Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Measuring molecular magnets for quantum technologies

Abstract

Single-molecule magnets (SMMs) have been proposed for applications in high-density storage, quantum simulation, quantum computing and spintronics applications. Bulk magnetometric and spectroscopic techniques of molecular systems have allowed the observation of remarkable quantum effects in SMMs, such as the observation of an energy barrier, the reversal of the magnetization and quantum tunnelling of the magnetization. Over the past 10 years, scanning tunnelling microscopy of SMMs and single-molecule devices architectures, such as spin valves and spin transistors, have shed light onto the quantum properties of SMMs at the single-molecule level. More recently, new techniques, where the spin degrees of freedom in SMMs can be read out by photons, are being studied. Here, we review key techniques allowing the observation of quantum effects, important for the initialization, control and readout of the states of the SMMs, ultimately leading to the implementation of SMMs in technological applications.

Key points

  • Magnetic molecules are at the heart of several futuristic quantum technologies.

  • The characterization and understanding of the electronic properties of single-molecule magnets (SMMs) is of paramount importance for their incorporation in devices.

  • Bulk magnetometric and spectroscopic techniques have provided important information for the understanding of SMMs, including the manipulation of the electronic states.

  • Single-molecule techniques allow the manipulation and readout of the information encoded in single molecules.

  • Optospintronics is an emerging area that couples the magnetic properties of SMMs with their luminescent characteristics to allow faster readout and manipulation of the quantum information encoded in SMMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-molecule magnets.
Fig. 2: EPR spectroscopy.
Fig. 3: INS spectroscopy.
Fig. 4: X-ray spectroscopies.
Fig. 5: STM.
Fig. 6: Optospintronics.

Similar content being viewed by others

References

  1. Cornia, A. et al. Direct observation of single-molecule magnets organized on gold surfaces. Angew. Chem. Int. Ed. 42, 1645–1648 (2003).

    Article  Google Scholar 

  2. Robles, R. et al. Spin doping of individual molecules by using single-atom manipulation. Nano Lett. 12, 3609–3612 (2012).

    Article  ADS  Google Scholar 

  3. Fu, Y. S. et al. Reversible chiral switching of bis(phthalocyaninato) terbium(III) on a metal surface. Nano Lett. 12, 3931–3935 (2012).

    Article  ADS  Google Scholar 

  4. Sun, K. et al. Direct observation of molecular orbitals in an individual single-molecule magnet Mn12 on Bi(111). ACS Nano 7, 6825–6830 (2013).

    Article  Google Scholar 

  5. Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    Article  ADS  Google Scholar 

  6. Cucinotta, G. et al. Tuning of a vertical spin valve with a monolayer of single molecule magnets. Adv. Funct. Mater. 27, 1703600 (2017).

    Article  Google Scholar 

  7. Zhu, L., Yao, K. L. & Liu, Z. L. Molecular spin valve and spin filter composed of single-molecule magnets. Appl. Phys. Lett. 96, 082115 (2010).

    Article  ADS  Google Scholar 

  8. Urdampilleta, M., Klyatskaya, S., Cleuziou, J. P., Ruben, M. & Wernsdorfer, W. Supramolecular spin valves. Nat. Mater. 10, 502–506 (2011).

    Article  ADS  Google Scholar 

  9. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article  ADS  Google Scholar 

  10. Thiele, S. et al. Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett. 111, 037203 (2013).

    Article  ADS  Google Scholar 

  11. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    Article  ADS  Google Scholar 

  12. Godfrin, C. et al. Electrical read-out of a single spin using an exchange-coupled quantum dot. ACS Nano 11, 3984–3989 (2017).

    Article  Google Scholar 

  13. Godfrin, C. et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    Article  ADS  Google Scholar 

  14. Godfrin, C. et al. Generalized Ramsey interferometry explored with a single nuclear spin qudit. NPJ Quantum Inf. 4, 53 (2018).

    Article  ADS  Google Scholar 

  15. Paquette, M. M., Plaul, D., Kurimoto, A., Patrick, B. O. & Frank, N. L. Opto-spintronics: photoisomerization-induced spin state switching at 300 K in photochrome cobalt-dioxolene thin films. J. Am. Chem. Soc. 140, 14990–15000 (2018).

    Article  Google Scholar 

  16. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).

    Article  ADS  Google Scholar 

  17. Errulat, D. et al. A luminescent thermometer exhibiting slow relaxation of the magnetization: toward self-monitored building blocks for next-generation optomagnetic devices. ACS Cent. Sci. 5, 1187–1198 (2019).

    Article  Google Scholar 

  18. Kumar, K. S. et al. Optical spin-state polarization in a binuclear europium complex towards molecule-based coherent light-spin interfaces. Nat. Commun. 12, 2152 (2021).

    Article  ADS  Google Scholar 

  19. Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).

    Article  Google Scholar 

  20. Gaita-Ariño, A., Luis, F., Hill, S. & Coronado, E. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019).

    Article  Google Scholar 

  21. Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).

    Article  Google Scholar 

  22. Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

    Article  Google Scholar 

  23. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  ADS  Google Scholar 

  24. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    Article  Google Scholar 

  25. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    Article  Google Scholar 

  26. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem. Int. Ed. 44, 2931–2935 (2005).

    Article  Google Scholar 

  27. Taran, G., Bonet, E. & Wernsdorfer, W. The role of the quadrupolar interaction in the tunneling dynamics of lanthanide molecular magnets. J. Appl. Phys. 125, 142903 (2019).

    Article  ADS  Google Scholar 

  28. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  29. Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  31. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

    Article  ADS  Google Scholar 

  32. Lloyd, S. A potentially realizable quantum computer. Science 261, 1569–1571 (1993).

    Article  ADS  Google Scholar 

  33. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  MATH  Google Scholar 

  34. Timco, G. A. et al. Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 4, 173–178 (2009).

    Article  ADS  Google Scholar 

  35. Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).

    Article  ADS  Google Scholar 

  36. Borilovic, I., Alonso, P. J., Roubeau, O. & Aromí, G. A bis-vanadyl coordination complex as a 2-qubit quantum gate. Chem. Commun. 56, 3139–3142 (2020).

    Article  Google Scholar 

  37. Luis, F. et al. Molecular prototypes for spin-based CNOT and SWAP quantum gates. Phys. Rev. Lett. 107, 117203 (2011).

    Article  ADS  Google Scholar 

  38. Aguilà, D. et al. Heterodimetallic [LnLn′] lanthanide complexes: Toward a chemical design of two-qubit molecular spin quantum gates. J. Am. Chem. Soc. 136, 14215–14222 (2014).

    Article  Google Scholar 

  39. Atzori, M. et al. A two-qubit molecular architecture for electron-mediated nuclear quantum simulation. Chem. Sci. 9, 6183–6192 (2018).

    Article  Google Scholar 

  40. Fernandez, A. et al. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7, 10240 (2016).

    Article  ADS  Google Scholar 

  41. Ferrando-Soria, J. et al. Controlled synthesis of nanoscopic metal cages. J. Am. Chem. Soc. 137, 7644–7647 (2015).

    Article  Google Scholar 

  42. Yamabayashi, T. et al. Scaling up electronic spin qubits into a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 12090–12101 (2018).

    Article  Google Scholar 

  43. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  ADS  Google Scholar 

  44. Gedik, Z. et al. Computational speed-up with a single qudit. Sci. Rep. 5, 14671 (2015).

    Article  ADS  Google Scholar 

  45. Kiktenko, E. O., Fedorov, A. K., Strakhov, A. A. & Man’Ko, V. I. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits. Phys. Lett. A 379, 1409–1413 (2015).

    Article  ADS  MATH  Google Scholar 

  46. Balakrishnan, S. Various constructions of qudit SWAP gate. Phys. Res. Int. https://doi.org/10.1155/2014/479320 (2014).

  47. Richart, D., Fischer, Y. & Weinfurter, H. Experimental implementation of higher dimensional time–energy entanglement. Appl. Phys. B 106, 543–550 (2012).

    Article  ADS  Google Scholar 

  48. O’Leary, D. P., Brennen, G. K. & Bullock, S. S. Parallelism for quantum computation with qudits. Phys. Rev. A 74, 032334 (2006).

    Article  ADS  Google Scholar 

  49. Gottesman, D. Fault-tolerant quantum computation with higher-dimensional systems. Lect. Notes Comput. Sci. 1509, 302–313 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  50. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article  ADS  Google Scholar 

  51. Mohammadi, M., Niknafs, A. & Eshghi, M. Controlled gates for multi-level quantum computation. Quantum Inf. Process. 10, 241–256 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  52. Luo, M. & Wang, X. Universal quantum computation with qudits. Sci. China Phys. Mech. Astron. 57, 1712–1717 (2014).

    Article  ADS  Google Scholar 

  53. Ralph, T. C., Resch, K. J. & Gilchrist, A. Efficient Toffoli gates using qudits. Phys. Rev. A 75, 022313 (2007).

    Article  ADS  Google Scholar 

  54. Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).

    Article  ADS  Google Scholar 

  55. Neves, L. et al. Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005).

    Article  ADS  Google Scholar 

  56. Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655–1674 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  57. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  ADS  Google Scholar 

  58. Carretta, P. & Lascialfari, A. NMR-MRI, μSR and Mössbauer Spectroscopies in Molecular Magnets (Springer, 2007).

  59. Buchner, M., Höfler, K., Henne, B., Ney, V. & Ney, A. Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics. J. Appl. Phys. 124, 161101 (2018).

    Article  ADS  Google Scholar 

  60. Fagaly, R. L. Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77, 101101 (2006).

    Article  ADS  Google Scholar 

  61. Range, S. K. Gravity Probe B: exploring Einstein’s universe with gyroscopes. NASA 6, 7 (2004).

    Google Scholar 

  62. Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R. & Gatteschi, D. Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78, 4645–4648 (1997).

    Article  ADS  Google Scholar 

  63. Del Barco, E. et al. Quantum coherence in Fe8 molecular nanomagnets. Europhys. Lett. 47, 722–728 (1999).

    Article  ADS  Google Scholar 

  64. Wernsdorfer, W., Soler, M., Christou, G. & Hendrickson, D. N. Quantum phase interference (Berry phase) in single-molecule magnets of [Mn12]2−. J. Appl. Phys. 91, 7164–7166 (2002).

    Article  ADS  Google Scholar 

  65. Wernsdorfer, W. From micro- to nano-SQUIDs: applications to nanomagnetism. Supercond. Sci. Technol. 22, 064013 (2009).

    Article  ADS  Google Scholar 

  66. Moreno-Pineda, E. et al. Observation of cooperative electronic quantum tunneling: increasing accessible nuclear states in a molecular qudit. Inorg. Chem. 57, 9873–9879 (2018).

    Article  Google Scholar 

  67. Henderson, J. J. et al. Manifestation of spin selection rules on the quantum tunneling of magnetization in a single-molecule magnet. Phys. Rev. Lett. 103, 017202 (2009).

    Article  ADS  Google Scholar 

  68. Wernsdorfer, W., Bhaduri, S., Boskovic, C., Christou, G. & Hendrickson, D. N. Spin-parity dependent tunneling of magnetization in single-molecule magnets. Phys. Rev. B 65, 180403 (2002).

    Article  ADS  Google Scholar 

  69. Barra, A.-L. L. et al. Tuning the magnetic properties of the high-spin molecular cluster Fe8. ChemPhysChem 2, 523–531 (2001).

    Article  Google Scholar 

  70. Sorace, L. et al. Photon-assisted tunneling in a Fe8 single-molecule magnet. Phys. Rev. B 68, 220407 (2003).

    Article  ADS  Google Scholar 

  71. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  ADS  Google Scholar 

  72. Popovic, R. S., Boero, G. & Besse, P.-A. in Smart Sensors and MEMS. NATO Science Series Vol. 181 (eds Yurish, S. Y. & Gomes, M. T. S. R.) 229–253 (Springer, 2007).

  73. Kent, A. D., Molnár, S. V., Gider, S. & Awschalom, D. D. Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited). J. Appl. Phys. 76, 6656–6660 (1994).

    Article  ADS  Google Scholar 

  74. Barco, E. D. et al. Magnetic quantum tunneling in the single-molecule magnet Mn12-acetate. J. Low Temp. Phys. 140, 119–174 (2005).

    Article  ADS  Google Scholar 

  75. Petukhov, K., Bahr, S., Wernsdorfer, W., Barra, A.-L. & Mosser, V. Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation. Phys. Rev. B 75, 064408 (2007).

    Article  ADS  Google Scholar 

  76. del Barco, E., Kent, A. D., Yang, E. C. & Hendrickson, D. N. Quantum superposition of high spin states in the single molecule magnet Ni4. Phys. Rev. Lett. 93, 157202 (2004).

    Article  ADS  Google Scholar 

  77. Ramsey, C. M. et al. Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet. Nat. Phys. 4, 277–281 (2008).

    Article  Google Scholar 

  78. Vélez, S. et al. Partial spin reversal in magnetic deflagration. Phys. Rev. B 89, 144408 (2014).

    Article  ADS  Google Scholar 

  79. Suzuki, Y. et al. Propagation of avalanches in Mn12-acetate: magnetic deflagration. Phys. Rev. Lett. 95, 147201 (2005).

    Article  ADS  Google Scholar 

  80. Giansiracusa, M. J. et al. Measurement of magnetic exchange in asymmetric lanthanide dimetallics: toward a transferable theoretical framework. J. Am. Chem. Soc. 140, 2504–2513 (2018).

    Article  Google Scholar 

  81. Moreno Pineda, E. et al. Direct measurement of dysprosium(III)˙˙˙dysprosium(III) interactions in a single-molecule magnet. Nat. Commun. 5, 5243 (2014).

    Article  ADS  Google Scholar 

  82. Aliaga-Alcalde, N. et al. Single-molecule magnets: Preparation and properties of low symmetry [Mn4O3(O2CPh-R)4(dbm)3] complexes with S = 9/2. J. Am. Chem. Soc. 126, 12503–12516 (2004).

    Article  Google Scholar 

  83. Datta, S. et al. A comparative EPR study of high- and low-spin Mn6 single-molecule magnets. Polyhedron 28, 1788–1791 (2009).

    Article  Google Scholar 

  84. Barra, A. L. et al. The origin of transverse anisotropy in axially symmetric single molecule magnets. J. Am. Chem. Soc. 129, 10754–10762 (2007).

    Article  Google Scholar 

  85. Dreiser, J. et al. High-frequency electron-spin-resonance study of the octanuclear ferric wheel CsFe8. Inorg. Chem. 49, 8729–8735 (2010).

    Article  Google Scholar 

  86. Maccagnano, S. et al. Single crystal EPR determination of the spin Hamiltonian parameters for Fe8 molecular clusters. Polyhedron 20, 1441–1445 (2001).

    Article  Google Scholar 

  87. Komijani, D. et al. Radical-lanthanide ferromagnetic interaction in a TbIII bis-phthalocyaninato complex. Phys. Rev. Mater. 2, 024405 (2018).

    Article  Google Scholar 

  88. Ghosh, S. et al. Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [HoIII(W5O18)2]9−. Dalton Trans. 41, 13697–13704 (2012).

    Article  Google Scholar 

  89. Kaminski, D. et al. Quantum spin coherence in halogen-modified Cr7Ni molecular nanomagnets. Phys. Rev. B 90, 184419 (2014).

    Article  ADS  Google Scholar 

  90. Piligkos, S. et al. EPR spectroscopy of a family of CrIII7MII (M = Cd, Zn, Mn, Ni) ‘wheels’: Studies of isostructural compounds with different spin ground states. Chem. Eur. J. 15, 3152–3167 (2009).

    Article  Google Scholar 

  91. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  ADS  Google Scholar 

  92. Wedge, C. J. et al. Chemical engineering of molecular qubits. Phys. Rev. Lett. 108, 107204 (2012).

    Article  ADS  Google Scholar 

  93. Yu, C. J. et al. Long coherence times in nuclear spin-free vanadyl qubits. J. Am. Chem. Soc. 138, 14678–14685 (2016).

    Article  Google Scholar 

  94. Atzori, M. et al. Quantum coherence times enhancement in vanadium(IV)-based potential molecular qubits: the key role of the vanadyl moiety. J. Am. Chem. Soc. 138, 11234–11244 (2016).

    Article  Google Scholar 

  95. Tesi, L. et al. Quantum coherence in a processable vanadyl complex: New tools for the search of molecular spin qubits. Chem. Sci. 7, 2074–2083 (2016).

    Article  Google Scholar 

  96. Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    Article  Google Scholar 

  97. Bader, K., Winkler, M. & van Slageren, J. Tuning of molecular qubits: very long coherence and spin–lattice relaxation times. Chem. Commun. 52, 3623–3626 (2016).

    Article  Google Scholar 

  98. Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5, 5304 (2014).

    Article  ADS  Google Scholar 

  99. Warner, M. et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503, 504–508 (2013).

    Article  ADS  Google Scholar 

  100. Yu, C. J., Krzyaniak, M. D., Fataftah, M. S., Wasielewski, M. R. & Freedman, D. E. A concentrated array of copper porphyrin candidate qubits. Chem. Sci. 10, 1702–1708 (2019).

    Article  Google Scholar 

  101. Nakazawa, S. et al. A synthetic two-spin quantum bit: g-engineered exchange-coupled biradical designed for controlled-NOT gate operations. Angew. Chem. Int. Ed. 51, 9860–9864 (2012).

    Article  Google Scholar 

  102. Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    Article  ADS  Google Scholar 

  103. Ariciu, A. M. et al. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 10, 3330 (2019).

    Article  ADS  Google Scholar 

  104. Mitrikas, G., Sanakis, Y., Raptopoulou, C. P., Kordas, G. & Papavassiliou, G. Electron spin–lattice and spin–spin relaxation study of a trinuclear iron(III) complex and its relevance in quantum computing. Phys. Chem. Chem. Phys. 10, 743–748 (2008).

    Article  Google Scholar 

  105. Schlegel, C., van Slageren, J., Manoli, M., Brechin, E. K. & Dressel, M. Direct observation of quantum coherence in single-molecule magnets. Phys. Rev. Lett. 101, 147203 (2008).

    Article  ADS  Google Scholar 

  106. Takahashi, S. et al. Decoherence in crystals of quantum molecular magnets. Nature 476, 76–79 (2011).

    Article  Google Scholar 

  107. Zadrozny, J. M., Gallagher, A. T., Harris, T. D. & Freedman, D. E. A porous array of clock qubits. J. Am. Chem. Soc. 139, 7089–7094 (2017).

    Article  Google Scholar 

  108. Urtizberea, A. et al. A porphyrin spin qubit and its 2D framework nanosheets. Adv. Funct. Mater. 28, 1801695 (2018).

    Article  Google Scholar 

  109. Formanuik, A. et al. Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy. Nat. Chem. 9, 578–583 (2017).

    Article  Google Scholar 

  110. Fataftah, M. S. et al. Employing forbidden transitions as qubits in a nuclear spin-free chromium complex. J. Am. Chem. Soc. 138, 1344–1348 (2016).

    Article  Google Scholar 

  111. Jenkins, M. D. et al. Coherent manipulation of three-qubit states in a molecular single-ion magnet. Phys. Rev. B 95, 064423 (2017).

    Article  ADS  Google Scholar 

  112. Fittipaldi, M. et al. Electric field modulation of magnetic exchange in molecular helices. Nat. Mater. 18, 329–334 (2019).

    Article  ADS  Google Scholar 

  113. Boudalis, A. K., Robert, J. & Turek, P. First demonstration of magnetoelectric coupling in a polynuclear molecular nanomagnet: single-crystal EPR studies of [Fe3O(O2CPh)6(py)3]ClO4py under static electric fields. Chem. Eur. J. 24, 14896–14900 (2018).

    Article  Google Scholar 

  114. Robert, J., Parel, N., Turek, P. & Boudalis, A. K. Polyanisotropic magnetoelectric coupling in an electrically controlled molecular spin qubit. J. Am. Chem. Soc. 141, 19765–19775 (2020).

    Article  Google Scholar 

  115. van Slageren, J. Spin–electric coupling. Nat. Mater. 18, 300–301 (2019).

    Article  ADS  Google Scholar 

  116. Troiani, F. Manipulation of spin cluster qubits by electric field induced modulation of exchange coupling, g-factor, and axial anisotropy. Phys. Rev. B 100, 155424 (2019).

    Article  ADS  Google Scholar 

  117. Long, J. et al. Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science 367, 671–676 (2020).

    Article  ADS  Google Scholar 

  118. Furrer, A. & Waldmann, O. Magnetic cluster excitations. Rev. Mod. Phys. 85, 367 (2013).

    Article  ADS  Google Scholar 

  119. Garlatti, E. et al. Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory. Nat. Commun. 11, 1751 (2020).

    Article  ADS  Google Scholar 

  120. Garlatti, E. et al. Unravelling the spin dynamics of molecular nanomagnets with four-dimensional inelastic neutron scattering. Eur. J. Inorg. Chem. 2019, 1106–1118 (2019).

    Article  Google Scholar 

  121. Caciuffo, R., Amoretti, G. & Murani, A. Neutron spectroscopy for the magnetic anisotropy of molecular clusters. Phys. Rev. Lett. 81, 4744–4747 (1998).

    Article  ADS  Google Scholar 

  122. Mirebeau, I. et al. Low-energy magnetic excitations of the Mn12-acetate spin cluster observed by neutron scattering. Phys. Rev. Lett. 83, 628–631 (1999).

    Article  ADS  Google Scholar 

  123. Waldmann, O. et al. Quantum magneto-oscillations in a supramolecular Mn(II)-[3 × 3] grid. Phys. Rev. Lett. 92, 096403 (2004).

    Article  ADS  Google Scholar 

  124. Carretta, S. et al. Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: Evidence from neutron spectroscopy. Phys. Rev. Lett. 98, 167401 (2007).

    Article  ADS  Google Scholar 

  125. Baker, M. L. et al. Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering. Nat. Phys. 8, 906–911 (2012).

    Article  Google Scholar 

  126. Santini, P. et al. Spin dynamics and tunneling of the Néel vector in the Fe10 magnetic wheel. Phys. Rev. B 71, 184405 (2005).

    Article  ADS  Google Scholar 

  127. Waldmann, O., Dobe, C., Güdel, H. U. & Mutka, H. Quantum dynamics of the Néel vector in the antiferromagnetic molecular wheel CsFe8. Phys. Rev. B 74, 054429 (2006).

    Article  ADS  Google Scholar 

  128. Waldmann, O. et al. Quantum phase interference and Néel-vector tunneling in antiferromagnetic molecular wheels. Phys. Rev. Lett. 102, 157202 (2009).

    Article  ADS  Google Scholar 

  129. Pieper, O. et al. Inelastic neutron scattering and frequency-domain magnetic resonance studies of S = 4 and S = 12 Mn6 single-molecule magnets. Phys. Rev. B 81, 174420 (2010).

    Article  ADS  Google Scholar 

  130. Carretta, S. et al. Breakdown of the giant spin model in the magnetic relaxation of the Mn6 nanomagnets. Phys. Rev. Lett. 100, 157203 (2008).

    Article  ADS  Google Scholar 

  131. Chiesa, A. et al. Magnetic exchange interactions in the molecular nanomagnet Mn12. Phys. Rev. Lett. 119, 217202 (2017).

    Article  ADS  Google Scholar 

  132. Garlatti, E. et al. Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering. Nat. Commun. 8, 14543 (2017).

    Article  ADS  Google Scholar 

  133. van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroism—A versatile tool to study magnetism. Coord. Chem. Rev. 277, 95–129 (2014).

    Article  Google Scholar 

  134. Sessoli, R., Mannini, M., Pineider, F., Cornia, A. & Sainctavit, P. in Magnetism and Synchrotron Radiation. Springer Proceedings in Physics Vol. 133 (eds Beaurepaire, E., Bulou, H., Scheurer, F. & Kappler, J.-P.) 279–311 (Springer, 2010).

  135. Letard, I. et al. Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 mK. J. Appl. Phys. 101, 113920 (2007).

    Article  ADS  Google Scholar 

  136. Lascialfari, A. et al. X-ray magnetic-circular-dichroism spectra on the superparamagnetic transition-metal ion clusters Mn12 and Fe8. Phys. Rev. B 64, 132413 (2001).

    Article  ADS  Google Scholar 

  137. Moroni, R. et al. X-ray magnetic circular dichroism investigation of magnetic contributions from Mn(III) and Mn(IV) ions in Mn12-ac. Phys. Rev. B 68, 064407 (2003).

    Article  ADS  Google Scholar 

  138. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 8, 194–197 (2009).

    Article  ADS  Google Scholar 

  139. Malavolti, L. et al. Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. Nano Lett. 15, 535–541 (2015).

    Article  ADS  Google Scholar 

  140. Mannini, M. et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468, 417–421 (2010).

    Article  ADS  Google Scholar 

  141. Mannini, M. et al. Spin structure of surface-supported single-molecule magnets from isomorphous replacement and X-ray magnetic circular dichroism. Inorg. Chem. 50, 2911–2917 (2011).

    Article  Google Scholar 

  142. Balinski, K. et al. Element specific determination of the magnetic properties of two macrocyclic tetranuclear 3d–4f complexes with a Cu3Tb core by means of X-ray magnetic circular dichroism (XMCD). Phys. Chem. Chem. Phys. 20, 21286–21293 (2018).

    Article  Google Scholar 

  143. Dreiser, J. et al. X-ray magnetic circular dichroism (XMCD) study of a methoxide-bridged DyIII–CrIII cluster obtained by fluoride abstraction from cis-[CrIIIF2(phen)2]+. J. Phys. Chem. A 116, 7842–7847 (2012).

    Article  Google Scholar 

  144. Dreiser, J. et al. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces. ACS Nano 8, 4662–4671 (2014).

    Article  Google Scholar 

  145. Corradini, V. et al. Probing magnetic coupling between LnPc2 (Ln = Tb, Er) molecules and the graphene/Ni (111) substrate with and without Au-intercalation: Role of the dipolar field. Nanoscale 10, 277–283 (2018).

    Article  Google Scholar 

  146. Gonidec, M. et al. Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. J. Am. Chem. Soc. 133, 6603–6612 (2011).

    Article  Google Scholar 

  147. Klar, D. et al. Hysteretic behaviour in a vacuum deposited submonolayer of single ion magnets. Dalton Trans. 43, 10686–10689 (2014).

    Article  Google Scholar 

  148. Mannini, M. et al. Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface. Nat. Commun. 5, 4582 (2014).

    Article  ADS  Google Scholar 

  149. Margheriti, L. et al. X-ray detected magnetic hysteresis of thermally evaporated terbium double-decker oriented films. Adv. Mater. 22, 5488–5493 (2010).

    Article  Google Scholar 

  150. Stepanow, S. et al. Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. J. Am. Chem. Soc. 132, 11900–11901 (2010).

    Article  Google Scholar 

  151. Studniarek, M. et al. Understanding the superior stability of single-molecule magnets on an oxide film. Adv. Sci. 6, 1901736 (2019).

    Article  Google Scholar 

  152. Wäckerlin, C. et al. Giant hysteresis of single-molecule magnets adsorbed on a nonmagnetic insulator. Adv. Mater. 28, 5195–5199 (2016).

    Article  Google Scholar 

  153. Nistor, C. et al. Exchange bias of TbPc2 molecular magnets on antiferromagnetic FeMn and ferromagnetic Fe films. Phys. Rev. B 92, 184402 (2015).

    Article  ADS  Google Scholar 

  154. Lodi Rizzini, A. et al. Coupling single molecule magnets to ferromagnetic substrates. Phys. Rev. Lett. 107, 177205 (2011).

    Article  ADS  Google Scholar 

  155. Moreno Pineda, E., Komeda, T., Katoh, K., Yamashita, M. & Ruben, M. Surface confinement of TbPc2-SMMs: structural, electronic and magnetic properties. Dalton Trans. 45, 18417–18433 (2016).

    Article  Google Scholar 

  156. Klar, D. et al. Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films. Beilstein J. Nanotechnol. 4, 320–324 (2013).

    Article  Google Scholar 

  157. Dreiser, J. Molecular lanthanide single-ion magnets: From bulk to submonolayers. J. Phys. Condens. Matter 27, 183203 (2015).

    Article  ADS  Google Scholar 

  158. Prinz, M. et al. A star-shaped heteronuclear CrIIIMnII3 species and its precise electronic and magnetic structure: spin frustration studied by X-ray spectroscopic, magnetic, and theoretical methods. Inorg. Chem. 49, 2093–2102 (2010).

    Article  Google Scholar 

  159. Hamamatsu, T. et al. Magnetic interactions in CuII–LnIII cyclic tetranuclear complexes: Is it possible to explain the occurrence of SMM behavior in CuII–TbIII and CuII–DyIII complexes? Inorg. Chem. 46, 4458–4468 (2007).

    Article  Google Scholar 

  160. Westerström, R. et al. Surface aligned magnetic moments and hysteresis of an endohedral single-molecule magnet on a metal. Phys. Rev. Lett. 114, 087201 (2015).

    Article  ADS  Google Scholar 

  161. Ghirri, A. et al. Probing edge magnetization in antiferromagnetic spin segments. Phys. Rev. B 79, 224430 (2009).

    Article  ADS  Google Scholar 

  162. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).

    Article  ADS  Google Scholar 

  163. Wiesendanger, R., G¨ntherodt, H. J., G¨ntherodt, G., Gambino, R. J. & Ruf, R. Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys. Rev. Lett. 65, 247–250 (1990).

    Article  ADS  Google Scholar 

  164. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    Article  ADS  Google Scholar 

  165. Sierda, E., Elsebach, M., Wiesendanger, R. & Bazarnik, M. Probing weakly hybridized magnetic molecules by single-atom magnetometry. Nano Lett. 19, 9013–9018 (2019).

    Article  ADS  Google Scholar 

  166. Willke, P., Yang, K., Bae, Y., Heinrich, A. J. & Lutz, C. P. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 15, 1005–1010 (2019).

    Article  Google Scholar 

  167. Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).

    Article  ADS  Google Scholar 

  168. Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science 366, 509–512 (2019).

    Article  ADS  Google Scholar 

  169. Willke, P. et al. Tuning single-atom electron spin resonance in a vector magnetic field. Nano Lett. 19, 8201–8206 (2019).

    Article  ADS  Google Scholar 

  170. Willke, P. et al. Probing quantum coherence in single-atom electron spin resonance. Sci. Adv. 4, eaaq1543 (2018).

    Article  ADS  Google Scholar 

  171. Vitali, L. et al. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. Nano Lett. 8, 3364–3368 (2008).

    Article  ADS  Google Scholar 

  172. Warner, B. et al. Sub-molecular modulation of a 4f driven Kondo resonance by surface-induced asymmetry. Nat. Commun. 7, 12785 (2016).

    Article  ADS  Google Scholar 

  173. Katoh, K. et al. Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J. Am. Chem. Soc. 131, 9967–9976 (2009).

    Article  Google Scholar 

  174. Komeda, T. et al. Observation and electric current control of a local spin in a single-molecule magnet. Nat. Commun. 2, 217 (2011).

    Article  ADS  Google Scholar 

  175. Amokrane, A., Klyatskaya, S., Boero, M., Ruben, M. & Bucher, J. P. Role of π-radicals in the spin connectivity of clusters and networks of Tb double-decker single molecule magnets. ACS Nano 11, 10750–10760 (2017).

    Article  Google Scholar 

  176. Schwöbel, J. et al. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nat. Commun. 3, 953 (2012).

    Article  ADS  Google Scholar 

  177. Lodi Rizzini, A. et al. Coupling of single, double, and triple-decker metal-phthalocyanine complexes to ferromagnetic and antiferromagnetic substrates. Surf. Sci. 630, 361–374 (2014).

    Article  ADS  Google Scholar 

  178. Gruber, M. et al. Exchange bias and room-temperature magnetic order in molecular layers. Nat. Mater. 14, 981–984 (2015).

    Article  ADS  Google Scholar 

  179. Lodi Rizzini, A. et al. Exchange biasing single molecule magnets: Coupling of TbPc2 to antiferromagnetic layers. Nano Lett. 12, 5703–5707 (2012).

    Article  ADS  Google Scholar 

  180. Gómez-Segura, J. et al. 2-D Self-assembly of the bis(phthalocyaninato)terbium(iii) single-molecule magnet studied by scanning tunnelling microscopy. Chem. Commun. https://doi.org/10.1039/B606276H (2006).

    Article  Google Scholar 

  181. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Affronte, M. Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11, 2634–2639 (2011).

    Article  ADS  Google Scholar 

  182. Barhoumi, R. et al. Screening the 4f-electron spin of TbPc2 single-molecule magnets on metal substrates by ligand channeling. Nanoscale 11, 21167–21179 (2019).

    Article  Google Scholar 

  183. Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

    Article  ADS  Google Scholar 

  184. Bae, Y. et al. Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).

    Article  ADS  Google Scholar 

  185. Heinrich, A. J. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  ADS  Google Scholar 

  186. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  ADS  Google Scholar 

  187. Nossa, J. F., Islam, M. F., Canali, C. M. & Pederson, M. R. Electric control of a {Fe4} single-molecule magnet in a single-electron transistor. Phys. Rev. B 88, 224423 (2013).

    Article  ADS  Google Scholar 

  188. Urdampilleta, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin. Phys. Rev. B 87, 195412 (2013).

    Article  ADS  Google Scholar 

  189. Urdampilleta, M., Klayatskaya, S., Ruben, M. & Wernsdorfer, W. Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve. ACS Nano 9, 4458–4464 (2015).

    Article  Google Scholar 

  190. Krainov, I. V. et al. Giant magnetoresistance in carbon nanotubes with single-molecule magnets TbPc2. ACS Nano 11, 6868–6880 (2017).

    Article  Google Scholar 

  191. Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Quantum Einstein-de Haas effect. Nat. Commun. 7, 11443 (2016).

    Article  ADS  Google Scholar 

  192. Deng, W., Xie, F., Baltar, H. T. M. C. M. & Goldys, E. M. Metal-enhanced fluorescence in the life sciences: Here, now and beyond. Phys. Chem. Chem. Phys. 15, 15695–15708 (2013).

    Article  Google Scholar 

  193. Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).

    Article  Google Scholar 

  194. Tian, J. H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    Article  Google Scholar 

  195. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  196. Tierney, T. M. et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. Neuroimage 199, 598–608 (2019).

    Article  Google Scholar 

  197. Budker, D. & Romalis, M. Optical magnetometry. Nat. Phys. 3, 227–234 (2007).

    Article  Google Scholar 

  198. Maertz, B. J., Wijnheijmer, A. P., Fuchs, G. D., Nowakowski, M. E. & Awschalom, D. D. Vector magnetic field microscopy using nitrogen vacancy centers in diamond. Appl. Phys. Lett. 96, 092504 (2010).

    Article  ADS  Google Scholar 

  199. Meriles, C. A. et al. Imaging mesoscopic nuclear spin noise with a diamond magnetometer. J. Chem. Phys. 133, 124105 (2010).

    Article  ADS  Google Scholar 

  200. Laraoui, A., Hodges, J. S. & Meriles, C. A. Magnetometry of random ac magnetic fields using a single nitrogen-vacancy center. Appl. Phys. Lett. 97, 143104 (2010).

    Article  ADS  Google Scholar 

  201. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  202. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  203. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  204. Zhao, N., Hu, J. L., Ho, S. W., Wan, J. T. K. & Liu, R. B. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nat. Nanotechnol. 6, 242–246 (2011).

    Article  ADS  Google Scholar 

  205. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Article  Google Scholar 

  206. Hall, L. T., Hill, C. D., Cole, J. H. & Hollenberg, L. C. L. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Phys. Rev. B 82, 045208 (2010).

    Article  ADS  Google Scholar 

  207. Kaupp, H. et al. Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity. Phys. Rev. Appl. 6, 054010 (2016).

    Article  ADS  Google Scholar 

  208. Mader, M., Reichel, J., Hänsch, T. W. & Hunger, D. A scanning cavity microscope. Nat. Commun. 6, 7249 (2015).

    Article  ADS  Google Scholar 

  209. Hunger, D. et al. A fiber Fabry–Perot cavity with high finesse. New J. Phys. 12, 065038 (2010).

    Article  ADS  Google Scholar 

  210. Hunger, D., Deutsch, C., Barbour, R. J., Warburton, R. J. & Reichel, J. Laser micro-fabrication of concave, low-roughness features in silica. AIP Adv. 2, 012119 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.M.-P. thanks the Panamanian National Systems of Investigators (SNI, SENACYT) for support. W.W. thanks the Alexander von Humboldt Foundation and the ERC grant MoQuOS, no. 741276.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Wolfgang Wernsdorfer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Andreas Heinrich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Grover’s quantum algorithm

Quantum search algorithm of an unordered database that returns the searched element with highest probability.

Rhombic anisotropy term

Second-order rank tensor describing the magnetic anisotropy.

Ligand field

Describes the ligand arrangements and their effect on the electronic structure of coordination complexes.

Josephson effect

Tunnelling of Cooper pairs (two paired electrons) through an insulating barrier between two superconductors.

Magnetic resiliency

System barely affected by the magnetic environment, such as surrounding magnetic moments or magnetic field fluctuations.

CCNOT gate

‘Controlled-controlled-not’ universal logic gate, described by three bits, which inverts the third bit if the first two are set to 1. It is often called a Toffoli gate.

Giant spin Hamiltonian model

Model that describes the magnetic properties for a large spin system by one collective giant spin.

Lock-in techniques

The lock-in technique is an AC modulation technique used to detect a small signal hidden in a noisy background signal.

Ramsey T 2 measurements

Measurements that determine the dephasing time (T2) of a qubit and the detuning in respect to the resonant frequency of the qubit.

Back-action

Perturbation of the measurement detector onto the qubit state that is caused by the measurement itself.

Larmor spin precession

Precession of the magnetic moment about an external magnetic field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Pineda, E., Wernsdorfer, W. Measuring molecular magnets for quantum technologies. Nat Rev Phys 3, 645–659 (2021). https://doi.org/10.1038/s42254-021-00340-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00340-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing