Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origins of massive black holes

Abstract

Massive black holes (MBHs) inhabit galactic centres, and power luminous quasars and active galactic nuclei, shaping their cosmic environment with the energy they produce. The origins of MBHs remain a mystery, and the recent detection by LIGO/Virgo of a black hole of almost 150 solar masses has revitalized the questions of whether there is a continuum between ‘stellar’ and ‘massive’ black holes, and what the seeds of MBHs are. Seeds could have formed in the first galaxies or could be related to the collapse of horizon-sized regions in the early Universe. Understanding the origins of MBHs straddles fundamental physics, cosmology and astrophysics, and bridges the fields of gravitational-wave physics and traditional astronomy. With several existing and upcoming facilities in the next 10–15 years, we foresee the possibility of discovering the avenues of formation of MBHs. This Review links three main topics: the channels of black hole seed formation, the journey from seeds to MBHs, and the diagnostics on the origins of MBHs. We highlight and critically discuss current unsolved problems, touching on recent developments.

Key points

  • The discoveries of quasars at cosmic distances and of giant dark massive objects in today’s galaxies provide evidence of the ubiquity of massive black holes (MBHs).

  • Understanding the origins of MBHs goes hand in hand with understanding the origins of the structures inside the cosmic web. MBHs are not born ‘massive’ but must have grown by several orders of magnitude from ‘seed black holes’. Gas accretion and black hole mergers are the drivers of their growth inside galaxies, but there are several bottlenecks in this journey.

  • The origins of MBHs may be from exotic mechanisms or may well lie in known physics — particle, plasma and condensed matter physics, gravity and dynamics — extrapolated to untested regimes.

  • Studying the origins of MBHs is a multi-scale problem: from the Schwarzschild radius to cosmological scales, from subsecond events to the age of the Universe.

  • Paths to seed formation and growth are not mutually exclusive. Constraints will therefore come from a combination of observables: masses, spins, distances, spectra and light curves of populations of black holes. These indirect constraints can confirm that a given path exists but cannot rule out the existence of other paths. A combination of electromagnetic and gravitational-wave observations is the foreseen best strategy to constrain the origins of MBHs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Growth of massive black holes (MBH) in galaxies.

References

  1. 1.

    Nguyen, D. D. et al. Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205. Astrophys. J. 872, 104 (2019).

    ADS  Article  Google Scholar 

  2. 2.

    Abbott, R. et al. Properties and astrophysical implications of the 150 M binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).

    ADS  Article  Google Scholar 

  3. 3.

    Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Fan, X. et al. A survey of z > 5.8 quasars in the Sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ~ 6. Astron. J. 122, 2833–2849 (2001).

    ADS  Article  Google Scholar 

  5. 5.

    Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002).

    ADS  Article  Google Scholar 

  6. 6.

    Mezcua, M. Observational evidence for intermediate-mass black holes. Int. J. Mod. Phys. D 26, 1730021 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    ADS  Article  Google Scholar 

  8. 8.

    Rees, M. J. in Structure and Properties of Nearby Galaxies vol. 77 (eds Berkhuijsen, E. M. & Wielebinski, R.) 237–242 (Springer, 1978).

  9. 9.

    Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Palla, F., Salpeter, E. E. & Stahler, S. W. Primordial star formation — the role of molecular hydrogen. Astrophys. J. 271, 632–641 (1983).

    ADS  Article  Google Scholar 

  11. 11.

    Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    ADS  Article  Google Scholar 

  12. 12.

    Spera, M., Mapelli, M. & Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 451, 4086–4103 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).

    ADS  Article  Google Scholar 

  14. 14.

    Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002).

    ADS  Article  Google Scholar 

  15. 15.

    Greif, T. H. et al. Simulations on a moving mesh: the clustered formation of Population III protostars. Astrophys. J. 737, 75 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Schneider, R., Ferrara, A., Natarajan, P. & Omukai, K. First stars, very massive black holes, and metals. Astrophys. J. 571, 30–39 (2002).

    ADS  Article  Google Scholar 

  18. 18.

    Tarumi, Y., Hartwig, T. & Magg, M. Implications of inhomogeneous metal mixing for stellar archaeology. Astrophys. J. 897, 58 (2020).

    ADS  Article  Google Scholar 

  19. 19.

    Bromm, V. & Loeb, A. Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003).

    ADS  Article  Google Scholar 

  20. 20.

    Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

    ADS  Article  Google Scholar 

  21. 21.

    Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    Shang, C., Bryan, G. L. & Haiman, Z. Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir 104 K. Mon. Not. R. Astron. Soc. 402, 1249–1262 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Montero, P. J., Janka, H.-T. & Müller, E. Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects. Astrophys. J. 749, 37 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Begelman, M. C., Rossi, E. M. & Armitage, P. J. Quasi-stars: accreting black holes inside massive envelopes. Mon. Not. R. Astron. Soc. 387, 1649–1659 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Haemmerlé, L. et al. Formation of the first stars and black holes. Space Sci. Rev. 216, 48 (2020).

    ADS  Article  Google Scholar 

  26. 26.

    Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe. Mon. Not. R. Astron. Soc. 433, 1607–1618 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Visbal, E., Haiman, Z. & Bryan, G. L. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Mon. Not. R. Astron. Soc. 445, 1056–1063 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Habouzit, M., Volonteri, M., Latif, M., Dubois, Y. & Peirani, S. On the number density of ‘direct collapse’ black hole seeds. Mon. Not. R. Astron. Soc. 463, 529–540 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Chon, S., Hosokawa, T. & Omukai, K. Cosmological direct-collapse black hole formation sites hostile for their growth. Mon. Not. R. Astron. Soc. 502, 700–713 (2021).

    ADS  Article  Google Scholar 

  31. 31.

    Regan, J. A. et al. The formation of very massive stars in early galaxies and implications for intermediate mass black holes. Open J. Astrophys. 3, 15 (2020).

    Google Scholar 

  32. 32.

    Mayer, L. et al. Direct formation of supermassive black holes in metal-enriched gas at the heart of high-redshift galaxy mergers. Astrophys. J. 810, 51 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).

    ADS  Article  Google Scholar 

  34. 34.

    Freitag, M., Gürkan, M. A. & Rasio, F. A. Runaway collisions in young star clusters — II. Numerical results. Mon. Not. R. Astron. Soc. 368, 141–161 (2006).

    ADS  Article  Google Scholar 

  35. 35.

    Mapelli, M. Massive black hole binaries from runaway collisions: the impact of metallicity. Mon. Not. R. Astron. Soc. 459, 3432–3446 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Reinoso, B., Schleicher, D. R. G., Fellhauer, M., Klessen, R. S. & Boekholt, T. C. N. Collisions in primordial star clusters. Formation pathway for intermediate mass black holes. Astron. Astrophys. 614, A14 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Chon, S. & Omukai, K. Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Mon. Not. R. Astron. Soc. 494, 2851–2860 (2020).

    ADS  Article  Google Scholar 

  38. 38.

    Boekholt, T. C. N. et al. Formation of massive seed black holes via collisions and accretion. Mon. Not. R. Astron. Soc. 476, 366–380 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Tagawa, H., Haiman, Z. & Kocsis, B. Making a supermassive star by stellar bombardment. Astrophys. J. 892, 36 (2020).

    ADS  Article  Google Scholar 

  40. 40.

    Omukai, K., Schneider, R. & Haiman, Z. Can supermassive black holes form in metal-enriched high-redshift protogalaxies? Astrophys. J. 686, 801–814 (2008).

    ADS  Article  Google Scholar 

  41. 41.

    Devecchi, B. & Volonteri, M. Formation of the first nuclear clusters and massive black holes at high redshift. Astrophys. J. 694, 302–313 (2009).

    ADS  Article  Google Scholar 

  42. 42.

    Katz, H., Sijacki, D. & Haehnelt, M. G. Seeding high-redshift QSOs by collisional runaway in primordial star clusters. Mon. Not. R. Astron. Soc. 451, 2352–2369 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    Yajima, H. & Khochfar, S. The role of stellar relaxation in the formation and evolution of the first massive black holes. Mon. Not. R. Astron. Soc. 457, 2423–2432 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Sakurai, Y., Yoshida, N., Fujii, M. S. & Hirano, S. Formation of intermediate-mass black holes through runaway collisions in the first star clusters. Mon. Not. R. Astron. Soc. 472, 1677–1684 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Devecchi, B., Volonteri, M., Rossi, E. M., Colpi, M. & Portegies Zwart, S. High-redshift formation and evolution of central massive objects — II. The census of BH seeds. Mon. Not. R. Astron. Soc. 421, 1465–1475 (2012).

    ADS  Article  Google Scholar 

  46. 46.

    Stone, N. C., Küpper, A. H. W. & Ostriker, J. P. Formation of massive black holes in galactic nuclei: runaway tidal encounters. Mon. Not. R. Astron. Soc. 467, 4180–4199 (2017).

    ADS  Google Scholar 

  47. 47.

    Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N. & Askar, A. MOCCA code for star cluster simulations — IV. A new scenario for intermediate mass black hole formation in globular clusters. Mon. Not. R. Astron. Soc. 454, 3150–3165 (2015).

    ADS  Article  Google Scholar 

  48. 48.

    Sigurdsson, S. & Hernquist, L. Primordial black holes in globular clusters. Nature 364, 423–425 (1993).

    ADS  Article  Google Scholar 

  49. 49.

    Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002).

    ADS  Article  Google Scholar 

  50. 50.

    Lousto, C. O., Campanelli, M., Zlochower, Y. & Nakano, H. Remnant masses, spins and recoils from the merger of generic black hole binaries. Class. Quantum Gravity 27, 114006 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Gerosa, D. & Berti, E. Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap. Phys. Rev. D 100, 041301 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Antonini, F., Gieles, M. & Gualandris, A. Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. Mon. Not. R. Astron. Soc. 486, 5008–5021 (2019).

    ADS  Article  Google Scholar 

  53. 53.

    Davies, M. B., Miller, M. C. & Bellovary, J. M. Supermassive black hole formation via gas accretion in nuclear stellar clusters. Astrophys. J. Lett. 740, L42 (2011).

    ADS  Article  Google Scholar 

  54. 54.

    Lupi, A., Colpi, M., Devecchi, B., Galanti, G. & Volonteri, M. Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows. Mon. Not. R. Astron. Soc. 442, 3616–3626 (2014).

    ADS  Article  Google Scholar 

  55. 55.

    Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early Universe by supra-exponential accretion. Science 345, 1330–1333 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Arca Sedda, M. et al. Breaching the limit: formation of GW190521-like and IMBH mergers in young massive clusters. Preprint at https://arxiv.org/abs/2105.07003 (2021).

  57. 57.

    Carr, B. & Kühnel, F. Primordial black holes as dark matter: recent developments. Annu. Rev. Nucl. Part. Sci. 70, annurev (2020).

    Article  Google Scholar 

  58. 58.

    García-Bellido, J. Primordial black holes and the origin of the matter–antimatter asymmetry. Phil. Trans. R. Soc. Lond. A 377, 20190091 (2019).

    ADS  MathSciNet  Google Scholar 

  59. 59.

    Rubin, S. G., Sakharov, A. S. & Khlopov, M. Y. The formation of primary galactic nuclei during phase transitions in the early universe. Sov. J. Exp. Theor. Phys. 92, 921–929 (2001).

    ADS  Article  Google Scholar 

  60. 60.

    Carr, B. & Silk, J. Primordial black holes as generators of cosmic structures. Mon. Not. R. Astron. Soc. 478, 3756–3775 (2018).

    ADS  Article  Google Scholar 

  61. 61.

    Ricotti, M., Ostriker, J. P. & Mack, K. J. Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829–845 (2008).

    ADS  Article  Google Scholar 

  62. 62.

    Serpico, P. D., Poulin, V., Inman, D. & Kohri, K. Cosmic microwave background bounds on primordial black holes including dark matter halo accretion. Phys. Rev. Res. 2, 023204 (2020).

    Article  Google Scholar 

  63. 63.

    Hawking, S. W. Black holes from cosmic strings. Phys. Lett. B 231, 237–239 (1989).

    ADS  MathSciNet  Article  Google Scholar 

  64. 64.

    Bramberger, S. F., Brandenberger, R. H., Jreidini, P. & Quintin, J. Cosmic string loops as the seeds of super-massive black holes. J. Cosmol. Astropart. Phys. 2015, 007 (2015).

    Article  Google Scholar 

  65. 65.

    Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762–3773 (2018).

    ADS  Article  Google Scholar 

  66. 66.

    Johnson, J. L. & Bromm, V. The aftermath of the first stars: massive black holes. Mon. Not. R. Astron. Soc. 374, 1557–1568 (2007).

    ADS  Article  Google Scholar 

  67. 67.

    Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    ADS  Article  Google Scholar 

  68. 68.

    Paczynski, B. Thick accretion disks around black holes (Karl-Schwarzschild-Vorlesung 1981). Mitteilungen der Astronomischen Gesellschaft Hamburg 57, 27 (1982).

    ADS  Google Scholar 

  69. 69.

    Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998).

    ADS  Google Scholar 

  70. 70.

    Dubois, Y. et al. Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor. Mon. Not. R. Astron. Soc. 428, 2885–2900 (2013).

    ADS  Article  Google Scholar 

  71. 71.

    Dubois, Y. et al. Black hole evolution — I. Supernova-regulated black hole growth. Mon. Not. R. Astron. Soc. 452, 1502–1518 (2015).

    ADS  Article  Google Scholar 

  72. 72.

    Habouzit, M., Volonteri, M. & Dubois, Y. Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon. Not. R. Astron. Soc. 468, 3935–3948 (2017).

    ADS  Article  Google Scholar 

  73. 73.

    Bower, R. G. et al. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. Mon. Not. R. Astron. Soc. 465, 32–44 (2017).

    ADS  Article  Google Scholar 

  74. 74.

    Bellovary, J. M. et al. Multimessenger signatures of massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 482, 2913–2923 (2019).

    ADS  Google Scholar 

  75. 75.

    Pfister, H., Volonteri, M., Dubois, Y., Dotti, M. & Colpi, M. The erratic dynamical life of black hole seeds in high-redshift galaxies. Mon. Not. R. Astron. Soc. 486, 101–111 (2019).

    ADS  Article  Google Scholar 

  76. 76.

    Webb, N. et al. Radio detections during two state transitions of the intermediate-mass black hole HLX-1. Science 337, 554 (2012).

    ADS  Article  Google Scholar 

  77. 77.

    Mezcua, M., Roberts, T. P., Lobanov, A. P. & Sutton, A. D. The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276. Mon. Not. R. Astron. Soc. 448, 1893–1899 (2015).

    ADS  Article  Google Scholar 

  78. 78.

    Reines, A. E., Condon, J. J., Darling, J. & Greene, J. E. A new sample of (wandering) massive black holes in dwarf galaxies from high-resolution radio observations. Astrophys. J. 888, 36 (2020).

    ADS  Article  Google Scholar 

  79. 79.

    Mezcua, M. & Domínguez Sánchez, H. Hidden AGNs in dwarf galaxies revealed by MaNGA: light echoes, off-nuclear wanderers, and a new broad-line AGN. Astrophys. J. Lett. 898, L30 (2020).

    ADS  Article  Google Scholar 

  80. 80.

    Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).

    ADS  Article  Google Scholar 

  81. 81.

    Oesch, P. A. et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Uchiyama, H. et al. Luminous quasars do not live in the most overdense regions of galaxies at z ~ 4. Publ. Astron. Soc. Jpn 70, S32 (2018).

    Article  Google Scholar 

  83. 83.

    Mignoli, M. et al. Web of the giant: spectroscopic confirmation of a large-scale structure around the z = 6.31 quasar SDSS J1030+0524. Astron. Astrophys. 642, L1 (2020).

    ADS  Article  Google Scholar 

  84. 84.

    Habouzit, M. et al. The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN. Mon. Not. R. Astron. Soc. 489, 1206–1229 (2019).

    ADS  Article  Google Scholar 

  85. 85.

    Costa, T., Sijacki, D., Trenti, M. & Haehnelt, M. G. The environment of bright QSOs at z ~ 6: star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 439, 2146–2174 (2014).

    ADS  Article  Google Scholar 

  86. 86.

    Haiman, Z. Constraints from gravitational recoil on the growth of supermassive black holes at high redshift. Astrophys. J. 613, 36–40 (2004).

    ADS  Article  Google Scholar 

  87. 87.

    Sijacki, D., Springel, V. & Haehnelt, M. G. Growing the first bright quasars in cosmological simulations of structure formation. MNRAS 400, 100–122 (2009).

    ADS  Article  Google Scholar 

  88. 88.

    Volonteri, M. & Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624–629 (2005).

    ADS  Article  Google Scholar 

  89. 89.

    Inayoshi, K., Haiman, Z. & Ostriker, J. P. Hyper-Eddington accretion flows on to massive black holes. Mon. Not. R. Astron. Soc. 459, 3738–3755 (2016).

    ADS  Article  Google Scholar 

  90. 90.

    Madau, P., Haardt, F. & Dotti, M. Super-critical growth of massive black holes from stellar-mass seeds. Astrophys. J. Lett. 784, L38 (2014).

    ADS  Article  Google Scholar 

  91. 91.

    Dubois, Y. et al. Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift. Mon. Not. R. Astron. Soc. 423, 3616–3630 (2012).

    ADS  Article  Google Scholar 

  92. 92.

    Carmona-Loaiza, J. M., Colpi, M., Dotti, M. & Valdarnini, R. Overlapping inflows as catalysts of AGN activity — II. Relative importance of turbulence and inflow-disc interaction. Mon. Not. R. Astron. Soc. 453, 1608–1618 (2015).

    ADS  Article  Google Scholar 

  93. 93.

    Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892–3906 (2019).

    ADS  Article  Google Scholar 

  94. 94.

    Takeo, E., Inayoshi, K. & Mineshige, S. Hyper-Eddington accretion flows on to black holes accompanied by powerful outflows. Mon. Not. R. Astron. Soc. 497, 302–317 (2020).

    ADS  Article  Google Scholar 

  95. 95.

    Dubois, Y., Volonteri, M. & Silk, J. Black hole evolution — III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 440, 1590–1606 (2014).

    ADS  Article  Google Scholar 

  96. 96.

    Kulier, A., Ostriker, J. P., Natarajan, P., Lackner, C. N. & Cen, R. Understanding black hole mass assembly via accretion and mergers at late times in cosmological simulations. Astrophys. J. 799, 178 (2015).

    ADS  Article  Google Scholar 

  97. 97.

    Sathyaprakash, B. S. & Schutz, B. F. Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12, 2 (2009).

    ADS  MATH  Article  Google Scholar 

  98. 98.

    Stacy, A., Bromm, V. & Lee, A. T. Building up the Population III initial mass function from cosmological initial conditions. Mon. Not. R. Astron. Soc. 462, 1307–1328 (2016).

    ADS  Article  Google Scholar 

  99. 99.

    Sugimura, K., Matsumoto, T., Hosokawa, T., Hirano, S. & Omukai, K. The birth of a massive first-star binary. Astrophys. J. Lett. 892, L14 (2020).

    ADS  Article  Google Scholar 

  100. 100.

    Kinugawa, T., Inayoshi, K., Hotokezaka, K., Nakauchi, D. & Nakamura, T. Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave. Mon. Not. R. Astron. Soc. 442, 2963–2992 (2014).

    ADS  Article  Google Scholar 

  101. 101.

    Hartwig, T. et al. Gravitational waves from the remnants of the first stars. Mon. Not. R. Astron. Soc. 460, L74–L78 (2016).

    ADS  Article  Google Scholar 

  102. 102.

    Reisswig, C. et al. Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse. Phys. Rev. Lett. 111, 151101 (2013).

    ADS  Article  Google Scholar 

  103. 103.

    Haemmerlé, L. et al. Maximally accreting supermassive stars: a fundamental limit imposed by hydrostatic equilibrium. Astron. Astrophys. 632, L2 (2019).

    ADS  Article  Google Scholar 

  104. 104.

    Hartwig, T., Agarwal, B. & Regan, J. A. Gravitational wave signals from the first massive black hole seeds. Mon. Not. R. Astron. Soc. 479, L23–L27 (2018).

    ADS  Article  Google Scholar 

  105. 105.

    Colpi, M. Massive binary black holes in galactic nuclei and their path to coalescence. Space Sci. Rev. 183, 189–221 (2014).

    ADS  Article  Google Scholar 

  106. 106.

    De Rosa, A. et al. The quest for dual and binary supermassive black holes: a multi-messenger view. New Astron. Rev. 86, 101525 (2019).

    Article  Google Scholar 

  107. 107.

    Liu, X. et al. Chandra X-ray and Hubble Space Telescope imaging of optically selected kiloparsec-scale binary active galactic nuclei. I. Nature of the nuclear ionizing sources. Astrophys. J. 762, 110 (2013).

    ADS  Article  Google Scholar 

  108. 108.

    Eracleous, M., Boroson, T. A., Halpern, J. P. & Liu, J. A large systematic search for close supermassive binary and rapidly recoiling black holes. Astrophys. J. Suppl. 201, 23 (2012).

    ADS  Article  Google Scholar 

  109. 109.

    Liao, W.-T. et al. Discovery of a candidate binary supermassive black hole in a periodic quasar from circumbinary accretion variability. Mon. Not. R. Astron. Soc. 500, 4025–4041 (2021).

    ADS  Google Scholar 

  110. 110.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).

    ADS  Article  Google Scholar 

  111. 111.

    Vasiliev, E., Antonini, F. & Merritt, D. The final-parsec problem in the collisionless limit. Astrophys. J. 810, 49 (2015).

    ADS  Article  Google Scholar 

  112. 112.

    Roedig, C. et al. Evolution of binary black holes in self gravitating discs. Dissecting the torques. Astron. Astrophys. 545, A127 (2012).

    Article  Google Scholar 

  113. 113.

    Callegari, S. et al. Pairing of supermassive black holes in unequal-mass galaxy mergers. Astrophys. J. Lett. 696, L89–L92 (2009).

    ADS  Article  Google Scholar 

  114. 114.

    Dosopoulou, F. & Antonini, F. Dynamical friction and the evolution of supermassive black hole binaries: the final hundred-parsec problem. Astrophys. J. 840, 31 (2017).

    ADS  Article  Google Scholar 

  115. 115.

    Bonetti, M., Sesana, A., Haardt, F., Barausse, E. & Colpi, M. Post-Newtonian evolution of massive black hole triplets in galactic nuclei — IV. Implications for LISA. Mon. Not. R. Astron. Soc. 486, 4044–4060 (2019).

    ADS  Article  Google Scholar 

  116. 116.

    Lupi, A., Haardt, F., Dotti, M. & Colpi, M. Massive black hole and gas dynamics in mergers of galaxy nuclei — II. Black hole sinking in star-forming nuclear discs. Mon. Not. R. Astron. Soc. 453, 3437–3446 (2015).

    ADS  Article  Google Scholar 

  117. 117.

    Tamfal, T. et al. Formation of LISA black hole binaries in merging dwarf galaxies: the imprint of dark matter. Astrophys. J. Lett. 864, L19 (2018).

    ADS  Article  Google Scholar 

  118. 118.

    Bortolas, E. et al. Global torques and stochasticity as the drivers of massive black hole pairing in the young Universe. Mon. Not. R. Astron. Soc. 498, 3601–3615 (2020).

    ADS  Article  Google Scholar 

  119. 119.

    Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A ~50,000 M solar mass black hole in the nucleus of RGG 118. Astrophys. J. Lett. 809, L14 (2015).

    ADS  Article  Google Scholar 

  120. 120.

    Ghez, A. M. et al. Measuring distance and properties of the Milky way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).

    ADS  Article  Google Scholar 

  121. 121.

    Genzel, R., Eisenhauer, F. & Gillessen, S. The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010).

    ADS  Article  Google Scholar 

  122. 122.

    Event Horizon Telescope Collaboration et al. First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019).

  123. 123.

    Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).

    ADS  Article  Google Scholar 

  124. 124.

    Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539, L9–L12 (2000).

    ADS  Article  Google Scholar 

  125. 125.

    Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. Lett. 539, L13–L16 (2000).

    ADS  Article  Google Scholar 

  126. 126.

    Gültekin, K. et al. The Mσ and ML relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009).

    ADS  Article  Google Scholar 

  127. 127.

    Heckman, T. M. & Kauffmann, G. The coevolution of galaxies and supermassive black holes: a local perspective. Science 333, 182 (2011).

    ADS  Article  Google Scholar 

  128. 128.

    Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).

    Article  Google Scholar 

  129. 129.

    Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079–1088 (2008).

    ADS  Article  Google Scholar 

  130. 130.

    Greene, J. E. Low-mass black holes as the remnants of primordial black hole formation. Nat. Commun. 3, 1304 (2012).

    ADS  Article  Google Scholar 

  131. 131.

    Gair, J. R., Tang, C. & Volonteri, M. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D 81, 104014 (2010).

    ADS  Article  Google Scholar 

  132. 132.

    Reines, A. E., Greene, J. E. & Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 775, 116 (2013).

    ADS  Article  Google Scholar 

  133. 133.

    Miller, B. P. et al. X-ray constraints on the local supermassive black hole occupation fraction. Astrophys. J. 799, 98 (2015).

    ADS  Article  Google Scholar 

  134. 134.

    Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).

    ADS  Article  Google Scholar 

  135. 135.

    Barth, A. J., Ho, L. C., Rutledge, R. E. & Sargent, W. L. W. POX 52: a dwarf Seyfert 1 galaxy with an intermediate-mass black hole. Astrophys. J. 607, 90–102 (2004).

    ADS  Article  Google Scholar 

  136. 136.

    Davis, T. A. et al. Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations. Mon. Not. R. Astron. Soc. 496, 4061–4078 (2020).

    ADS  Article  Google Scholar 

  137. 137.

    Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  138. 138.

    Babak, S. et al. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D 95, 103012 (2017).

    ADS  Article  Google Scholar 

  139. 139.

    Amaro-Seoane, P. Relativistic dynamics and extreme mass ratio inspirals. Living Rev. Relativ. 21, 4 (2018).

    ADS  Article  Google Scholar 

  140. 140.

    Merritt, D., Alexander, T., Mikkola, S. & Will, C. M. Stellar dynamics of extreme-mass-ratio inspirals. Phys. Rev. D 84, 044024 (2011).

    ADS  Article  Google Scholar 

  141. 141.

    Miller, M. C., Freitag, M., Hamilton, D. P. & Lauburg, V. M. Binary encounters with supermassive black holes: zero-eccentricity LISA events. Astrophys. J. Lett. 631, L117–L120 (2005).

    ADS  Article  Google Scholar 

  142. 142.

    Kocsis, B., Yunes, N. & Loeb, A. Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Phys. Rev. D 84, 024032 (2011).

    ADS  Article  Google Scholar 

  143. 143.

    Nandra, K. et al. The hot and energetic Universe: a White Paper presenting the science theme motivating the Athena+ mission. Preprint at https://arxiv.org/abs/1306.2307 (2013).

  144. 144.

    The Lynx Team. The Lynx Mission Concept Study Interim Report. Preprint at https://arxiv.org/abs/1809.09642 (2018).

  145. 145.

    Mushotzky, R. AXIS: a probe class next generation high angular resolution X-ray imaging satellite. Proc. SPIE 10699, https://doi.org/10.1117/12.2310003 (2018).

  146. 146.

    Agarwal, B., Davis, A. J., Khochfar, S., Natarajan, P. & Dunlop, J. S. Unravelling obese black holes in the first galaxies. Mon. Not. R. Astron. Soc. 432, 3438–3444 (2013).

    ADS  Article  Google Scholar 

  147. 147.

    Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).

    ADS  Article  Google Scholar 

  148. 148.

    Valiante, R. et al. Chasing the observational signatures of seed black holes at z > 7: candidate observability. Mon. Not. R. Astron. Soc. 476, 407–420 (2018).

    ADS  Article  Google Scholar 

  149. 149.

    Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27, 194002 (2010).

    ADS  Article  Google Scholar 

  150. 150.

    Reitze, D. et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 35 (2019).

    Google Scholar 

  151. 151.

    Valiante, R. et al. Unveiling early black hole growth with multifrequency gravitational wave observations. Mon. Not. R. Astron. Soc. 500, 4095–4109 (2021).

    ADS  Article  Google Scholar 

  152. 152.

    Sesana, A., Gair, J., Berti, E. & Volonteri, M. Reconstructing the massive black hole cosmic history through gravitational waves. Phys. Rev. D 83, 044036 (2011).

    ADS  Article  Google Scholar 

  153. 153.

    Sato, S. et al. DECIGO: the Japanese space gravitational wave antenna. J. Phys. Conf. Ser. 154, 012040 (2009).

    Article  Google Scholar 

  154. 154.

    Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).

    ADS  Article  Google Scholar 

  155. 155.

    Bogdán, Á., Lovisari, L., Volonteri, M. & Dubois, Y. Correlation between the total gravitating mass of groups and clusters and the supermassive black hole mass of brightest galaxies. Astrophys. J. 852, 131 (2018).

    ADS  Article  Google Scholar 

  156. 156.

    Baron, D. & Ménard, B. Black hole mass estimation for active galactic nuclei from a new angle. Mon. Not. R. Astron. Soc. 487, 3404–3418 (2019).

    ADS  Article  Google Scholar 

  157. 157.

    Bertone, G. et al. Gravitational wave probes of dark matter: challenges and opportunities. Preprint at https://arxiv.org/abs/1907.10610 (2019).

  158. 158.

    Gondolo, P. & Silk, J. Dark matter annihilation at the galactic center. Phys. Rev. Lett. 83, 1719–1722 (1999).

    ADS  Article  Google Scholar 

  159. 159.

    Macedo, C. F. B., Pani, P., Cardoso, V. & Crispino, L. C. B. Into the lair: gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013).

    ADS  Article  Google Scholar 

  160. 160.

    Kavanagh, B. J., Nichols, D. A., Bertone, G. & Gaggero, D. Detecting dark matter around black holes with gravitational waves: effects of dark-matter dynamics on the gravitational waveform. Phys. Rev. D 102, 083006 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  161. 161.

    Arvanitaki, A. & Dubovsky, S. Exploring the string axiverse with precision black hole physics. Phys. Rev. D 83, 044026 (2011).

    ADS  Article  Google Scholar 

  162. 162.

    Brito, R. et al. Stochastic and resolvable gravitational waves from ultralight bosons. Phys. Rev. Lett. 119, 131101 (2017).

    ADS  Article  Google Scholar 

  163. 163.

    Di Cintio, A. et al. A rumble in the dark: signatures of self-interacting dark matter in supermassive black hole dynamics and galaxy density profiles. Mon. Not. R. Astron. Soc. 469, 2845–2854 (2017).

    ADS  Article  Google Scholar 

  164. 164.

    Cruz, A. et al. Self-interacting dark matter and the delay of supermassive black hole growth. Mon. Not. R. Astron. Soc. 500, 2177–2187 (2021).

    ADS  Article  Google Scholar 

  165. 165.

    Penrose, R. Gravitational collapse: the role of general relativity. Riv. del Nuovo Cim. 1, 252–276 (1969).

    ADS  Google Scholar 

  166. 166.

    Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019).

Download references

Acknowledgements

The authors thank F. Antonini, R. Brandenberger, G. Bertone, J. Gair, J. Greene, K. Inayoshi, M. Mapelli, P. Natarajana and P. Pani for comments on the manuscript, and T. Hartwig for estimating the number of Population III relics for this Review.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marta Volonteri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Yue Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

M

Solar mass, a unit of mass that corresponds to 1.98847 × 1033 g.

High-contrast density perturbations

The contrast of a density perturbation corresponds to the ratio of the difference between said density and the mean background density, called overdensity, to the mean background density. A patch of the Universe that has a high density contrast has a chance of collapsing under its own gravity, and in the most extreme cases the collapse can lead to a black hole.

Metallicities

Metallicity is the sum of the mass fraction of all the elements present in the system heavier than hydrogen and helium. For metal-enriched systems, the Sun is often used as a unit of measure for metallicity, with Z = 0.012.

cMpc

Comoving megaparsec (1 parsec, denoted pc, corresponds to 3.0857×1018 cm). Comoving distances — for which we prefactor a letter ‘c’ — are independent of cosmic expansion, whereas proper distances account for that, so that proper distances decrease at earlier cosmic times.

Redshift

Short for ‘cosmological redshift’ in this Review, and used as indicator for distance and cosmic time. Given a cosmological model, there is a unique relation between the redshift of a source and its distance from us, as well as the age of the Universe at that redshift.

pc

Parsec, a unit of length used in this Review that corresponds to 3.0857 × 1018 cm.

Dynamical encounter

Here we refer to the close interaction of a single object (either a star or a black hole) with a binary (either a star and a black hole, or a double black hole binary). In a close fly-by, the incoming object extracts gravitational energy from the binary, reducing its semi-major axis. In an exchange, the lightest member of the binary is kicked off by the incoming heavier object, and a new heavier binary forms.

Quantum-chromodynamic phase transition

As the temperature of the Universe decreases, free quarks become confined in hadrons (baryons and mesons, containing an odd and even number of quarks respectively). Examples of baryons are protons and neutrons; examples of mesons are pions and kaons.

Compact objects

These are relics of stars and comprise white dwarfs, neutron stars and stellar black holes.

Eddington luminosity

Maximal luminosity above which radiation pressure on electrons overcomes gravity on the infalling matter, under the assumption of spherical symmetry.

Active galactic nuclei (AGN)

AGN and quasars are sources powered by an accreting massive black hole. Quasars are the most luminous among AGN.

Feedback

Physical processes in which the energy/momentum output of a system (or a fraction of the output) returns to or impacts the system’s input.

Radiative efficiency

ε is the efficiency at which gravitational energy is converted into radiation. It establishes the link between the accretion luminosity L and mass accretion rate \(\dot{M}\): \(L=\varepsilon \dot{M}{c}^{2}.\) In geometrically thin, optically thick accretion disks around black holes, ε ~ 0.06−0.32, depending on the spin, with ε ~ 0.1 used as reference value. ε can be lower depending on the geometry of the flow. \((1-\varepsilon )\dot{M}\) gives the mass growth rate of an MBH.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volonteri, M., Habouzit, M. & Colpi, M. The origins of massive black holes. Nat Rev Phys 3, 732–743 (2021). https://doi.org/10.1038/s42254-021-00364-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing