116. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory Vol. 53 (Springer, 2008).

  117. Zollner, K. et al. Scattering-induced and highly tunable by gate damping-like spin-orbit torque in graphene doubly proximitized by two-dimensional magnet Cr2Ge2Te6 and monolayer WS2. Phys. Rev. Res. 2, 043057 (2020).

    Google Scholar 

  118. Zihlmann, S. et al. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/Gr/hBN heterostructures. Phys. Rev. B 97, 075434 (2018).

    ADS  Google Scholar 

  119. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    ADS  Google Scholar 

  120. Tuan, D. V., Ortmann, F., Soriano, D., Valenzuela, S. O. & Roche, S. Pseudospin-driven spin relaxation mechanism in graphene. Nat. Phys. 10, 857–863 (2014).

    Google Scholar 

  121. Ok, S. et al. Custodial glide symmetry of quantum spin Hall edge modes in monolayer WTe2. Phys. Rev. B 99, 121105 (2019).

    ADS  Google Scholar 

  122. Garcia, J. H. et al. Canted persistent spin texture and quantum spin Hall effect in WTe2. Phys. Rev. Lett. 125, 256603 (2020).

    ADS  Google Scholar 

  123. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    ADS  Google Scholar 

  124. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    ADS  Google Scholar 

  125. Belashchenko, K. D., Kovalev, A. A. & Van Schilfgaarde, M. First-principles calculation of spin-orbit torque in a Co/Pt bilayer. Phys. Rev. Mater. 3, 11401 (2019).

    Google Scholar 

  126. Dolui, K. et al. Proximity spin–orbit torque on a two-dimensional magnet within van der Waals heterostructure: current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett. 20, 2288–2295 (2020).

    ADS  Google Scholar 

  127. Kochan, D., Irmer, S. & Fabian, J. Model spin-orbit coupling Hamiltonians for graphene systems. Phys. Rev. B 95, 165415 (2017).

    ADS  Google Scholar 

  128. Johansen, Ø., Risinggård, V., Sudbø, A., Linder, J. & Brataas, A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys. Rev. Lett. 122, 217203 (2019).

    ADS  Google Scholar 

  129. MacNeill, D. et al. Thickness dependence of spin-orbit torques generated by WTe2. Phys. Rev. B 96, 054450 (2017).

    ADS  Google Scholar 

  130. Gupta, V. et al. Manipulation of the van der Waals magnet Cr2Ge2Te6 by spin–orbit torques. Nano Lett. 20, 7482–7488 (2020).

    ADS  Google Scholar 

  131. Cheng, C., Sun, J. T., Chen, X. R., Fu, H. X. & Meng, S. Nonlinear Rashba spin splitting in transition metal dichalcogenide monolayers. Nanoscale 8, 17854–17860 (2016).

    Google Scholar 

  132. Shao, Q. et al. Strong Rashba-Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016).

    ADS  Google Scholar 

  133. Zhang, W. et al. Research update: spin transfer torques in permalloy on monolayer MoS2. APL Mater. 4, 32302 (2016).

    Google Scholar 

  134. Hidding, J. & Guimarães, M. H. Spin-orbit torques in transition metal dichalcogenide/ferromagnet heterostructures. Front. Mater. 7, 383 (2020).

    ADS  Google Scholar 

  135. Lv, W. et al. Electric-field control of spin–orbit torques in WS2/permalloy bilayers. ACS Appl. Mater. Interfaces 10, 2843–2849 (2018).

    Google Scholar 

  136. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β–MoTe2. Phys. Rev. B 100, 184402 (2019).

    ADS  Google Scholar 

  137. Xie, Q. et al. Giant enhancements of perpendicular magnetic anisotropy and spin-orbit torque by a MoS2 layer. Adv. Mater. 31, 1900776 (2019).

    Google Scholar 

  138. Liang, S. et al. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 32, 2002799 (2020).

    Google Scholar 

  139. Haastrup, S. et al. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    Google Scholar 

  140. Lu, A. Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Google Scholar 

  141. Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Google Scholar 

  142. Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Phil. Trans. R. Soc. A 369, 3175–3197 (2011).

    ADS  Google Scholar 

  143. Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 144425 (2014).

    ADS  Google Scholar 

  144. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 36601 (2011).

    ADS  Google Scholar 

  145. Mecking, N., Gui, Y. S. & Hu, C.-M. Microwave photovoltage and photoresistance effects in ferromagnetic microstrips. Phys. Rev. B 76, 224430 (2007).

    ADS  Google Scholar 

  146. Fan, Z. et al. Linear scaling quantum transport methodologies. Phys. Rep. 903, 1–69 (2021).

    MathSciNet  MATH  ADS  Google Scholar 

  147. Lee, K.-S. et al. Angular dependence of spin-orbit spin-transfer torques. Phys. Rev. B 91, 144401 (2015).

    ADS  Google Scholar 

  148. Sousa, F., Tatara, G. & Ferreira, A. Skew-scattering-induced giant antidamping spin-orbit torques: collinear and out-of-plane Edelstein effects at two-dimensional material/ferromagnet interfaces. Phys. Rev. Res. 2, 43401 (2020).

    Google Scholar 

  149. Xue, F., Rohmann, C., Li, J., Amin, V. & Haney, P. Unconventional spin-orbit torque in transition metal dichalcogenide-ferromagnet bilayers from first-principles calculations. Phys. Rev. B 102, 14401 (2020).

    ADS  Google Scholar 

  150. Mahfouzi, F., Mishra, R., Chang, P. H., Yang, H. & Kioussis, N. Microscopic origin of spin-orbit torque in ferromagnetic heterostructures: a first-principles approach. Phys. Rev. B 101, 60405 (2020).

    ADS  Google Scholar 

  151. Nikolić, B. K. et al. in Handbook of Materials Modeling (eds Andreoni, W. & Yip, S.) 499–533 (Springer, 2018).

  152. Fan, X. et al. Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers. Nat. Commun. 5, 3042 (2014).

    ADS  Google Scholar 

  153. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    ADS  Google Scholar 

  154. Baek, S.-hC. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    ADS  Google Scholar 

  155. Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).

    Google Scholar 

  156. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronicsW. Nat. Nanotechnol. 16, 856–868 (2021).

    ADS  Google Scholar 

  157. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Google Scholar 

  158. Zheng, S. et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J. Phys. Chem. Lett. 10, 2733–2738 (2019).

    Google Scholar 

  159. Torelli, D., Thygesen, K. S. & Olsen, T. High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations. 2D Mater. 6, 045018 (2019).

    Google Scholar 

  160. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  Google Scholar 

  161. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Google Scholar 

  162. Seixas, L., Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Multiferroic two-dimensional materials. Phys. Rev. Lett. 116, 206803 (2016).

    ADS  Google Scholar 

  163. Huang, C. et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett. 120, 147601 (2018).

    ADS  Google Scholar 

  164. Yang, Q., Xiong, W., Zhu, L., Gao, G. & Wu, M. Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139, 11506–11512 (2017).

    Google Scholar 

  165. Xu, M. et al. Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer. Phys. Rev. Lett. 124, 67602 (2020).

    ADS  Google Scholar 

  166. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    ADS  Google Scholar 

  167. Wu, J. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 5, eaax9989 (2019).

    ADS  Google Scholar 

  168. Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020).

    ADS  Google Scholar 

  169. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  Google Scholar 

  170. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    ADS  Google Scholar 

  171. Yang, M. et al. Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice. Sci. Adv. 6, eabb5157 (2020).

    ADS  Google Scholar 

  172. Wu, Y. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).

    ADS  Google Scholar 

  173. Park, T.-E. et al. Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys. Rev. B 103, 104410 (2021).

    ADS  Google Scholar 

  174. Zhang, X.-X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    ADS  Google Scholar 

  175. McCreary, A. et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3. Nat. Commun. 11, 3879 (2020).

    ADS  Google Scholar 

  176. Cenker, J. et al. Direct observation of two-dimensional magnons in atomically thin CrI3. Nat. Phys. 17, 20–25 (2021).

    Google Scholar 

  177. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    ADS  Google Scholar 

  178. Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2021).

    Google Scholar 

  179. Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    ADS  Google Scholar 

  180. Wiedenmann, A., Rossat-Mignod, J., Louisy, A., Brec, R. & Rouxel, J. Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun. 40, 1067–1072 (1981).

    ADS  Google Scholar 

  181. Long, G. et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11, 11330–11336 (2017).

    Google Scholar 

  182. Le Flem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X= S, Se). J. Phys. Chem. Solids 43, 455–461 (1982).

    Google Scholar 

  183. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Google Scholar 

  184. Samuelsen, E., Silberglitt, R., Shirane, G. & Remeika, J. Spin waves in ferromagnetic CrBr3 studied by inelastic neutron scattering. Phys. Rev. B 3, 157 (1971).

    ADS  Google Scholar 

  185. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    ADS  Google Scholar 

  186. Liu, P. et al. Exploring the magnetic ordering in atomically thin antiferromagnetic MnPSe3 by Raman spectroscopy. J. Alloys Compd. 828, 154432 (2020).

    Google Scholar 

  187. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    ADS  Google Scholar 

  188. Chattopadhyay, T., Brückel, T. & Burlet, P. Spin correlation in the frustrated antiferromagnet MnS2 above the Néel temperature. Phys. Rev. B 44, 7394 (1991).

    ADS  Google Scholar 

  189. Khan, S. et al. Spin dynamics study in layered van der Waals single-crystal Cr2Ge2Te6. Phys. Rev. B 100, 134437 (2019).

    ADS  Google Scholar 

  190. Lin, M.-W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4, 315–322 (2016).

    ADS  Google Scholar 

  191. Lv, H., Lu, W., Shao, D., Liu, Y. & Sun, Y. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T–CrX2 (X = Se, Te) monolayers. Phys. Rev. B 92, 214419 (2015).

    ADS  Google Scholar 

  192. Sun, X. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13, 3358–3363 (2020).

    ADS  Google Scholar 

  193. Chu, J. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 19, 2154–2161 (2019).

    ADS  Google Scholar 

  194. Xie, L. et al. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater. 7, 2000962 (2020).

    Google Scholar 

  195. Zeugner, A. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31, 2795–2806 (2019).

    Google Scholar 

  196. Kan, M., Adhikari, S. & Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16, 4990–4994 (2014).

    Google Scholar 

  197. Itoh, H. & Miyahara, S. Magnetic susceptibility and thermal expansion of MnSe2 with pyrite structure. J. Phys. Soc. Jpn. 42, 470–472 (1977).

    ADS  Google Scholar 

  198. Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    ADS  Google Scholar 

  199. Zhang, Y. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 31, 1900056 (2019).

    Google Scholar 

  200. Zhang, H., Liu, L.-M. & Lau, W.-M. Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 1, 10821–10828 (2013).

    Google Scholar 

  201. Zhang, L.-Z. et al. Critical behavior and magnetocaloric effect of the quasi-two-dimensional room-temperature ferromagnet Cr4Te5. Phys. Rev. B 101, 214413 (2020).

    ADS  Google Scholar 

  202. Liu, Y. et al. Magnetic anisotropy and entropy change in trigonal Cr5Te8. Phys. Rev. B 100, 245114 (2019).

    ADS  Google Scholar 

  203. Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020).

    ADS  Google Scholar 

  204. Seemann, M., Ködderitzsch, D., Wimmer, S. & Ebert, H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

H.K. and S.K. acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) via EP/T006749/1 and also the help from O. Lee for producing the graphical images. S.R. and J.H.G. acknowledge funding from the European Union Seventh Framework Programme under grant no. 881603 (Graphene Flagship) and the King Abdullah University of Science and Technology (KAUST) through award number OSR-2018-CRG7-3717. The Catalan Institute of Nanoscience and Nanotechnology (ICN2) is funded by the CERCA Programme/Generalitat de Catalunya and supported by the Severo Ochoa programme (MINECO grant no. SEV-2017-0706).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding authors

Correspondence to Hidekazu Kurebayashi or Jose H. Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Kyung-Jin Lee and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurebayashi, H., Garcia, J.H., Khan, S. et al. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat Rev Phys 4, 150–166 (2022). https://doi.org/10.1038/s42254-021-00403-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00403-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing