Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Magnetism, symmetry and spin transport in van der Waals layered systems

Abstract

The discovery of an ever-increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin–orbit coupling and topological systems, calls for some guiding principles to tailor and optimize novel spin transport and optical properties at their interfaces. Here, we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals magnetism and spin–orbit coupling effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D-materials-based van der Waals heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin–orbit torque phenomena combine at interfaces with well-defined symmetries and how this dictates the nature and figures of merit of spin–orbit torque and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.

Key points

  • Fabrication of 2D van der Waals magnetic systems offers unprecedented opportunities for controlling magnetism and spin transport phenomena down to the monolayer limit.

  • Many van der Waals magnetic systems possess a low-symmetry crystalline structure, providing an array of exotic spin–orbit Hamiltonians, together with added richness arising from interface phenomena driven by layer-to-layer registry.

  • Understanding the intertwined contribution of spin–spin interaction and interfacial symmetries is crucial for maximizing the full potential of their spin–orbit torque efficiency.

  • This exciting research field of spin transport at the frontier of layered spin–orbit coupling and magnetism will lead to discoveries of new materials, novel transport effects, topological phenomena and unconventional electron correlation physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SOT in 2D materials.
Fig. 2: Experimentally validated critical magnetic transition temperature for various 2D van der Waals magnetic systems.
Fig. 3: Experimental observation of electric field control of magnetism in different van der Waals magnets.
Fig. 4: Illustration of spin–orbit torque mechanisms for different spin textures and their effects on the magnetic energy profile.
Fig. 5: Distributions of magnetic materials predicted using first-principle calculations as a function of their symmetry.

Similar content being viewed by others

References

  1. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Article  Google Scholar 

  2. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  3. Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).

    Article  Google Scholar 

  4. Kawahara, T., Ito, K., Takemura, R. & Ohno, H. Spin-transfer torque RAM technology: review and prospect. Microelectron. Reliab. 52, 613–627 (2012).

    Article  Google Scholar 

  5. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article  Google Scholar 

  6. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  Google Scholar 

  7. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  ADS  Google Scholar 

  8. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  9. Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. 54, 9300204 (2018).

    Article  Google Scholar 

  10. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  11. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  12. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  13. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  14. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  15. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  ADS  Google Scholar 

  16. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  ADS  Google Scholar 

  17. Li, H., Ruan, S. & Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv. Mater. 31, 1900065 (2019).

    Article  Google Scholar 

  18. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    Article  ADS  Google Scholar 

  19. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  20. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  Google Scholar 

  21. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  ADS  Google Scholar 

  22. Freitas, D. C. et al. Ferromagnetism in layered metastable 1T-CrTe2. J. Phys. Condens. Matter 27, 176002 (2015).

    Article  ADS  Google Scholar 

  23. Freitas, D. C. et al. Antiferromagnetism and ferromagnetism in layered 1T-CrSe2 with V and Ti replacements. Phys. Rev. B 87, 014420 (2013).

    Article  ADS  Google Scholar 

  24. Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C.-H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3, 12457–12468 (2015).

    Article  Google Scholar 

  25. McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article  Google Scholar 

  26. McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater. 1, 14001 (2017).

    Article  Google Scholar 

  27. Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    Article  ADS  Google Scholar 

  28. Lin, W., Chen, K., Zhang, S. & Chien, C. L. Enhancement of thermally injected spin current through an antiferromagnetic insulator. Phys. Rev. Lett. 116, 186601 (2016).

    Article  ADS  Google Scholar 

  29. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  ADS  Google Scholar 

  30. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  Google Scholar 

  31. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  ADS  Google Scholar 

  32. O’Hara, D. J., Zhu, T. & Kawakami, R. K. Importance of paramagnetic background subtraction for determining the magnetic moment in epitaxially grown ultrathin van der Waals magnets. IEEE Magn. Lett. 9, 1405805 (2018).

    Google Scholar 

  33. Walker, M. B. & Withers, R. L. Stacking of charge-density waves in 1T transition-metal dichalcogenides. Phys. Rev. B 28, 2766–2774 (1983).

    Article  ADS  Google Scholar 

  34. Eaglesham, D. J., Withers, R. L. & Bird, D. M. Charge-density-wave transitions in 1T-VSe2. J. Phys. C 19, 359–367 (1986).

    Article  ADS  Google Scholar 

  35. Feng, J. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 18, 4493–4499 (2018).

    Article  ADS  Google Scholar 

  36. Yang, J. et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 105, 063109 (2014).

    Article  ADS  Google Scholar 

  37. Coelho, P. M. et al. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123, 14089–14096 (2019).

    Article  Google Scholar 

  38. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  ADS  Google Scholar 

  39. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  ADS  Google Scholar 

  40. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  Google Scholar 

  41. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Article  Google Scholar 

  42. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article  ADS  Google Scholar 

  43. Huang, P. et al. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale 12, 2309–2327 (2020).

    Article  Google Scholar 

  44. Wei, S. et al. Emerging intrinsic magnetism in two-dimensional materials: theory and applications. 2D Mater. 8, 012005 (2020).

    Article  Google Scholar 

  45. Han, W. Perspectives for spintronics in 2D materials. APL Mater. 4, 032401 (2016).

    Article  ADS  Google Scholar 

  46. Avsar, A. et al. Colloquium: spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020).

    Article  ADS  Google Scholar 

  47. Husain, S. et al. Emergence of spin–orbit torques in 2D transition metal dichalcogenides: a status update. Appl. Phys. Rev. 7, 041312 (2020).

    Article  ADS  Google Scholar 

  48. Ahn, E. C. 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4, 17 (2020).

    Article  Google Scholar 

  49. Anderson, P. W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356 (1950).

    Article  MATH  ADS  Google Scholar 

  50. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 35002 (2017).

    Article  Google Scholar 

  51. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    Article  ADS  Google Scholar 

  52. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    Article  ADS  Google Scholar 

  53. Huang, C. et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc. 140, 11519–11525 (2018).

    Article  Google Scholar 

  54. Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 166, 11131–11136 (2019).

    Article  ADS  Google Scholar 

  55. Wang, F. et al. New frontiers on van der Waals layered metal phosphorous trichalcogenides. Adv. Funct. Mater. 28, 1802151 (2018).

    Article  Google Scholar 

  56. Ur Rehman, Z. et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines 9, 292 (2018).

    Article  Google Scholar 

  57. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Article  ADS  Google Scholar 

  58. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  ADS  Google Scholar 

  59. Jonker, G. & Van Santen, J. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).

    Article  ADS  Google Scholar 

  60. Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

    Article  Google Scholar 

  61. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Article  Google Scholar 

  62. Blundell, S. & Thouless, D. Magnetism in condensed matter. Am. J. Phys. 71, 94–95 (2003).

    Article  ADS  Google Scholar 

  63. Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Theor. Appl. 6, 661–690 (1907).

    Article  MATH  Google Scholar 

  64. Watanabe, H. Collective electron ferromagnetism, II. J. Phys. Soc. Jpn. 3, 317–322 (1948).

    Article  ADS  Google Scholar 

  65. Stoner, E. C. Collective electron ferromagnetism II. Energy and specific heat. Proc. R. Soc. Lond. A 169, 339–371 (1939).

    Article  MATH  ADS  Google Scholar 

  66. Nakano, M. et al. Intrinsic 2D ferromagnetism in V5Se8 epitaxial thin films. Nano Lett. 19, 8806–8810 (2019).

    Article  ADS  Google Scholar 

  67. May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys. Rev. B 93, 14411 (2016).

    Article  ADS  Google Scholar 

  68. May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Article  Google Scholar 

  69. Morosan, E. et al. Sharp switching of the magnetization in Fe0.25TaS2. Phys. Rev. B 75, 104401 (2007).

    Article  ADS  Google Scholar 

  70. McGuire, M. A. et al. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B 95, 144421 (2017).

    Article  ADS  Google Scholar 

  71. Wang, Y. et al. Magnetic anisotropy and topological Hall effect in the trigonal chromium tellurides Cr5Te8. Phys. Rev. B 100, 24434 (2019).

    Article  ADS  Google Scholar 

  72. Yan, J. et al. Anomalous Hall effect of the quasi-two-dimensional weak itinerant ferromagnet CR4.14Te8. EPL 124, 67005 (2019).

    Article  ADS  Google Scholar 

  73. Zhuang, H. L., Kent, P. R. & Hennig, R. G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B 93, 134407 (2016).

    Article  ADS  Google Scholar 

  74. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  ADS  Google Scholar 

  75. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    Article  ADS  Google Scholar 

  76. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  ADS  Google Scholar 

  77. McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Article  Google Scholar 

  78. Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article  ADS  Google Scholar 

  79. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  ADS  Google Scholar 

  80. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  ADS  Google Scholar 

  81. Song, T. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

    Article  ADS  Google Scholar 

  82. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  ADS  Google Scholar 

  83. Sun, Y. et al. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Appl. Phys. Lett. 112, 72409 (2018).

    Article  Google Scholar 

  84. Mondal, S. et al. Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI3. Phys. Rev. B 99, 180407 (2019).

    Article  ADS  Google Scholar 

  85. Son, S. et al. Bulk properties of the van der Waals hard ferromagnet VI3. Phys. Rev. B 99, 41402 (2019).

    Article  ADS  Google Scholar 

  86. Lin, Z. et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6. Phys. Rev. Mater. 2, 51004 (2018).

    Article  Google Scholar 

  87. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    Article  ADS  Google Scholar 

  88. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article  ADS  Google Scholar 

  89. Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    Article  ADS  Google Scholar 

  90. Jang, S. W., Jeong, M. Y., Yoon, H., Ryee, S. & Han, M. J. Microscopic understanding of magnetic interactions in bilayer CrI3. Phys. Rev. Mater. 3, 31001 (2019).

    Article  Google Scholar 

  91. Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article  ADS  Google Scholar 

  92. Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).

    Article  Google Scholar 

  93. Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260 (2019).

    Article  Google Scholar 

  94. Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 10, 187–191 (2015).

    Article  ADS  Google Scholar 

  95. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  96. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  Google Scholar 

  97. Guimarães, M. H., Stiehl, G. M., MacNeill, D., Reynolds, N. D. & Ralph, D. C. Spin–orbit torques in NbSe2/Permalloy bilayers. Nano Lett. 18, 1311–1316 (2018).

    Article  ADS  Google Scholar 

  98. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  ADS  Google Scholar 

  99. Alghamdi, M. et al. Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 19, 4400–4405 (2019).

    Article  ADS  Google Scholar 

  100. Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019).

    Article  ADS  Google Scholar 

  101. Ostwal, V., Shen, T. & Appenzeller, J. Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 32, 1906021 (2020).

    Article  Google Scholar 

  102. Ralph, D. & Stiles, M. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  ADS  Google Scholar 

  103. Avci, C. O. et al. Current-induced switching in a magnetic insulator. Nat. Mater. 16, 309–314 (2017).

    Article  ADS  Google Scholar 

  104. Shin, I. et al. Spin-orbit torque switching in an all-van der Waals heterostructure. Preprint at arXiv http://arxiv.org/abs/2102.09300 (2021).

  105. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).

    Article  ADS  Google Scholar 

  106. Ciccarelli, C. et al. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).

    Article  Google Scholar 

  107. Yoshimi, R. et al. Current-driven magnetization switching in ferromagnetic bulk Rashba semiconductor (Ge,Mn)Te. Sci. Adv. 4, eaat9989 (2018).

    Article  ADS  Google Scholar 

  108. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).

    Article  ADS  Google Scholar 

  109. Bradley, C. J. & Cracknell, A. P. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford Univ. Press, 1972).

  110. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  ADS  Google Scholar 

  111. Bandyopadhyay, S. & Cahay, M. Introduction to Spintronics 1st edn (CRC, 2008).

  112. Kurz, P., Förster, F., Nordström, L., Bihlmayer, G. & Blügel, S. Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Phys. Rev. B 69, 024415 (2004).

    Article  ADS  Google Scholar 

  113. Freimuth, F., Blügel, S. & Mokrousov, Y. Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B 90, 174423 (2014).

    Article  ADS  Google Scholar 

  114. Haney, P. M. et al. Current-induced order parameter dynamics: microscopic theory applied to Co/Cu/Co. Phys. Rev. B 76, 024404 (2007).

    Article  ADS  Google Scholar 

  115. Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009).

    Article  ADS  Google Scholar 

  116. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory Vol. 53 (Springer, 2008).

  117. Zollner, K. et al. Scattering-induced and highly tunable by gate damping-like spin-orbit torque in graphene doubly proximitized by two-dimensional magnet Cr2Ge2Te6 and monolayer WS2. Phys. Rev. Res. 2, 043057 (2020).

    Article  Google Scholar 

  118. Zihlmann, S. et al. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/Gr/hBN heterostructures. Phys. Rev. B 97, 075434 (2018).

    Article  ADS  Google Scholar 

  119. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  ADS  Google Scholar 

  120. Tuan, D. V., Ortmann, F., Soriano, D., Valenzuela, S. O. & Roche, S. Pseudospin-driven spin relaxation mechanism in graphene. Nat. Phys. 10, 857–863 (2014).

    Article  Google Scholar 

  121. Ok, S. et al. Custodial glide symmetry of quantum spin Hall edge modes in monolayer WTe2. Phys. Rev. B 99, 121105 (2019).

    Article  ADS  Google Scholar 

  122. Garcia, J. H. et al. Canted persistent spin texture and quantum spin Hall effect in WTe2. Phys. Rev. Lett. 125, 256603 (2020).

    Article  ADS  Google Scholar 

  123. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  ADS  Google Scholar 

  124. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    Article  ADS  Google Scholar 

  125. Belashchenko, K. D., Kovalev, A. A. & Van Schilfgaarde, M. First-principles calculation of spin-orbit torque in a Co/Pt bilayer. Phys. Rev. Mater. 3, 11401 (2019).

    Article  Google Scholar 

  126. Dolui, K. et al. Proximity spin–orbit torque on a two-dimensional magnet within van der Waals heterostructure: current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett. 20, 2288–2295 (2020).

    Article  ADS  Google Scholar 

  127. Kochan, D., Irmer, S. & Fabian, J. Model spin-orbit coupling Hamiltonians for graphene systems. Phys. Rev. B 95, 165415 (2017).

    Article  ADS  Google Scholar 

  128. Johansen, Ø., Risinggård, V., Sudbø, A., Linder, J. & Brataas, A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys. Rev. Lett. 122, 217203 (2019).

    Article  ADS  Google Scholar 

  129. MacNeill, D. et al. Thickness dependence of spin-orbit torques generated by WTe2. Phys. Rev. B 96, 054450 (2017).

    Article  ADS  Google Scholar 

  130. Gupta, V. et al. Manipulation of the van der Waals magnet Cr2Ge2Te6 by spin–orbit torques. Nano Lett. 20, 7482–7488 (2020).

    Article  ADS  Google Scholar 

  131. Cheng, C., Sun, J. T., Chen, X. R., Fu, H. X. & Meng, S. Nonlinear Rashba spin splitting in transition metal dichalcogenide monolayers. Nanoscale 8, 17854–17860 (2016).

    Article  Google Scholar 

  132. Shao, Q. et al. Strong Rashba-Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016).

    Article  ADS  Google Scholar 

  133. Zhang, W. et al. Research update: spin transfer torques in permalloy on monolayer MoS2. APL Mater. 4, 32302 (2016).

    Article  Google Scholar 

  134. Hidding, J. & Guimarães, M. H. Spin-orbit torques in transition metal dichalcogenide/ferromagnet heterostructures. Front. Mater. 7, 383 (2020).

    Article  ADS  Google Scholar 

  135. Lv, W. et al. Electric-field control of spin–orbit torques in WS2/permalloy bilayers. ACS Appl. Mater. Interfaces 10, 2843–2849 (2018).

    Article  Google Scholar 

  136. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β–MoTe2. Phys. Rev. B 100, 184402 (2019).

    Article  ADS  Google Scholar 

  137. Xie, Q. et al. Giant enhancements of perpendicular magnetic anisotropy and spin-orbit torque by a MoS2 layer. Adv. Mater. 31, 1900776 (2019).

    Article  Google Scholar 

  138. Liang, S. et al. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 32, 2002799 (2020).

    Article  Google Scholar 

  139. Haastrup, S. et al. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    Article  Google Scholar 

  140. Lu, A. Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  Google Scholar 

  141. Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Article  Google Scholar 

  142. Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Phil. Trans. R. Soc. A 369, 3175–3197 (2011).

    Article  ADS  Google Scholar 

  143. Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 144425 (2014).

    Article  ADS  Google Scholar 

  144. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 36601 (2011).

    Article  ADS  Google Scholar 

  145. Mecking, N., Gui, Y. S. & Hu, C.-M. Microwave photovoltage and photoresistance effects in ferromagnetic microstrips. Phys. Rev. B 76, 224430 (2007).

    Article  ADS  Google Scholar 

  146. Fan, Z. et al. Linear scaling quantum transport methodologies. Phys. Rep. 903, 1–69 (2021).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  147. Lee, K.-S. et al. Angular dependence of spin-orbit spin-transfer torques. Phys. Rev. B 91, 144401 (2015).

    Article  ADS  Google Scholar 

  148. Sousa, F., Tatara, G. & Ferreira, A. Skew-scattering-induced giant antidamping spin-orbit torques: collinear and out-of-plane Edelstein effects at two-dimensional material/ferromagnet interfaces. Phys. Rev. Res. 2, 43401 (2020).

    Article  Google Scholar 

  149. Xue, F., Rohmann, C., Li, J., Amin, V. & Haney, P. Unconventional spin-orbit torque in transition metal dichalcogenide-ferromagnet bilayers from first-principles calculations. Phys. Rev. B 102, 14401 (2020).

    Article  ADS  Google Scholar 

  150. Mahfouzi, F., Mishra, R., Chang, P. H., Yang, H. & Kioussis, N. Microscopic origin of spin-orbit torque in ferromagnetic heterostructures: a first-principles approach. Phys. Rev. B 101, 60405 (2020).

    Article  ADS  Google Scholar 

  151. Nikolić, B. K. et al. in Handbook of Materials Modeling (eds Andreoni, W. & Yip, S.) 499–533 (Springer, 2018).

  152. Fan, X. et al. Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers. Nat. Commun. 5, 3042 (2014).

    Article  ADS  Google Scholar 

  153. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Article  ADS  Google Scholar 

  154. Baek, S.-hC. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  ADS  Google Scholar 

  155. Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).

    Article  Google Scholar 

  156. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronicsW. Nat. Nanotechnol. 16, 856–868 (2021).

    Article  ADS  Google Scholar 

  157. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article  Google Scholar 

  158. Zheng, S. et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J. Phys. Chem. Lett. 10, 2733–2738 (2019).

    Article  Google Scholar 

  159. Torelli, D., Thygesen, K. S. & Olsen, T. High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations. 2D Mater. 6, 045018 (2019).

    Article  Google Scholar 

  160. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  ADS  Google Scholar 

  161. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Article  Google Scholar 

  162. Seixas, L., Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Multiferroic two-dimensional materials. Phys. Rev. Lett. 116, 206803 (2016).

    Article  ADS  Google Scholar 

  163. Huang, C. et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett. 120, 147601 (2018).

    Article  ADS  Google Scholar 

  164. Yang, Q., Xiong, W., Zhu, L., Gao, G. & Wu, M. Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139, 11506–11512 (2017).

    Article  Google Scholar 

  165. Xu, M. et al. Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer. Phys. Rev. Lett. 124, 67602 (2020).

    Article  ADS  Google Scholar 

  166. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article  ADS  Google Scholar 

  167. Wu, J. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 5, eaax9989 (2019).

    Article  ADS  Google Scholar 

  168. Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020).

    Article  ADS  Google Scholar 

  169. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  ADS  Google Scholar 

  170. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  ADS  Google Scholar 

  171. Yang, M. et al. Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice. Sci. Adv. 6, eabb5157 (2020).

    Article  ADS  Google Scholar 

  172. Wu, Y. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).

    Article  ADS  Google Scholar 

  173. Park, T.-E. et al. Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys. Rev. B 103, 104410 (2021).

    Article  ADS  Google Scholar 

  174. Zhang, X.-X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    Article  ADS  Google Scholar 

  175. McCreary, A. et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3. Nat. Commun. 11, 3879 (2020).

    Article  ADS  Google Scholar 

  176. Cenker, J. et al. Direct observation of two-dimensional magnons in atomically thin CrI3. Nat. Phys. 17, 20–25 (2021).

    Article  Google Scholar 

  177. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article  ADS  Google Scholar 

  178. Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2021).

    Article  Google Scholar 

  179. Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    Article  ADS  Google Scholar 

  180. Wiedenmann, A., Rossat-Mignod, J., Louisy, A., Brec, R. & Rouxel, J. Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun. 40, 1067–1072 (1981).

    Article  ADS  Google Scholar 

  181. Long, G. et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 11, 11330–11336 (2017).

    Article  Google Scholar 

  182. Le Flem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X= S, Se). J. Phys. Chem. Solids 43, 455–461 (1982).

    Article  Google Scholar 

  183. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  Google Scholar 

  184. Samuelsen, E., Silberglitt, R., Shirane, G. & Remeika, J. Spin waves in ferromagnetic CrBr3 studied by inelastic neutron scattering. Phys. Rev. B 3, 157 (1971).

    Article  ADS  Google Scholar 

  185. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article  ADS  Google Scholar 

  186. Liu, P. et al. Exploring the magnetic ordering in atomically thin antiferromagnetic MnPSe3 by Raman spectroscopy. J. Alloys Compd. 828, 154432 (2020).

    Article  Google Scholar 

  187. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  ADS  Google Scholar 

  188. Chattopadhyay, T., Brückel, T. & Burlet, P. Spin correlation in the frustrated antiferromagnet MnS2 above the Néel temperature. Phys. Rev. B 44, 7394 (1991).

    Article  ADS  Google Scholar 

  189. Khan, S. et al. Spin dynamics study in layered van der Waals single-crystal Cr2Ge2Te6. Phys. Rev. B 100, 134437 (2019).

    Article  ADS  Google Scholar 

  190. Lin, M.-W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4, 315–322 (2016).

    Article  ADS  Google Scholar 

  191. Lv, H., Lu, W., Shao, D., Liu, Y. & Sun, Y. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T–CrX2 (X = Se, Te) monolayers. Phys. Rev. B 92, 214419 (2015).

    Article  ADS  Google Scholar 

  192. Sun, X. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13, 3358–3363 (2020).

    Article  ADS  Google Scholar 

  193. Chu, J. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 19, 2154–2161 (2019).

    Article  ADS  Google Scholar 

  194. Xie, L. et al. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater. 7, 2000962 (2020).

    Article  Google Scholar 

  195. Zeugner, A. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31, 2795–2806 (2019).

    Article  Google Scholar 

  196. Kan, M., Adhikari, S. & Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16, 4990–4994 (2014).

    Article  Google Scholar 

  197. Itoh, H. & Miyahara, S. Magnetic susceptibility and thermal expansion of MnSe2 with pyrite structure. J. Phys. Soc. Jpn. 42, 470–472 (1977).

    Article  ADS  Google Scholar 

  198. Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    Article  ADS  Google Scholar 

  199. Zhang, Y. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 31, 1900056 (2019).

    Article  Google Scholar 

  200. Zhang, H., Liu, L.-M. & Lau, W.-M. Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 1, 10821–10828 (2013).

    Article  Google Scholar 

  201. Zhang, L.-Z. et al. Critical behavior and magnetocaloric effect of the quasi-two-dimensional room-temperature ferromagnet Cr4Te5. Phys. Rev. B 101, 214413 (2020).

    Article  ADS  Google Scholar 

  202. Liu, Y. et al. Magnetic anisotropy and entropy change in trigonal Cr5Te8. Phys. Rev. B 100, 245114 (2019).

    Article  ADS  Google Scholar 

  203. Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020).

    Article  ADS  Google Scholar 

  204. Seemann, M., Ködderitzsch, D., Wimmer, S. & Ebert, H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.K. and S.K. acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) via EP/T006749/1 and also the help from O. Lee for producing the graphical images. S.R. and J.H.G. acknowledge funding from the European Union Seventh Framework Programme under grant no. 881603 (Graphene Flagship) and the King Abdullah University of Science and Technology (KAUST) through award number OSR-2018-CRG7-3717. The Catalan Institute of Nanoscience and Nanotechnology (ICN2) is funded by the CERCA Programme/Generalitat de Catalunya and supported by the Severo Ochoa programme (MINECO grant no. SEV-2017-0706).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding authors

Correspondence to Hidekazu Kurebayashi or Jose H. Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Kyung-Jin Lee and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurebayashi, H., Garcia, J.H., Khan, S. et al. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat Rev Phys 4, 150–166 (2022). https://doi.org/10.1038/s42254-021-00403-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00403-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing