Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Resolving conclusions about the early Universe requires accurate nuclear measurements

Nuclear physics experiments give reaction rates that, via modelling and comparison with primordial abundances, constrain cosmological parameters. The error bars of a key reaction, D(p,γ)3He, were tightened in 2020, revealing discrepancies between different analyses and calling for more accurate measurements of other reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Planck Collaboration, Aghanim, N., Akrami, Y. et al. Planck 2018 results - VI. Cosmological parameters. A&A 641, A6 (2020).

    Article  ADS  Google Scholar 

  2. Mossa, V., Stöckel, K., Cavanna, F. et al. The baryon density of the Universe from an improved rate of deuterium burning. Nature 587, 210–213 (2020).

    Article  ADS  Google Scholar 

  3. Pisanti, O., Mangano, G., Miele, G. & Mazzella, P. Primordial deuterium after LUNA: concordances and error budget. Preprint at https://arxiv.org/abs/2011.11537 (2020).

  4. Yeh, T.-H., Olive, K. A. & Fields, B. D. The impact of new d(p,γ)He3 rates on big bang nucleosynthesis. Preprint at https://arxiv.org/abs/2011.13874 (2020).

  5. Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. A new tension in the cosmological model from primordial deuterium? Mon. Notices Royal Astron. Soc. https://doi.org/10.1093/mnras/stab135 (2021).

  6. Cooke, R. J., Pettini, M. & Steidel, C. C. One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018).

    Article  ADS  Google Scholar 

  7. Xu, Y. et al. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16. Nucl. Phys. A 918, 61–169 (2013).

    Article  ADS  Google Scholar 

  8. Fields, B. D., Olive, K. A., Yeh, T.-H. & Young, C. Big-Bang nucleosynthesis after Planck. J. Cosmol. Astropart. Phys. 2020, 010 (2020).

    Article  MathSciNet  Google Scholar 

  9. Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rep. 754, 1–66 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. Ando, S., Cyburt, R. H., Hong, S. W. & Hyun, C. H. Radiative neutron capture on a proton at big-bang nucleosynthesis energies. Phys. Rev. C 74, 025809 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Pitrou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitrou, C., Coc, A., Uzan, JP. et al. Resolving conclusions about the early Universe requires accurate nuclear measurements. Nat Rev Phys 3, 231–232 (2021). https://doi.org/10.1038/s42254-021-00294-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00294-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing