Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detecting and distinguishing Majorana zero modes with the scanning tunnelling microscope

Abstract

One of the most exciting areas of research in quantum condensed matter physics is the push to create topologically protected qubits using non-Abelian anyons. The focus of these efforts has been Majorana zero modes (MZMs), which are predicted to emerge as localized zero-energy states at the ends of 1D topological superconductors. A key role in the search for experimental signatures of these quasiparticles has been played by the scanning tunnelling microscope (STM). The power of high-resolution STM techniques is perhaps best illustrated by their application in identifying MZMs in 1D chains of magnetic atoms on the surface of a superconductor. In this platform, STM spectroscopic mapping has demonstrated the localized nature of MZM zero-energy excitations at the ends of such chains, and experiments with superconducting and magnetic STM tips have been used to uniquely distinguish them from trivial edge modes. Beyond the atomic chains, STM has also uncovered signatures of MZMs in 2D materials and topological surface and boundary states, when they are subjected to the superconducting proximity effect. Looking ahead, future STM experiments may be able to demonstrate the non-Abelian statistics of MZMs.

Key points

  • Majorana zero modes (MZMs) are non-Abelian anyons that hold promise for facilitating topologically protected quantum computation. They can emerge as localized zero-energy states at the end of 1D topological superconductors.

  • Scanning tunnelling microscopy (STM), with its ability to map the surface topography and probe the local electronic properties of samples with high spectral resolution, is particularly well suited to visualize MZMs on the atomic scale.

  • STM experiments have demonstrated the presence of MZMs as localized end states of Fe chains on a Pb surface. Combining superconductivity with spin–orbit coupling and ferromagnetism, this model system realizes the Kitaev model for 1D topological superconductivity.

  • High-resolution spectroscopy with the STM can explore various concepts for topological superconductivity and visualize the presence of localized zero-energy states across a plurality of material platforms, such as topological surface and boundary modes.

  • Measurements using functional STM tips can probe other properties of zero-energy states, such as their spin signature. Through this capacity, these experiments are uniquely suited to distinguish topological from trivial zero-energy states.

  • Future experiments with the STM on chains of magnetic atoms have the potential to demonstrate manipulation and braiding of MZMs, an important step towards realizing topologically protected quantum computation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kitaev model and atomic chain platform.
Fig. 2: Majorana quasiparticles in 2D systems with ferromagnetism.
Fig. 3: Majorana zero mode vortex core states in 2D topological surface states.
Fig. 4: Topological superconductivity and Majorana zero mode in 1D topological edge states.
Fig. 5: Detection of Majorana zero modes using superconducting and spin-polarized scanning tunnelling microscope spectroscopy.
Fig. 6: Majorana zero mode manipulation detected with the scanning tunnelling microscope.

Similar content being viewed by others

References

  1. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Uspekhi 44, 131 (2001).

    Article  ADS  Google Scholar 

  2. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Stern, A. & Lindner, N. H. Topological quantum computation — from basic concepts to first experiments. Science 339, 1179–1184 (2013).

    Article  ADS  Google Scholar 

  5. Lahtinen, V. & Pachos, J. K. A short introduction to topological quantum computation. SciPost Phys. 3, 021 (2017).

    Article  ADS  Google Scholar 

  6. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 96407 (2008).

    Article  ADS  Google Scholar 

  7. Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).

    Article  ADS  Google Scholar 

  8. Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 20407 (2013).

    Article  ADS  Google Scholar 

  9. Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    Article  ADS  Google Scholar 

  10. Pientka, F., Glazman, L. I. & von Oppen, F. Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013).

    Article  ADS  Google Scholar 

  11. Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).

    Article  ADS  Google Scholar 

  12. Pientka, F., Glazman, L. I. & von Oppen, F. Unconventional topological phase transitions in helical Shiba chains. Phys. Rev. B 89, 180505 (2014).

    Article  ADS  Google Scholar 

  13. Lutchyn, R. M., Sau, J. D. & Sarma, S. Das Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 77001 (2010).

    Article  ADS  Google Scholar 

  14. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  ADS  Google Scholar 

  15. Duckheim, M. & Brouwer, P. W. Andreev reflection from noncentrosymmetric superconductors and Majorana bound-state generation in half-metallic ferromagnets. Phys. Rev. B 83, 54513 (2011).

    Article  ADS  Google Scholar 

  16. Chung, S. B., Zhang, H.-J., Qi, X.-L. & Zhang, S.-C. Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures. Phys. Rev. B 84, 60510 (2011).

    Article  ADS  Google Scholar 

  17. Potter, A. C. & Lee, P. A. Topological superconductivity and Majorana fermions in metallic surface states. Phys. Rev. B 85, 94516 (2012).

    Article  ADS  Google Scholar 

  18. Braunecker, B. & Simon, P. Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase. Phys. Rev. Lett. 111, 147202 (2013).

    Article  ADS  Google Scholar 

  19. Vazifeh, M. M. & Franz, M. Self-organized topological state with Majorana fermions. Phys. Rev. Lett. 111, 206802 (2013).

    Article  ADS  Google Scholar 

  20. Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave superconducting states with magnetic moments on a conventional s-wave superconductor. Phys. Rev. B 88, 180503 (2013).

    Article  ADS  Google Scholar 

  21. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  22. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  Google Scholar 

  23. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

    Article  ADS  Google Scholar 

  24. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  ADS  Google Scholar 

  25. Ruby, M. et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys. Rev. Lett. 115, 197204 (2015).

    Article  ADS  Google Scholar 

  26. Pawlak, R. et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. NPJ Quantum Inf. 2, 16035 (2016).

    Article  ADS  Google Scholar 

  27. Yazdani, A., da Silva Neto, E. H. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33 (2016).

    Article  ADS  Google Scholar 

  28. Ménard, G. C. et al. Two-dimensional topological superconductivity in Pb/Co/Si(111). Nat. Commun. 8, 2040 (2017).

    Article  ADS  Google Scholar 

  29. Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    Article  ADS  Google Scholar 

  30. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  ADS  Google Scholar 

  31. Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019).

    Article  ADS  Google Scholar 

  32. Manna, S. et al. Signature of a pair of Majorana zero modes in superconducting gold surface states. Proc. Natl Acad. Sci. USA 117, 8775–8782 (2020).

    Article  Google Scholar 

  33. Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    Article  Google Scholar 

  34. Wang, D., Wiebe, J., Zhong, R., Gu, G. & Wiesendanger, R. Spin-polarized Yu–Shiba–Rusinov states in an iron-based superconductor. Phys. Rev. Lett. 126, 076802 (2021).

    Article  ADS  Google Scholar 

  35. Pan, H. & Das Sarma, S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 13377 (2020).

    Article  Google Scholar 

  36. Pan, H., Cole, W. S., Sau, J. D. & Das Sarma, S. Generic quantized zero-bias conductance peaks in superconductor–semiconductor hybrid structures. Phys. Rev. B 101, 24506 (2020).

    Article  ADS  Google Scholar 

  37. Vaitiekenas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).

    Article  Google Scholar 

  38. Valentini, M. et al. Flux-tunable Andreev bound states in hybrid full-shell nanowires. Preprint at https://arxiv.org/abs/2008.02348 (2020).

  39. Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718–724 (2020).

    Article  Google Scholar 

  40. Yu, P. et al. Non-Majorana states yield nearly quantized conductance in proximatized nanowires. Nat. Phys. 17, 482–488 (2021).

    Article  Google Scholar 

  41. Zhang, H. et al. Quantized majorana conductance. Nature 556, 74–79 (2018).

    Article  ADS  Google Scholar 

  42. Zhang, H. et al. Editorial expression of concern: quantized Majorana conductance. Nature 581, E4 (2020).

    Article  Google Scholar 

  43. Zhang, H. et al. Retraction note: quantized Majorana conductance. Nature 591, E30 (2021).

    Article  Google Scholar 

  44. Peng, Y., Pientka, F., Vinkler-Aviv, Y., Glazman, L. I. & von Oppen, F. Robust Majorana conductance peaks for a superconducting lead. Phys. Rev. Lett. 115, 266804 (2015).

    Article  ADS  Google Scholar 

  45. Feldman, B. E. et al. High-resolution studies of the Majorana atomic chain platform. Nat. Phys. 13, 286–291 (2017).

    Article  Google Scholar 

  46. Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017).

    Article  ADS  Google Scholar 

  47. Li, J., Jeon, S., Xie, Y., Yazdani, A. & Bernevig, B. A. Majorana spin in magnetic atomic chain systems. Phys. Rev. B 97, 125119 (2018).

    Article  ADS  Google Scholar 

  48. Li, J., Neupert, T., Bernevig, B. A. & Yazdani, A. Manipulating Majorana zero modes on atomic rings with an external magnetic field. Nat. Commun. 7, 10395 (2016).

    Article  ADS  Google Scholar 

  49. Odobesko, A. et al. Observation of tunable single-atom Yu–Shiba–Rusinov states. Phys. Rev. B 102, 174504 (2020).

    Article  ADS  Google Scholar 

  50. Schneider, L., Beck, P., Wiebe, J. & Wiesendanger, R. Atomic-scale spin-polarization maps using functionalized superconducting probes. Sci. Adv. 7, eabd7302 (2020).

    Article  ADS  Google Scholar 

  51. Ding, H. et al. Tuning interactions between spins in a superconductor. Proc. Natl Acad. Sci. USA 118, e2024837118 (2021).

    Article  Google Scholar 

  52. Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Article  Google Scholar 

  53. Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  54. Christensen, M. H., Schecter, M., Flensberg, K., Andersen, B. M. & Paaske, J. Spiral magnetic order and topological superconductivity in a chain of magnetic adatoms on a two-dimensional superconductor. Phys. Rev. B 94, 144509 (2016).

    Article  ADS  Google Scholar 

  55. Braunecker, B., Japaridze, G. I., Klinovaja, J. & Loss, D. Spin-selective Peierls transition in interacting one-dimensional conductors with spin–orbit interaction. Phys. Rev. B 82, 45127 (2010).

    Article  ADS  Google Scholar 

  56. Peng, Y., Pientka, F., Glazman, L. I. & von Oppen, F. Strong localization of Majorana end states in chains of magnetic adatoms. Phys. Rev. Lett. 114, 106801 (2015).

    Article  ADS  Google Scholar 

  57. Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).

    Article  ADS  Google Scholar 

  58. Ruby, M., Heinrich, B. W., Peng, Y., von Oppen, F. & Franke, K. J. Exploring a proximity-coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 17, 4473–4477 (2017).

    Article  ADS  Google Scholar 

  59. Palacio-Morales, A. et al. Atomic-scale interface engineering of Majorana edge modes in a 2D magnet–superconductor hybrid system. Sci. Adv. 5, eaav6600 (2019).

    Article  ADS  Google Scholar 

  60. Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).

    Article  ADS  Google Scholar 

  61. Röntynen, J. & Ojanen, T. Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices. Phys. Rev. Lett. 114, 236803 (2015).

    Article  ADS  Google Scholar 

  62. Li, J. et al. Two-dimensional chiral topological superconductivity in Shiba lattices. Nat. Commun. 7, 12297 (2016).

    Article  ADS  Google Scholar 

  63. LaShell, S., McDougall, B. A. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    Article  ADS  Google Scholar 

  64. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  65. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  66. Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983–987 (2019).

    Article  ADS  Google Scholar 

  67. Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    Article  ADS  Google Scholar 

  68. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  69. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  ADS  Google Scholar 

  70. Akhmerov, A. R., Nilsson, J. & Beenakker, C. W. J. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).

    Article  ADS  Google Scholar 

  71. Tanaka, Y., Yokoyama, T. & Nagaosa, N. Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009).

    Article  ADS  Google Scholar 

  72. Linder, J., Tanaka, Y., Yokoyama, T., Sudbø, A. & Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 104, 67001 (2010).

    Article  ADS  Google Scholar 

  73. Aguado, R. Majorana quasiparticles in condensed matter. Riv. Del. Nuovo Cim. 40, 523–593 (2017).

    ADS  Google Scholar 

  74. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  75. Liu, C., Hughes, T. L., Qi, X.-L., Wang, K. & Zhang, S.-C. Quantum spin Hall effect in inverted type-II semiconductors. Phys. Rev. Lett. 100, 236601 (2008).

    Article  ADS  Google Scholar 

  76. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  77. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Article  Google Scholar 

  78. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  79. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    Article  Google Scholar 

  80. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article  ADS  Google Scholar 

  81. Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  ADS  Google Scholar 

  82. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  Google Scholar 

  83. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  ADS  Google Scholar 

  84. Wang, M.-X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    Article  ADS  Google Scholar 

  85. Xu, S.-Y. et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).

    Article  Google Scholar 

  86. Xu, J.-P. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014).

    Article  ADS  Google Scholar 

  87. Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator–superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 17001 (2015).

    Article  ADS  Google Scholar 

  88. Kawakami, T. & Hu, X. Evolution of density of states and a spin-resolved checkerboard-type pattern associated with the Majorana bound state. Phys. Rev. Lett. 115, 177001 (2015).

    Article  ADS  Google Scholar 

  89. Hu, L.-H., Li, C., Xu, D.-H., Zhou, Y. & Zhang, F.-C. Theory of spin-selective Andreev reflection in the vortex core of a topological superconductor. Phys. Rev. B 94, 224501 (2016).

    Article  ADS  Google Scholar 

  90. Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article  ADS  Google Scholar 

  91. Chiu, C.-K., Gilbert, M. J. & Hughes, T. L. Vortex lines in topological insulator–superconductor heterostructures. Phys. Rev. B 84, 144507 (2011).

    Article  ADS  Google Scholar 

  92. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  ADS  Google Scholar 

  93. Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe. Phys. Rev. X 8, 41056 (2018).

    Google Scholar 

  94. Caroli, C., De Gennes, P. G. & Matricon, J. Bound Fermion states on a vortex line in a type II superconductor. Phys. Lett. 9, 307–309 (1964).

    Article  ADS  MATH  Google Scholar 

  95. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).

    Article  ADS  Google Scholar 

  96. Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Article  Google Scholar 

  97. Chen, M. et al. Discrete energy levels of Caroli–de Gennes–Matricon states in quantum limit in FeTe0.55Se0.45. Nat. Commun. 9, 970 (2018).

    Article  ADS  Google Scholar 

  98. Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    Article  ADS  Google Scholar 

  99. Chiu, C.-K., Machida, T., Huang, Y., Hanaguri, T. & Zhang, F.-C. Scalable Majorana vortex modes in iron-based superconductors. Sci. Adv. 6, eaay0443 (2020).

    Article  ADS  Google Scholar 

  100. Chen, C. et al. Quantized conductance of Majorana zero mode in the vortex of the topological superconductor (Li0.84Fe0.16)OHFeSe. Chin. Phys. Lett. 36, 57403 (2019).

    Article  Google Scholar 

  101. Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020).

    Article  ADS  Google Scholar 

  102. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    Article  ADS  Google Scholar 

  103. Chen, C. J. Introduction to Scanning Tunneling Microscopy 2nd edn (Oxford Univ. Press, 2007).

  104. Ruby, M. et al. Tunneling processes into localized subgap states in superconductors. Phys. Rev. Lett. 115, 87001 (2015).

    Article  ADS  Google Scholar 

  105. Scheer, E., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Conduction channel transmissions of atomic-size aluminum contacts. Phys. Rev. Lett. 78, 3535–3538 (1997).

    Article  ADS  Google Scholar 

  106. Villas, A. et al. Interplay between Yu–Shiba–Rusinov states and multiple Andreev reflections. Phys. Rev. B 101, 235445 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  107. Chen, C. et al. Atomic line defects and zero-energy end states in monolayer Fe(Te,Se) high-temperature superconductors. Nat. Phys. 16, 536–540 (2020).

    Article  Google Scholar 

  108. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  109. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  110. Nilsson, J., Akhmerov, A. R. & Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008).

    Article  ADS  Google Scholar 

  111. Mi, S., Pikulin, D. I., Wimmer, M. & Beenakker, C. W. J. Proposal for the detection and braiding of Majorana fermions in a quantum spin Hall insulator. Phys. Rev. B 87, 241405 (2013).

    Article  ADS  Google Scholar 

  112. Hart, S. et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 10, 638–643 (2014).

    Article  Google Scholar 

  113. Pribiag, V. S. et al. Edge-mode superconductivity in a two-dimensional topological insulator. Nat. Nanotechnol. 10, 593–597 (2015).

    Article  ADS  Google Scholar 

  114. Murani, A. et al. Ballistic edge states in bismuth nanowires revealed by SQUID interferometry. Nat. Commun. 8, 15941 (2017).

    Article  ADS  Google Scholar 

  115. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    Article  ADS  Google Scholar 

  116. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Article  Google Scholar 

  117. Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019).

    Article  ADS  Google Scholar 

  118. Jäck, B., Xie, Y., Andrei Bernevig, B. & Yazdani, A. Observation of backscattering induced by magnetism in a topological edge state. Proc. Natl Acad. Sci. USA 117, 16214–16218 (2020).

    Article  ADS  Google Scholar 

  119. Sun, H.-H. et al. Coexistence of topological edge state and superconductivity in bismuth ultrathin film. Nano Lett. 17, 3035–3039 (2017).

    Article  ADS  Google Scholar 

  120. Tang, S. et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  Google Scholar 

  121. Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).

    Article  ADS  Google Scholar 

  122. Lüpke, F. et al. Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. Nat. Phys. 16, 526–530 (2020).

    Article  Google Scholar 

  123. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  ADS  Google Scholar 

  124. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 1–8 (2018).

    ADS  Google Scholar 

  125. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  126. Chamon, C., Jackiw, R., Nishida, Y., Pi, S.-Y. & Santos, L. Quantizing Majorana fermions in a superconductor. Phys. Rev. B 81, 224515 (2010).

    Article  ADS  Google Scholar 

  127. Sticlet, D., Bena, C. & Simon, P. Spin and Majorana polarization in topological superconducting wires. Phys. Rev. Lett. 108, 96802 (2012).

    Article  ADS  Google Scholar 

  128. He, J. J., Ng, T. K., Lee, P. A. & Law, K. T. Selective equal-spin Andreev reflections induced by Majorana fermions. Phys. Rev. Lett. 112, 37001 (2014).

    Article  ADS  Google Scholar 

  129. Haim, A., Berg, E., von Oppen, F. & Oreg, Y. Signatures of Majorana zero modes in spin-resolved current correlations. Phys. Rev. Lett. 114, 166406 (2015).

    Article  ADS  Google Scholar 

  130. Björnson, K., Pershoguba, S. S., Balatsky, A. V. & Black-Schaffer, A. M. Spin-polarized edge currents and Majorana fermions in one- and two-dimensional topological superconductors. Phys. Rev. B 92, 214501 (2015).

    Article  ADS  Google Scholar 

  131. Kotetes, P., Mendler, D., Heimes, A. & Schön, G. Majorana fermion fingerprints in spin-polarised scanning tunnelling microscopy. Physica E 74, 614–624 (2015).

    Article  ADS  Google Scholar 

  132. Szumniak, P., Chevallier, D., Loss, D. & Klinovaja, J. Spin and charge signatures of topological superconductivity in Rashba nanowires. Phys. Rev. B 96, 41401 (2017).

    Article  ADS  Google Scholar 

  133. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    Article  ADS  Google Scholar 

  134. Cornils, L. et al. Spin-resolved spectroscopy of the Yu–Shiba–Rusinov states of individual atoms. Phys. Rev. Lett. 119, 197002 (2017).

    Article  ADS  Google Scholar 

  135. Jiang, K., Dai, X. & Wang, Z. Quantum anomalous vortex and Majorana zero mode in iron-based superconductor Fe(Te,Se). Phys. Rev. X 9, 11033 (2019).

    Google Scholar 

  136. Zhang, S. S. et al. Field-free platform for Majorana-like zero mode in superconductors with a topological surface state. Phys. Rev. B 101, 100507 (2020).

    Article  ADS  MATH  Google Scholar 

  137. Kot, P. et al. Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals. Phys. Rev. B 101, 134507 (2020).

    Article  ADS  Google Scholar 

  138. González, S. A. et al. Photon-assisted resonant Andreev reflections: Yu–Shiba–Rusinov and Majorana states. Phys. Rev. B 102, 45413 (2020).

    Article  ADS  Google Scholar 

  139. Perrin, V., Civelli, M. & Simon, P. Discriminating Majorana from Shiba bound-states by tunneling shot-noise tomography. Preprint at https://arxiv.org/abs/2011.06893 (2020).

  140. Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 97004 (2001).

    Article  ADS  Google Scholar 

  141. Jäck, B. et al. Critical Josephson current in the dynamical Coulomb blockade regime. Phys. Rev. B 93, 20504 (2016).

    Article  ADS  Google Scholar 

  142. Randeria, M. T., Feldman, B. E., Drozdov, I. K. & Yazdani, A. Scanning Josephson spectroscopy on the atomic scale. Phys. Rev. B 93, 161115 (2016).

    Article  ADS  Google Scholar 

  143. Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    Article  ADS  Google Scholar 

  144. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Pikulin, D. Proposal for a scalable charging-energy-protected topological qubit in a quantum spin Hall system. Preprint at https://arxiv.org/abs/2011.04691 (2020).

  146. Béri, B. & Cooper, N. R. Topological Kondo effect with Majorana fermions. Phys. Rev. Lett. 109, 156803 (2012).

    Article  ADS  Google Scholar 

  147. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  ADS  Google Scholar 

  148. Odobesko, A. B. et al. Preparation and electronic properties of clean superconducting Nb(110) surfaces. Phys. Rev. B 99, 115437 (2019).

    Article  ADS  Google Scholar 

  149. Yan, Z., Song, F. & Wang, Z. Majorana corner modes in a high-temperature platform. Phys. Rev. Lett. 121, 96803 (2018).

    Article  ADS  Google Scholar 

  150. Liu, T., He, J. J. & Nori, F. Majorana corner states in a two-dimensional magnetic topological insulator on a high-temperature superconductor. Phys. Rev. B 98, 245413 (2018).

    Article  ADS  Google Scholar 

  151. Hsu, Y.-T., Cole, W. S., Zhang, R.-X. & Sau, J. D. Inversion-protected higher-order topological superconductivity in monolayer WTe2. Phys. Rev. Lett. 125, 97001 (2020).

    Article  ADS  Google Scholar 

  152. Feldmeier, J., Natori, W., Knap, M. & Knolle, J. Local probes for charge-neutral edge states in two-dimensional quantum magnets. Phys. Rev. B 102, 134423 (2020).

    Article  ADS  Google Scholar 

  153. König, E. J., Randeria, M. T. & Jäck, B. Tunneling spectroscopy of quantum spin liquids. Phys. Rev. Lett. 125, 267206 (2020).

    Article  ADS  Google Scholar 

  154. Udagawa, M., Takayoshi, S. & Oka, T. Scanning tunneling microscopy as a single Majorana detector of Kitaev’s chiral spin liquid. Phys. Rev. Lett. 126, 127201 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Bernevig, J. Li, S. Nadj-Perge, I. Drozdov, S. Joen, B. Feldman, M. Randeria and Z. Wang for many years of collaboration on the topics covered in this Review. B.J. acknowledges support from the Alexander-von-Humboldt foundation through a postdoctoral fellowship. A.Y. acknowledges support from the Office of Naval Research grant ONR-N00014-17-1-2784, Gordon and Betty Moore Foundation as part of EPiQS initiative (GBMF 9469), the US National Science Foundation’s NSF-MRSEC programmes through the Princeton Center for Complex Materials NSF-DMR-2011750 grant, and NSF-DMR-1904442.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Berthold Jäck or Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Donglai Fen, Antonio Seridonio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jäck, B., Xie, Y. & Yazdani, A. Detecting and distinguishing Majorana zero modes with the scanning tunnelling microscope. Nat Rev Phys 3, 541–554 (2021). https://doi.org/10.1038/s42254-021-00328-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00328-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing