Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multidimensional nanoscopic chiroptics

An Author Correction to this article was published on 22 November 2021

This article has been updated

Abstract

Nanoscopic chiroptics studies the spin-dependent asymmetric light–matter interactions at the nanoscale, where the asymmetry can stem from the intrinsic properties of materials, structures, light or combinations thereof. With the emergence of low-dimensional materials platforms, such as metasurfaces, transition metal dichalcogenides and perovskites, nanoscopic chiroptics has been extended from the far field to the near field, and further developed from the spatial dimension, to the momentum dimension and the integrated spatial–momentum dimension. This expansion of nanoscopic chiroptics across dimensions has uncovered new physical mechanisms and manifestations of chiral effects. It also led to applications such as valleytronics, chiral sensing and chiral photochemistry. This Perspective focuses on the progress in nanoscopic chiroptics through the lens of the associated dimensionalities, discussing the opportunities in integrated optics, photochemistry, quantum optics and biochemical synthesis and analysis.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Near-field chirality.
Fig. 2: Chiral nanosystems with far-field chiroptical properties.
Fig. 3: Chiral effects manifested in the momentum dimension.
Fig. 4: Chiral nanosystems in the integrated spatial–momentum dimension.
Fig. 5: Future developments in nanoscopic chiroptics.

Change history

References

  1. Kelvin, W. T. B. The Molecular Tactics of a Crystal (Clarendon Press, 1894).

  2. McNaught, A. D., Wilkinson, A. Compendium of Chemical Terminology Vol. 1669 (Blackwell Science, 1997).

  3. Moss, G. P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 68, 2193–2222 (1996).

    Google Scholar 

  4. Arago, F. Mémoire sur une modification particuliere qu’eprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes et sur plusieurs autres nouveaux phénomenes d’optique. Moniteur 73, 282–284 (1811).

    Google Scholar 

  5. Pasteur, L. Sur les relations qui peuvent exister entre la forme crystalline, la composition chimique et le sens de la polarization rotatoire. Ann. Chim. Phys. 24, 442–459 (1848).

    Google Scholar 

  6. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004).

  7. Leung, D., Kang, S. O. & Anslyn, E. V. Rapid determination of enantiomeric excess: a focus on optical approaches. Chem. Soc. Rev. 41, 448–479 (2012).

    Google Scholar 

  8. Kumar, J. et al. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl Acad. Sci. USA 115, 3225–3230 (2018).

    ADS  Google Scholar 

  9. Martínez-Girón, A. B., Marina, M. L. & Crego, A. L. Chiral separation of a basic drug with two chiral centers by electrokinetic chromatography for its pharmaceutical development. J. Chromatogr. A 1467, 427–435 (2016).

    Google Scholar 

  10. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    ADS  Google Scholar 

  11. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    ADS  Google Scholar 

  12. Moloney, M. P., Govan, J., Loudon, A., Mukhina, M. & Gun’ko, Y. K. Preparation of chiral quantum dots. Nat. Protoc. 10, 558–573 (2015).

    Google Scholar 

  13. Papakostas, A. et al. Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003).

    ADS  Google Scholar 

  14. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    ADS  Google Scholar 

  15. Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517–2534 (2013).

    Google Scholar 

  16. Hentschel, M., Schaferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    ADS  Google Scholar 

  17. Collins, J. T. et al. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater. 5, 1700182 (2017).

    Google Scholar 

  18. Plum, E., Fedotov, V. A. & Zheludev, N. I. Optical activity in extrinsically chiral metamaterial. Appl. Phys. Lett. 93, 191911 (2008).

    ADS  Google Scholar 

  19. Zambrana-Puyalto, X., Vidal, X. & Molina-Terriza, G. Angular momentum-induced circular dichroism in non-chiral nanostructures. Nat. Commun. 5, 4922 (2014).

    ADS  Google Scholar 

  20. Kakkar, T. et al. Superchiral near fields detect virus structure. Light Sci. Appl. 9, 195 (2020).

    ADS  Google Scholar 

  21. Feis, J. et al. Helicity-preserving optical cavity modes for enhanced sensing of chiral molecules. Phys. Rev. Lett. 124, 033201 (2020).

    ADS  Google Scholar 

  22. Hu, J., Lawrence, M. & Dionne, J. A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy. ACS Photonics 7, 36–42 (2019).

    Google Scholar 

  23. Mohammadi, E. et al. Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures. ACS Photonics 6, 1939–1946 (2019).

    Google Scholar 

  24. Mohammadi, E. et al. Nanophotonic platforms for enhanced chiral sensing. ACS Photonics 5, 2669–2675 (2018).

    Google Scholar 

  25. Raziman, T. V., Godiksen, R. H., Müller, M. A. & Curto, A. G. Conditions for enhancing chiral nanophotonics near achiral nanoparticles. ACS Photonics 6, 2583–2589 (2019).

    Google Scholar 

  26. Solomon, M. L., Hu, J., Lawrence, M., García-Etxarri, A. & Dionne, J. A. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 6, 43–49 (2018).

    Google Scholar 

  27. Droulias, S. & Bougas, L. Absolute chiral sensing in dielectric metasurfaces using signal reversals. Nano Lett. 20, 5960–5966 (2020).

    ADS  Google Scholar 

  28. Garcia-Guirado, J., Svedendahl, M., Puigdollers, J. & Quidant, R. Enhanced chiral sensing with dielectric nanoresonators. Nano Lett. 20, 585–591 (2020).

    ADS  Google Scholar 

  29. Chen, Y., Zhao, C., Zhang, Y. & Qiu, C.-w. Integrated molar chiral sensing based on high-Q metasurface. Nano Lett. 20, 8696–8703 (2020).

    ADS  Google Scholar 

  30. Koshelev, K., Jahani, Y., Tittl, A., Altug, H. & Kivshar, Y. Enhanced Circular Dichroism and Chiral Sensing with Bound States in the Continuum (Optical Society of America, 2019).

  31. Yao, K. & Liu, Y. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers. Nanoscale 10, 8779–8786 (2018).

    Google Scholar 

  32. Khorashad, L. K. et al. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc. 142, 4193–4205 (2020).

    Google Scholar 

  33. Morisawa, K., Ishida, T. & Tatsuma, T. Photoinduced chirality switching of metal-inorganic plasmonic nanostructures. ACS Nano 14, 3603–3609 (2020).

    Google Scholar 

  34. Saito, K. & Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18, 3209–3212 (2018).

    ADS  Google Scholar 

  35. Li, Z. et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv. Mater. 30, e1801908 (2018).

    Google Scholar 

  36. Wu, Z., Li, J., Zhang, X., Redwing, J. M. & Zheng, Y. Room-temperature active modulation of valley dynamics in a monolayer semiconductor through chiral purcell effects. Adv. Mater. 31, e1904132 (2019).

    Google Scholar 

  37. Wen, T. et al. Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas. Sci. Adv. 6, eaao0019 (2020).

    ADS  Google Scholar 

  38. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015).

    ADS  Google Scholar 

  39. Liu, T. et al. Chiral plasmonic nanocrystals for generation of hot electrons: toward polarization-sensitive photochemistry. Nano Lett. 19, 1395–1407 (2019).

    ADS  Google Scholar 

  40. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    ADS  Google Scholar 

  41. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Google Scholar 

  42. Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    ADS  Google Scholar 

  43. Poulikakos, L. V. et al. Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 3, 1619–1625 (2016).

    Google Scholar 

  44. Poulikakos, L. V., Thureja, P., Stollmann, A., De Leo, E. & Norris, D. J. Chiral light design and detection inspired by optical antenna theory. Nano Lett. 18, 4633–4640 (2018).

    ADS  Google Scholar 

  45. Gilroy, C. et al. Roles of superchirality and interference in chiral plasmonic biodetection. J. Phys. Chem. C 123, 15195–15203 (2019).

    Google Scholar 

  46. Okamoto, H. Local optical activity of nano-to microscale materials and plasmons. J. Mater. Chem. C 7, 14771–14787 (2019).

    Google Scholar 

  47. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    ADS  Google Scholar 

  48. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    ADS  Google Scholar 

  49. Schäferling, M. Chiral Nanophotonics (Springer, 2017).

  50. Jack, C. et al. Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures. Nano Lett. 16, 5806–5814 (2016).

    ADS  Google Scholar 

  51. Kelly, C. et al. Controlling metamaterial transparency with superchiral fields. ACS Photonics 5, 535–543 (2017).

    Google Scholar 

  52. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    ADS  Google Scholar 

  53. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačć, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Google Scholar 

  54. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    ADS  Google Scholar 

  55. Narushima, T. & Okamoto, H. Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures. J. Phys. Chem. C 117, 23964–23969 (2013).

    Google Scholar 

  56. Valev, V. K. et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 9, 3945–3948 (2009).

    ADS  Google Scholar 

  57. Valev, V. K. et al. Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale. Adv. Mater. 26, 4074–4081 (2014).

    Google Scholar 

  58. Valev, V. et al. Distributing the optical near-field for efficient field-enhancements in nanostructures. Adv. Mater. 24, OP208–OP215 (2012).

    ADS  Google Scholar 

  59. Zu, S. et al. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures. ACS Nano 12, 3908–3916 (2018).

    Google Scholar 

  60. Chen, Y., Gao, J. & Yang, X. Direction-controlled bifunctional metasurface polarizers. Laser Photonics Rev. 12, 1800198 (2018).

    ADS  Google Scholar 

  61. Narushima, T., Hashiyada, S. & Okamoto, H. Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photonics 1, 732–738 (2014).

    Google Scholar 

  62. Okamoto, H., Narushima, T., Nishiyama, Y. & Imura, K. Local optical responses of plasmon resonances visualised by near-field optical imaging. Phys. Chem. Chem. Phys. 17, 6192–6206 (2015).

    Google Scholar 

  63. Hashiyada, S., Narushima, T. & Okamoto, H. Imaging chirality of optical fields near achiral metal nanostructures excited with linearly polarized light. ACS Photonics 5, 1486–1492 (2018).

    Google Scholar 

  64. Rafiei Miandashti, A., Khosravi Khorashad, L., Kordesch, M. E., Govorov, A. O. & Richardson, H. H. Experimental and theoretical observation of photothermal chirality in gold nanoparticle helicoids. ACS Nano 14, 4188–4195 (2020).

    Google Scholar 

  65. Spaeth, P. et al. Circular dichroism measurement of single metal nanoparticles using photothermal imaging. Nano Lett. 19, 8934–8940 (2019).

    ADS  Google Scholar 

  66. Kong, X.-T., Khosravi Khorashad, L., Wang, Z. & Govorov, A. O. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett. 18, 2001–2008 (2018).

    ADS  Google Scholar 

  67. Horrer, A. et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Lett. 20, 509–516 (2020).

    ADS  Google Scholar 

  68. Wang, M. et al. Reconfigurable plasmonic diastereomers assembled by DNA origami. ACS Nano 13, 13702–13708 (2019).

    Google Scholar 

  69. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    ADS  Google Scholar 

  70. Fedotov, V. A. et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 97, 167401 (2006).

    ADS  Google Scholar 

  71. Faryad, M. & Lakhtakia, A. The circular Bragg phenomenon. Adv. Opt. Photonics 6, 225–292 (2014).

    ADS  Google Scholar 

  72. Zhang, L., Wang, T., Shen, Z. & Liu, M. Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv. Mater. 28, 1044–1059 (2016).

    Google Scholar 

  73. Merg, A. D. et al. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 138, 13655–13663 (2016).

    Google Scholar 

  74. Han, B., Zhu, Z., Li, Z., Zhang, W. & Tang, Z. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 136, 16104–16107 (2014).

    Google Scholar 

  75. Shinmori, H. & Mochizuki, C. Strong chiroptical activity from achiral gold nanorods assembled with proteins. Chem. Commun. 53, 6569–6572 (2017).

    Google Scholar 

  76. Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    ADS  Google Scholar 

  77. Zhou, C., Duan, X. & Liu, N. DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc. Chem. Res. 50, 2906–2914 (2017).

    Google Scholar 

  78. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    ADS  Google Scholar 

  79. Schreiber, R. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).

    ADS  Google Scholar 

  80. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    ADS  Google Scholar 

  81. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Google Scholar 

  82. Dong, Y., Yang, Z. & Liu, D. DNA nanotechnology based on i-motif structures. Acc. Chem. Res. 47, 1853–1860 (2014).

    Google Scholar 

  83. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components. Science 347, 1446–1452 (2015).

    ADS  Google Scholar 

  84. Kamiya, Y. & Asanuma, H. Light-driven DNA nanomachine with a photoresponsive molecular engine. Acc. Chem. Res. 47, 1663–1672 (2014).

    Google Scholar 

  85. Im, S. W. et al. Chiral surface and geometry of metal nanocrystals. Adv. Mater. 32, 1905758 (2020).

    Google Scholar 

  86. Lee, H. E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    ADS  Google Scholar 

  87. Gonzalez-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    ADS  Google Scholar 

  88. Zheng, G. et al. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem. Int. Ed. 57, 16452–16457 (2018).

    Google Scholar 

  89. Milton, F. P., Govan, J., Mukhina, M. V. & Gun’ko, Y. K. The chiral nano-world: chiroptically active quantum nanostructures. Nanoscale Horiz. 1, 14–26 (2016).

    ADS  Google Scholar 

  90. Zhang, Y. et al. Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis. Sci. Adv. 3, e1701162 (2017).

    ADS  Google Scholar 

  91. Lu, Y. et al. Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules. Angew. Chem. Int. Ed. 58, 16928–16935 (2019).

    Google Scholar 

  92. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    Google Scholar 

  93. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    ADS  Google Scholar 

  94. Ben-Moshe, A., Maoz, B. M., Govorov, A. O. & Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028–7041 (2013).

    Google Scholar 

  95. Ben-Moshe, A., Govorov, A. O. & Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. 125, 1313–1317 (2013).

    ADS  Google Scholar 

  96. Wang, L., Urbas, A. M. & Li, Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv. Mater. 32, 1801335 (2020).

    Google Scholar 

  97. Saeva, F., Olin, G. & Chu, J. Circular dichroism of trigonal selenium formed in a chiral polymer matrix. Mol. Cryst. Liq. Cryst. 41, 5–9 (1977).

    Google Scholar 

  98. Otis, G. et al. Enantioselective crystallization of chiral inorganic crystals of ε-Zn(OH)2 with amino acids. Angew. Chem. Int. Ed. 59, 20924–20929 (2020).

    Google Scholar 

  99. Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).

    ADS  Google Scholar 

  100. Gorkunov, M. V., Antonov, A. A. & Kivshar, Y. S. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett. 125, 093903 (2020).

    ADS  Google Scholar 

  101. Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 126, 073001 (2021).

    ADS  Google Scholar 

  102. Dixon, J., Lawrence, M., Barton, D. R. III & Dionne, J. Self-isolated Raman lasing with a chiral dielectric metasurface. Phys. Rev. Lett. 126, 123201 (2021).

    ADS  Google Scholar 

  103. Ni, J. et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 6, e17011 (2017).

    Google Scholar 

  104. Esposito, M. et al. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photonics 2, 105–114 (2015).

    Google Scholar 

  105. Esposito, M. et al. Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 6, 6484 (2015).

    ADS  Google Scholar 

  106. Wang, M. et al. Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas. Light. Sci. Appl. 8, 76 (2019).

    ADS  Google Scholar 

  107. Chen, Y., Yang, X. & Gao, J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci. Appl. 8, 45 (2019).

    ADS  Google Scholar 

  108. Chen, Y., Yang, X. & Gao, J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci. Appl. 7, 84 (2018).

    ADS  Google Scholar 

  109. Frese, D., Wei, Q., Wang, Y., Huang, L. & Zentgraf, T. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces. Nano Lett. 19, 3976–3980 (2019).

    ADS  Google Scholar 

  110. Cui, Y., Kang, L., Lan, S., Rodrigues, S. & Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021–1025 (2014).

    ADS  Google Scholar 

  111. Zhao, Y., Belkin, M. A. & Alu, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012).

    ADS  Google Scholar 

  112. Kan, T. et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 6, 8422 (2015).

    ADS  Google Scholar 

  113. Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).

    ADS  Google Scholar 

  114. Wang, Q. et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl. 7, 25 (2018).

    ADS  Google Scholar 

  115. Kan, Y. et al. Metasurface-enabled generation of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).

    Google Scholar 

  116. Arteaga, O. et al. Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures. Opt. Express 24, 2242–2252 (2016).

    ADS  Google Scholar 

  117. Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016).

    ADS  Google Scholar 

  118. Xiao, T. H., Cheng, Z. & Goda, K. Giant optical activity in an all-dielectric spiral nanoflower. Small 14, 1800485 (2018).

    Google Scholar 

  119. Zanotto, S. et al. Optomechanics of chiral dielectric metasurfaces. Adv. Opt. Mater. 8, 1901507 (2020).

    Google Scholar 

  120. Hu, J. et al. All-dielectric metasurface circular dichroism waveplate. Sci. Rep. 7, 41893 (2017).

    ADS  Google Scholar 

  121. Jaggard, D., Mickelson, A. & Papas, C. On electromagnetic waves in chiral media. Appl. Phys. 18, 211–216 (1979).

    ADS  Google Scholar 

  122. Semnani, B., Flannery, J., Al Maruf, R. & Bajcsy, M. Spin-preserving chiral photonic crystal mirror. Light Sci. Appl. 9, 23 (2020).

    ADS  Google Scholar 

  123. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Google Scholar 

  124. Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    ADS  Google Scholar 

  125. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    ADS  Google Scholar 

  126. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    MathSciNet  ADS  Google Scholar 

  127. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    ADS  Google Scholar 

  128. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    ADS  Google Scholar 

  129. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    ADS  Google Scholar 

  130. Ritchie, B. Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions. Phys. Rev. A 13, 1411 (1976).

    ADS  Google Scholar 

  131. Cherepkov, N. Circular dichroism of molecules in the continuous absorption region. Chem. Phys. Lett. 87, 344–348 (1982).

    ADS  Google Scholar 

  132. Schönhense, G. et al. Circular dichroism in photoemission from surfaces. Surf. Sci. 251, 132–135 (1991).

    ADS  Google Scholar 

  133. Westphal, C., Bansmann, J., Getzlaff, M. & Schönhense, G. Circular dichroism in the angular distribution of photoelectrons from oriented CO molecules. Phys. Rev. Lett. 63, 151 (1989).

    ADS  Google Scholar 

  134. Chandra, N. Circular dichroism in photoionization of oriented nonlinear molecules. Phys. Rev. A 39, 2256 (1989).

    ADS  Google Scholar 

  135. Verbiest, T., Kauranen, M., Van Rompaey, Y. & Persoons, A. Optical activity of anisotropic achiral surfaces. Phys. Rev. Lett. 77, 1456 (1996).

    ADS  Google Scholar 

  136. Barron, L. D. True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986).

    Google Scholar 

  137. Barron, L. D. True and false chirality and parity violation. Chem. Phys. Lett. 123, 423–427 (1986).

    ADS  Google Scholar 

  138. Barron, L. Symmetry and molecular chirality. Chem. Soc. Rev. 15, 189–223 (1986).

    Google Scholar 

  139. Barron, L. D. False chirality, absolute enantioselection and CP violation: Pierre Curie’s legacy. Magnetochemistry 6, 5 (2020).

    Google Scholar 

  140. Plum, E. et al. Metamaterials: optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009).

    ADS  Google Scholar 

  141. Plum, E., Fedotov, V. A. & Zheludev, N. I. Specular optical activity of achiral metasurfaces. Appl. Phys. Lett. 108, 141905 (2016).

    ADS  Google Scholar 

  142. Wang, Y. et al. Giant circular dichroism of large-area extrinsic chiral metal nanocrecents. Sci. Rep. 8, 3351 (2018).

    ADS  Google Scholar 

  143. Mao, L., Liu, K., Zhang, S. & Cao, T. Extrinsically 2D-chiral metamirror in near-infrared region. ACS Photonics 7, 375–383 (2019).

    Google Scholar 

  144. Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl. 7, 17158 (2018).

    Google Scholar 

  145. Ren, H. & Gu, M. Angular momentum-reversible near-unity bisignate circular dichroism. Laser Photonics Rev. 12, 1700255 (2018).

    ADS  Google Scholar 

  146. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    ADS  Google Scholar 

  147. Pan, D., Wei, H., Gao, L. & Xu, H. Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits. Phys. Rev. Lett. 117, 166803 (2016).

    ADS  Google Scholar 

  148. Lefier, Y., Salut, R., Suarez, M. A. & Grosjean, T. Directing nanoscale optical flows by coupling photon spin to plasmon extrinsic angular momentum. Nano Lett. 18, 38–42 (2018).

    ADS  Google Scholar 

  149. Thomaschewski, M., Yang, Y., Wolff, C., Roberts, A. S. & Bozhevolnyi, S. I. On-chip detection of optical spin–orbit interactions in plasmonic nanocircuits. Nano Lett. 19, 1166–1171 (2019).

    ADS  Google Scholar 

  150. Feng, F., Si, G., Min, C., Yuan, X. & Somekh, M. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl. 9, 95 (2020).

    ADS  Google Scholar 

  151. Junge, C., O’shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    ADS  Google Scholar 

  152. Luxmoore, I. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    ADS  Google Scholar 

  153. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    ADS  Google Scholar 

  154. Gong, S. H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018).

    ADS  Google Scholar 

  155. Sun, L. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 13, 180–184 (2019).

    ADS  Google Scholar 

  156. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    ADS  Google Scholar 

  157. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    ADS  Google Scholar 

  158. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  Google Scholar 

  159. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  Google Scholar 

  160. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  Google Scholar 

  161. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  Google Scholar 

  162. Zanotto, S. et al. Photonic bands, superchirality, and inverse design of a chiral minimal metasurface. Nanophotonics 8, 2291–2301 (2019).

    Google Scholar 

  163. Chen, Z. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021).

    Google Scholar 

  164. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2020).

    ADS  Google Scholar 

  165. Ma, W., Cheng, F. & Liu, Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018).

    Google Scholar 

  166. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    ADS  Google Scholar 

  167. Konishi, K. et al. Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys. Rev. Lett. 106, 057402 (2011).

    ADS  Google Scholar 

  168. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Google Scholar 

  169. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    MathSciNet  MATH  ADS  Google Scholar 

  170. Mehrabad, M. J. et al. Chiral topological photonics with an embedded quantum emitter. Optica 7, 1690–1696 (2020).

    ADS  Google Scholar 

  171. Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Google Scholar 

  172. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    MATH  ADS  Google Scholar 

  173. Ray, K., Ananthavel, S., Waldeck, D. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    ADS  Google Scholar 

  174. Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors thank N. Zheludev for his valuable suggestions. C.Y. acknowledges the support from the start-up funding of University of Science and Technology of China and the CAS Pioneer Hundred Talents Program. C.-W.Q. acknowledges financial support from the grant No. R-261-518-004-720 from Advanced Research and Technology Innovation Centre (ARTIC). Q.-H.X, and C.-W.Q. acknowledge financial support from Singapore MOR tier 2 Grant (R-143-000-A68-112). W.D. acknowledges financial support from a Singapore National Research Foundation-Agence Nationale de la Recherche (NRF-ANR) grant (no. NRF2017-NRF-ANR005 2DCHIRAL). O.Á.-O. and A.O.G. acknowledge the generous support from the United States-Israel Binational Science Foundation (BSF). N.L. acknowledges financial support from the European Research Council (ERC Dynamic Nano) grant and from the Max Planck Society (Max Planck Fellow Program). H.O. acknowledges financial support from JSPS Grants-in-Aid for Scientific Research (KAKENHI grant nos. 15H02161 and 16H06505). Q.X. gratefully acknowledges the National Natural Science Foundation of China (no. 12020101003, and no. 92056204), strong support from the State Key Laboratory of Low-Dimensional Quantum Physics and start-up grant from Tsinghua University.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Qihua Xiong or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Zhiyong Tang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Du, W., Zhang, Q. et al. Multidimensional nanoscopic chiroptics. Nat Rev Phys 4, 113–124 (2022). https://doi.org/10.1038/s42254-021-00391-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00391-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing