Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical superoscillation technologies beyond the diffraction limit

An Author Correction to this article was published on 13 May 2022

This article has been updated

Abstract

Optical superoscillations are rapid, subwavelength spatial variations of the intensity and phase of light, occurring in complex electromagnetic fields formed by the interference of several coherent waves. The discovery of superoscillations stimulated a revision of the limits of classical electromagnetism — in particular, the studies of phenomena such as unlimitedly small energy hotspots, phase singularities, energy backflow, anomalously high wavevectors and their intriguing similarities to the evanescent plasmonic fields on metals. In recent years, the understanding of superoscillatory light has led to the development of superoscillatory lensing, imaging and metrology technologies. Dielectric, metallic and metamaterial nanostructured superoscillatory lenses have been introduced that are able to create hotspots smaller than allowed by conventional lenses. Far-field, label-free, non-intrusive deeply subwavelength super-resolution imaging and metrology techniques that exploit high light localization and rapid variation of phase in superoscillatory fields have also been developed, including new approaches based on artificial intelligence. We review the fundamental properties of superoscillatory optical fields and examine emerging technological applications.

Key points

  • Light can be focused into a sub-diffraction superoscillatory hotspot of any shape and size beyond the ‘diffraction limit’ by lenses constructed as a gradient, metamaterial or binary intensity and phase masks.

  • Superoscillatory lenses can be used for label-free, far-field, non-invasive imaging with super-resolution that is determined by the size of the superoscillatory hotspot.

  • The structure of superoscillatory optical fields has striking similarities with plasmonic fields and contains singularities and deeply subwavelength features of rapid phase variation and energy backflow. These features can be used in nanoscale optical metrology.

  • The high sensitivity of scattering of superoscillatory light to the object’s shape features can be used for optical imaging with deeply subwavelength, molecular-level resolution, in which reconstructing the object from the scattering pattern is performed by machine learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functions can oscillate faster than their highest Fourier harmonics.
Fig. 2: Static superoscillatory lenses.
Fig. 3: Subwavelength features in complex light fields created by interference of 50 coherent scalar plane waves.
Fig. 4: Similarities between plasmonic fields at metal interfaces and superoscillatory field in free space.
Fig. 5: ‘Optical ruler’ metrology.
Fig. 6: Superoscillatory imaging.
Fig. 7: Deeply subwavelength topological microscopy with a superoscillatory light field.
Fig. 8: Superoscillations beyond optical imaging and metrology.

Similar content being viewed by others

Change history

References

  1. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–63 (2007).

    Article  Google Scholar 

  2. Brongersma, M. L. & Shalaev, V. M. The case for plasmonics. Science 328, 440–441 (2010).

    Article  ADS  Google Scholar 

  3. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  4. Zhang, X. & Liu, Z. W. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008).

    Article  ADS  Google Scholar 

  5. Berry, M. V. & Popescu, S. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39, 6965–6977 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Berry, M. V. & Moiseyev, N. Superoscillations and supershifts in phase space: Wigner and Husimi function interpretations. J. Phys. A Math. Theor. 47, 315203 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Q. A simple model of Aharonov-Berry’s superoscillations. J. Phys. A Math. Gen. 29, 2257–2258 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ferreira, P., Kempf, A. & Reis, M. Construction of Aharonov–Berry’s superoscillations. J. Phys. A Math. Theor. 40, 5141–5147 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Huang, F. M. & Zheludev, N. I. Super-resolution without evanescent waves. Nano Lett. 9, 1249–1254 (2009).

    Article  ADS  Google Scholar 

  10. Lindberg, J. Mathematical concepts of optical superresolution. J. Opt. 14, 083001 (2012).

    Article  ADS  Google Scholar 

  11. Chojnacki, L. & Kempf, A. New methods for creating superoscillations. J. Phys. A Math. Theor. 49, 505203 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, D. G. & Ferreira, P. Direct construction of superoscillations. IEEE Trans. Signal. Process. 62, 3125–3134 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Wong, A. M. H. & Eleftheriades, G. V. Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays. IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

    Article  ADS  Google Scholar 

  14. Chremmos, I. & Fikioris, G. Superoscillations with arbitrary polynomial shape. J. Phys. A Math. Theor. 48, 265204 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Smith, M. K. & Gbur, G. Mathematical method for designing superresolution lenses using superoscillations. Opt. Lett. 45, 1854–1857 (2020).

    Article  ADS  Google Scholar 

  16. Rogers, K. S. & Rogers, E. T. F. Realising superoscillations: A review of mathematical tools and their application. J. Phys. Photonics 2, 042004 (2020).

    Article  ADS  Google Scholar 

  17. Zheludev, N. I. What diffraction limit? Nat. Mater. 7, 420–422 (2008).

    Article  ADS  Google Scholar 

  18. Karoui, A. & Moumni, T. Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions. J. Comput. Appl. Math. 233, 315–333 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Slepian, D. & Pollak, H. O. Prolate spheroidal wave functions, Fourier analysis and uncertainty — I. Bell Syst. Tech. J. 40, 43–63 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferreira, P. & Kempf, A. Superoscillations: Faster than the Nyquist rate. IEEE Trans. Signal. Process. 54, 3732–3740 (2006).

    Article  ADS  MATH  Google Scholar 

  21. Kempf, A. & Ferreira, P. Unusual properties of superoscillating particles. J. Phys. A Math. Gen. 37, 12067–12076 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Tang, E., Garg, L. & Kempf, A. Scaling properties of superoscillations and the extension to periodic signals. J. Phys. A Math. Theor. 49, 335202 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. Kempf, A. Black holes, bandwidths and Beethoven. J. Math. Phys. 41, 2360–2374 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  25. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    Article  ADS  Google Scholar 

  26. Berry, M. V. & Shukla, P. Typical weak and superweak values. J. Phys. A Math. Theor. 43, 354024 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. Vigoureux, J. M., Dhooge, L. & Vanlabeke, D. Quantization of evanescent electromagnetic waves: Momentum of the electromagnetic field very close to a dielectric medium. Phys. Rev. A 21, 347–355 (1980).

    Article  ADS  Google Scholar 

  28. Berry, M. V. Superluminal speeds for relativistic random waves. J. Phys. A Math. Theor. 45, 185308 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  ADS  Google Scholar 

  30. Toraldo Di Francia, G. Super-gain antennas and optical resolving power. Nuovo Cim. 9, 426–438 (1952).

    Article  Google Scholar 

  31. Schelkunoff, S. A. A mathematical theory of linear arrays. Bell Syst. Tech. J. 22, 80–107 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  32. Leiserson, I., Lipson, S. G. & Sarafis, V. Superresolution in far-field imaging. Opt. Lett. 25, 209–211 (2000).

    Article  ADS  Google Scholar 

  33. Leizerson, I., Lipson, S. G. & Sarafis, V. Superresolution in far-field imaging. J. Opt. Soc. Am. A 19, 436–443 (2002).

    Article  ADS  Google Scholar 

  34. Huang, F. M., Zheludev, N., Chen, Y. F. & de Abajo, F. J. G. Focusing of light by a nanohole array. Appl. Phys. Lett. 90, 091119 (2007).

    Article  ADS  Google Scholar 

  35. Huang, F. M., Chen, Y., de Abajo, F. J. G. & Zheludev, N. I. Optical super-resolution through super-oscillations. J. Opt. A Pure Appl. Opt. 9, S285–S288 (2007).

    Article  Google Scholar 

  36. Rogers, K. S., Bourdakos, K. N., Yuan, G. H., Mahajan, S. & Rogers, E. T. F. Optimising superoscillatory spots for far-field super-resolution imaging. Opt. Express 26, 8095–8112 (2018).

    Article  ADS  Google Scholar 

  37. Maznev, A. A. & Wright, O. B. Upholding the diffraction limit in the focusing of light and sound. Wave Motion 68, 182–189 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  38. Padgett, M. On the focussing of light, as limited by the uncertainty principle. J. Mod. Opt. 55, 3083–3089 (2008).

    Article  ADS  Google Scholar 

  39. Huang, F. M., Kao, T. S., Fedotov, V. A., Chen, Y. F. & Zheludev, N. I. Nanohole array as a lens. Nano Lett. 8, 2469–2472 (2008).

    Article  ADS  Google Scholar 

  40. Oreopoulos, J., Berman, R. & Browne, M. in Quantitative Imaging in Cell Biology Vol. 123 (eds Waters, J. C. & Wittmann, T.) 153–175 (Academic, 2014).

  41. Wang, Q. et al. Reconfigurable phase-change photomask for grayscale photolithography. Appl. Phys. Lett. 110, 201110 (2017).

    Article  ADS  Google Scholar 

  42. Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979).

    Article  ADS  Google Scholar 

  43. Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012).

    Article  ADS  Google Scholar 

  44. Chen, G. et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave. Sci. Rep. 6, 37776 (2016).

    Article  ADS  Google Scholar 

  45. Wu, Z. X. et al. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave. Opt. Express 26, 7866–7875 (2018).

    Article  ADS  Google Scholar 

  46. Qin, F. et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29, 1602721 (2017).

    Article  Google Scholar 

  47. Zhu, X. F. et al. Supercritical lens array in a centimeter scale patterned with maskless UV lithography. Opt. Lett. 45, 1798–1801 (2020).

    Article  ADS  Google Scholar 

  48. Chen, G., Wen, Z. Q. & Qiu, C. W. Superoscillation: from physics to optical applications. Light Sci. Appl. 8, 56 (2019).

    Article  ADS  Google Scholar 

  49. Legaria, S., Pacheco-Pena, V. & Beruete, M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes. Photonics 5, 56 (2018).

    Article  Google Scholar 

  50. Liu, T., Shen, T., Yang, S. M. & Jiang, Z. D. Subwavelength focusing by binary multi-annularplates: design theory and experiment. J. Opt. 17, 035610 (2015).

    Article  ADS  Google Scholar 

  51. Chen, G. et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light. Opt. Express 24, 11002–11008 (2016).

    Article  ADS  Google Scholar 

  52. Chen, G. et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation. Sci. Rep. 6, 29068 (2016).

    Article  ADS  Google Scholar 

  53. Li, M. Y., Li, W. L., Li, H. Y., Zhu, Y. C. & Yu, Y. T. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci. Sci. Rep. 7, 1335 (2017).

    Article  ADS  Google Scholar 

  54. Huang, K. et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev. 8, 152–157 (2014).

    Article  ADS  Google Scholar 

  55. Wu, Z. X. et al. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams. Opt. Express 26, 16585–16599 (2018).

    Article  ADS  Google Scholar 

  56. Rogers, E. T. F. & Zheludev, N. I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. J. Opt. 15, 094008 (2013).

    Article  ADS  Google Scholar 

  57. Huang, K. et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015).

    Article  ADS  Google Scholar 

  58. Qin, F. et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 5, 09977 (2015).

    Article  ADS  Google Scholar 

  59. Yu, Y. T., Li, W. L., Li, H. Y., Li, M. Y. & Yuan, W. Z. An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses. Nanomaterials 8, 185 (2018).

    Article  Google Scholar 

  60. Yuan, G. H., Rogers, E. T. F. & Zheludev, N. I. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl. 6, e17036 (2017).

    Article  ADS  Google Scholar 

  61. Wang, Z. et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides. Nano Lett. 20, 7964–7972 (2020).

    Article  ADS  Google Scholar 

  62. Yuan, G. H., Lin, Y. H., Tsai, D. P. & Zheludev, N. I. Superoscillatory quartz lens with effective numerical aperture greater than one. Appl. Phys. Lett. 117, 021106 (2020).

    Article  ADS  Google Scholar 

  63. Li, W. L., Yu, Y. T. & Yuan, W. Z. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication. Nanoscale 11, 311–320 (2019).

    Article  Google Scholar 

  64. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016).

    Article  ADS  Google Scholar 

  65. Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  66. Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  Google Scholar 

  67. Roy, T., Yuan, G. H., Rogers, E. T. F. & Zheludev, N. I. in 2014 Conference on Lasers and Electro-Optics (CLEO) FW3K.3 (IEEE, 2014).

  68. Yuan, G. H., Rogers, E. T. F., Roy, T., Shen, Z. X. & Zheludev, N. I. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution. Opt. Express 22, 6428–6437 (2014).

    Article  ADS  Google Scholar 

  69. Banerji, S., Meem, M., Majumder, A., Sensale-Rodriguez, B. & Menon, R. Extreme-depth-of-focus imaging with a flat lens. Optica 7, 214–217 (2020).

    Article  ADS  Google Scholar 

  70. Oseen, C. W. Einstein’s pinprick radiation and Maxwell’s equations. Ann. Phys. 69, 202–204 (1922).

    Article  Google Scholar 

  71. Rogers, E. T. F. et al. Super-oscillatory optical needle. Appl. Phys. Lett. 102, 031108 (2013).

    Article  ADS  Google Scholar 

  72. Roy, T., Rogers, E. T. F., Yuan, G. H. & Zheludev, N. I. Point spread function of the optical needle super-oscillatory lens. Appl. Phys. Lett. 104, 231109 (2014).

    Article  ADS  Google Scholar 

  73. Yuan, G. H. et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci. Rep. 4, 6333 (2014).

    Article  Google Scholar 

  74. Diao, J. S., Yuan, W. Z., Yu, Y. T., Zhu, Y. C. & Wu, Y. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles. Opt. Express 24, 1924–1933 (2016).

    Article  ADS  Google Scholar 

  75. Chen, G. et al. Planar binary-phase lens for super-oscillatory optical hollow needles. Sci. Rep. 7, 4697 (2017).

    Article  ADS  Google Scholar 

  76. Kryder, M. H. et al. Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008).

    Article  Google Scholar 

  77. Yuan, G. H. et al. in 2013 Conference on Lasers and Electro-Optics (CLEO) QM1B.8 (IEEE, 2013).

  78. Yuan, G. H., Rogers, K. S., Rogers, E. T. F. & Zheludev, N. I. Far-field superoscillatory metamaterial superlens. Phys. Rev. Appl. 11, 064016 (2019).

    Article  ADS  Google Scholar 

  79. Papakostas, A. et al. Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003).

    Article  ADS  Google Scholar 

  80. Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  81. Tang, D. L. et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 9, 713–719 (2015).

    Article  ADS  Google Scholar 

  82. Li, Z. et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 12, 180064 (2018).

    Article  Google Scholar 

  83. Yuan, G. H. et al. Quantum super-oscillation of a single photon. Light Sci. Appl. 5, e16127 (2016).

    Article  Google Scholar 

  84. Rueckner, W. & Peidle, J. Young’s double-slit experiment with single photons and quantum eraser. Am. J. Phys. 81, 951–958 (2013).

    Article  ADS  Google Scholar 

  85. Huignard, J. P. Spatial light modulators and their applications. J. Opt. 18, 181–186 (1987).

    Article  ADS  Google Scholar 

  86. Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 5, 81–101 (2011).

    Article  ADS  Google Scholar 

  87. Rogers, E. T. F. et al. Far-field unlabeled super-resolution imaging with superoscillatory illumination. APL Photonics 5, 066107 (2020).

    Article  ADS  Google Scholar 

  88. Singh, B. K., Nagar, H., Roichman, Y. & Arie, A. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams. Light Sci. Appl. 6, e17050 (2017).

    Article  ADS  Google Scholar 

  89. Singh, B. K., Nagar, H., Roichman, Y. & Arie, A. in Optical Trapping and Optical Micromanipulation XV Vol. 10723 (eds Dholakia, K. & Spalding, G. C.) 1072303 (SPIE, 2018).

  90. Johnson, C. W. et al. Exact design of complex amplitude holograms for producing arbitrary scalar fields. Opt. Express 28, 17334–17346 (2020).

    Article  ADS  Google Scholar 

  91. Wan, Z. S., Wang, Z. Y., Yang, X. L., Shen, Y. J. & Fu, X. Digitally tailoring arbitrary structured light of generalized ray-wave duality. Opt. Express 28, 31043–31056 (2020).

    Article  ADS  Google Scholar 

  92. Zacharias, T. & Bahabad, A. Light beams with volume superoscillations. Opt. Lett. 45, 3482–3485 (2020).

    Article  ADS  Google Scholar 

  93. Woodward, B. P. M. The theoretical precision with which an arbitrary radiation-pattern may be obtained from a source of finite size. J. Inst. Electr. Eng. 95, 363–370 (1948).

    Google Scholar 

  94. Bouwkamp, C. J. & De Bruin, N. G. The problem of optimum antenna current distribution. Phillips Res. Rep. 1, 135–158 (1945).

    MathSciNet  Google Scholar 

  95. Ruan, D. S. et al. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array. Appl. Opt. 57, 7905–7909 (2018).

    Article  ADS  Google Scholar 

  96. Yang, M. Y. et al. Subdiffraction focusing of total electric fields of terahertz wave. Opt. Commun. 458, 124764 (2020).

    Article  Google Scholar 

  97. Shen, Y. X. et al. Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nat. Commun. 10, 3411 (2019).

    Article  ADS  Google Scholar 

  98. Hyun, J. et al. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range. Sci. Rep. 8, 9131 (2018).

    Article  ADS  Google Scholar 

  99. Wong, A. M. H. & Eleftheriades, G. V. Sub-wavelength focusing at the multi-wavelength range using superoscillations: an experimental demonstration. IEEE Trans. Antennas Propag. 59, 4766–4776 (2011).

    Article  ADS  Google Scholar 

  100. Wong, A. M. H. & Eleftheriades, G. V. Superoscillatory radar imaging: improving radar range resolution beyond fundamental bandwidth limitations. IEEE Microw. Wirel. Compon. Lett. 22, 147–149 (2012).

    Article  Google Scholar 

  101. Berry, M. V. & Dennis, M. R. Natural superoscillations in monochromatic waves in D dimensions. J. Phys. A Math. Theor. 42, 022003 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Dennis, M. R., Hamilton, A. C. & Courtial, J. Superoscillation in speckle patterns. Opt. Lett. 33, 2976–2978 (2008).

    Article  ADS  Google Scholar 

  103. Berry, M. V. Quantum backflow, negative kinetic energy, and optical retro-propagation. J. Phys. A Math. Theor. 43, 415302 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  104. Eliezer, Y., Zacharias, T. & Bahabad, A. Observation of optical backflow. Optica 7, 72–76 (2020).

    Article  ADS  Google Scholar 

  105. Yuan, G. H., Rogers, E. T. F. & Zheludev, N. I. “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light Sci. Appl. 8, 2 (2019).

    Article  ADS  Google Scholar 

  106. Bashevoy, M. V., Fedotov, V. A. & Zheludev, N. I. Optical whirlpool on an absorbing metallic nanoparticle. Opt. Express 13, 8372–8379 (2005).

    Article  ADS  Google Scholar 

  107. Yuan, G. H. & Zheludev, N. I. Detecting nanometric displacements with optical ruler metrology. Science 364, 771–775 (2019).

    Article  ADS  Google Scholar 

  108. Nye, J. F., Berry, M. V. & Walford, M. E. R. Measuring the change in thickness of the Antarctic ice sheet. Nat. Phys. Sci. 240, 7–9 (1972).

    Article  ADS  Google Scholar 

  109. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  110. Blom, H. & Widengren, J. Stimulated emission depletion microscopy. Chem. Rev. 117, 7377–7427 (2017).

    Article  Google Scholar 

  111. Wang, C. T. et al. Super-resolution optical telescopes with local light diffraction shrinkage. Sci. Rep. 5, 18485 (2015).

    Article  ADS  Google Scholar 

  112. Rogers, E. T. F. et al. New super-oscillatory technology for unlabelled super-resolution cellular imaging with polarisation contrast. Biophys. J. 112, 186a (2017).

    Article  Google Scholar 

  113. Shapira, N. et al. Multi-lobe superoscillation and its application to structured illumination microscopy. Opt. Express 27, 34530–34541 (2019).

    Article  ADS  Google Scholar 

  114. Wong, A. M. H. & Eleftheriades, G. V. An optical super-microscope for far-field, real-time imaging beyond the diffraction limit. Sci. Rep. 3, 1715 (2013).

    Article  ADS  Google Scholar 

  115. Thibault, P. & Elser, V. X-ray diffraction microscopy. Annu. Rev. Condens. Matter Phys. 1, 237–255 (2010).

    Article  ADS  Google Scholar 

  116. Gazit, S., Szameit, A., Eldar, Y. C. & Segev, M. Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express 17, 23920–23946 (2009).

    Article  ADS  Google Scholar 

  117. Vemuri, V. & Jang, G. S. Inversion of Fredholm integral equations of the first kind with fully connected neural networks. J. Frankl. Inst. Eng. Appl. Math. 329, 241–257 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  118. Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437–1443 (2017).

    Article  ADS  Google Scholar 

  119. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018).

    Article  Google Scholar 

  120. Wang, H. D. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).

    Article  Google Scholar 

  121. Piccinotti, D., MacDonald, K. F., Gregory, S., Youngs, I. & Zheludev, N. I. Artificial intelligence for photonics and photonic materials. Rep. Prog. Phys. 84, 012401 (2020).

    Article  ADS  Google Scholar 

  122. Pu, T., Ou., J. Y., Papasimakis, N. & Zheludev, N. I. Label-free deeply subwavelength optical microscopy. Appl. Phys. Lett. 116, 131105 (2020).

    Article  ADS  Google Scholar 

  123. Rendon-Barraza, C. et al. Deeply sub-wavelength non-contact optical metrology of sub-wavelength objects. APL Photonics 6, 066107 (2021).

    Article  ADS  Google Scholar 

  124. Chan, E. A. et al. in Conference on Lasers and Electro-Optics/Europe — European Quantum Electronics Virtual Conferences (CLEO, 2021).

  125. Pu, T. et al. Unlabeled far-field deeply subwavelength topological microscopy (DSTM). Adv. Sci. 2020, 2002886 (2020).

    Google Scholar 

  126. Narimanov, E. Resolution limit of label-free far-field microscopy. Adv. Photonics 1, 056003 (2019).

    Article  Google Scholar 

  127. Huang, K. et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater. 30, 1704556 (2018).

    Article  Google Scholar 

  128. Berry, M. et al. Roadmap on superoscillations. J. Opt. 21, 053002 (2019).

    Article  ADS  Google Scholar 

  129. Gbur, G. Using superoscillations for superresolved imaging and subwavelength focusing. Nanophotonics 8, 205–225 (2019).

    Article  Google Scholar 

  130. Eliezer, Y., Hareli, L., Lobachinsky, L., Froim, S. & Bahabad, A. Breaking the temporal resolution limit by superoscillating optical beats. Phys. Rev. Lett. 119, 043903 (2017).

    Article  ADS  Google Scholar 

  131. Wong, A. M. H. & Eleftheriades, G. V. Temporal pulse compression beyond the Fourier transform limit. IEEE Trans. Microw. Theory Tech. 59, 2173–2179 (2011).

    Article  ADS  Google Scholar 

  132. Eliezer, Y. & Bahabad, A. Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium. Opt. Express 22, 31212–31226 (2014).

    Article  ADS  Google Scholar 

  133. Zarkovsky, S., Ben-Ezra, Y. & Schwartz, M. Transmission of superoscillations. Sci. Rep. 10, 5893 (2020).

    Article  ADS  Google Scholar 

  134. Remez, R. & Arie, A. Super-narrow frequency conversion. Optica 2, 472–475 (2015).

    Article  ADS  Google Scholar 

  135. Eliezer, Y. & Bahabad, A. Super defocusing of light by optical sub-oscillations. Optica 4, 440–446 (2017).

    Article  ADS  Google Scholar 

  136. Remez, R. et al. Superoscillating electron wave functions with subdiffraction spots. Phys. Rev. A 95, 031802(R) (2017).

    Article  ADS  Google Scholar 

  137. Piccinotti, D. et al. Optical response of nanohole arrays filled with chalcogenide low-epsilon media. Adv. Opt. Mater. 6, 1800395 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E. Rogers, P. J. S. Smith, N. Papasimakis, I. Kuprov, Y. Shen, B. Ou, E. Aik Chan and C. Rendon Barraza for discussions and S. Varier for preparation of the manuscript. This work was supported by the Engineering and Physical Sciences Research Council UK (grant nos. EP/M009122/1 and EP/T02643X/1), the Singapore National Research Foundation (grant no. NRF-CRP23-2019-0006), the Singapore Ministry of Education (grant no. MOE2016-T3-1-006) and the Agency for Science, Technology and Research (A*STAR) Singapore (grant no. SERC A1685b0005). G.Y. is also supported by the National Innovative Talents Program of China.

Author information

Authors and Affiliations

Authors

Contributions

The authors made equal contributions to the paper.

Corresponding authors

Correspondence to Nikolay I. Zheludev or Guanghui Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks A. Bahabad, G. Gbur and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheludev, N.I., Yuan, G. Optical superoscillation technologies beyond the diffraction limit. Nat Rev Phys 4, 16–32 (2022). https://doi.org/10.1038/s42254-021-00382-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00382-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing