Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

First-principles calculations for topological quantum materials

Abstract

Discoveries of topological states and topological materials have reshaped our understanding of physics and materials over the past 15 years. First-principles calculations have had an important role in bridging the theory of topology and experiments by predicting realistic topological materials. In this Review, we offer an overview of the first-principles methodology on topological quantum materials. First, we unify different concepts of topological states in the same band inversion scenario. We then discuss the topology using first-principles band structures and newly established topological materials databases. We stress challenges in characterizing symmetry-independent Weyl semimetals and calculating topological surface states, closing with an outlook on the exciting transport and optical phenomena induced by the topology.

Key points

  • Heuristically, the simple but intuitive band inversion scenario, which is easily accessible for first-principles calculations, can unify different topological states and rationalize their topological boundary states.

  • Quantitatively, topological invariants and symmetry indicators distinguish topological phases from atomic insulators.

  • The Wilson loop reveals the bulk topology and also the surface dispersion profile.

  • The surface state topology is uniquely determined by the bulk state topology. Surface band dispersion changes as the specific surface condition is varied.

  • The band structure topology leads to interesting anomalous transport and nonlinear optical phenomena.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Band inversion, gapless boundary states and the bulk–boundary correspondence.
Fig. 2: 2D topological states and the Wilson loop.
Fig. 3: Illustration of the bulk and surface states for different topological phases.
Fig. 4: Topological insulators.
Fig. 5: Topological crystalline insulators and higher-order topological insulators.
Fig. 6: Weyl semimetals.
Fig. 7: 3D topological phases.

References

  1. 1.

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Google Scholar 

  2. 2.

    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    Google Scholar 

  3. 3.

    Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    ADS  Google Scholar 

  4. 4.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015). Refs. 1, 3 and 4 are well-known examples of materials prediction from first principle calculations.

    Google Scholar 

  5. 5.

    Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    ADS  Google Scholar 

  6. 6.

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007). This paper proposed the parity criteria and used them to predict topological insulator materials.

    ADS  Google Scholar 

  7. 7.

    Yang, H. et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3, 341–353 (2018).

    ADS  Google Scholar 

  8. 8.

    Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609–626 (2019).

    Google Scholar 

  9. 9.

    Avraham, N. et al. Quasiparticle interference studies of quantum materials. Adv. Mater. 30, 1707628 (2018).

    Google Scholar 

  10. 10.

    Zheng, H. & Zahid Hasan, M. Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review. Adv. Phys. X 3, 1466661 (2018).

    Google Scholar 

  11. 11.

    Kohn, W. Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999).

    ADS  Google Scholar 

  12. 12.

    Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    ADS  Google Scholar 

  13. 13.

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    ADS  Google Scholar 

  14. 14.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    ADS  Google Scholar 

  15. 15.

    Hasan, M. Z. & Moore, J. E. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys. 2, 55–78 (2011).

    ADS  Google Scholar 

  16. 16.

    Yan, B. & Zhang, S.-C. Topological materials. Rep. Prog. Phys. 75, 096501 (2012).

    ADS  Google Scholar 

  17. 17.

    Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  18. 18.

    Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    ADS  Google Scholar 

  19. 19.

    Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    ADS  Google Scholar 

  20. 20.

    Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    ADS  Google Scholar 

  21. 21.

    Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. 2015, 014001 (2015).

    Google Scholar 

  22. 22.

    Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

    ADS  Google Scholar 

  23. 23.

    Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS  Google Scholar 

  24. 24.

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    ADS  Google Scholar 

  25. 25.

    Fang, C., Weng, H., Dai, X. & Fang, Z. Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

    ADS  Google Scholar 

  26. 26.

    Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    ADS  Google Scholar 

  27. 27.

    Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017).

    ADS  Google Scholar 

  28. 28.

    Burkov, A. Weyl metals. Annu. Rev. Condens. Matter Phys. 9, 359–378 (2018).

    ADS  Google Scholar 

  29. 29.

    Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Google Scholar 

  30. 30.

    Shen, S.-Q. Topological Insulators: Dirac Equation in Condensed Matter (Springer, 2018).

  31. 31.

    Weng, H., Dai, X. & Fang, Z. Exploration and prediction of topological electronic materials based on first-principles calculations. MRS Bull. 39, 849–858 (2014).

    Google Scholar 

  32. 32.

    Weng, H., Dai, X. & Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys. Condens. Matter 28, 303001 (2016).

    Google Scholar 

  33. 33.

    Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    ADS  Google Scholar 

  34. 34.

    Yu, R., Fang, Z., Dai, X. & Weng, H. Topological nodal line semimetals predicted from first-principles calculations. Front. Phys. 12, 127202 (2017).

    ADS  Google Scholar 

  35. 35.

    Hirayama, M., Okugawa, R. & Murakami, S. Topological semimetals studied by ab initio calculations. J. Phys. Soc. Jpn 87, 041002 (2018).

    ADS  Google Scholar 

  36. 36.

    Gao, H., Venderbos, J. W., Kim, Y. & Rappe, A. M. Topological semimetals from first principles. Annu. Rev. Mater. Res. 49, 153–183 (2019).

    ADS  Google Scholar 

  37. 37.

    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Google Scholar 

  38. 38.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Google Scholar 

  39. 39.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  Google Scholar 

  40. 40.

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Google Scholar 

  41. 41.

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    ADS  Google Scholar 

  42. 42.

    Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    ADS  Google Scholar 

  43. 43.

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3bi (a = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    ADS  Google Scholar 

  44. 44.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  45. 45.

    Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    ADS  Google Scholar 

  46. 46.

    Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2003).

  47. 47.

    Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    ADS  Google Scholar 

  48. 48.

    Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin–orbital coupling. Phys. Rev. B 92, 081201 (2015).

    ADS  Google Scholar 

  49. 49.

    Zhang, F., Kane, C. L. & Mele, E. J. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013).

    ADS  Google Scholar 

  50. 50.

    Song, Z., Fang, Z. & Fang, C. (d − 2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

    ADS  Google Scholar 

  51. 51.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  52. 52.

    Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    ADS  Google Scholar 

  53. 53.

    Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    ADS  Google Scholar 

  54. 54.

    Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    ADS  MATH  Google Scholar 

  55. 55.

    Martin, R. M. Electronic Structure: Basic Theory and Practical Methods 2nd edn (Cambridge Univ. Press, 2020).

  56. 56.

    Hatsugai, Y. Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851 (1993).

    ADS  Google Scholar 

  57. 57.

    Essin, A. M. & Gurarie, V. Bulk-boundary correspondence of topological insulators from their respective Green’s functions. Phys. Rev. B 84, 125132 (2011).

    ADS  Google Scholar 

  58. 58.

    Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 84, 075119 (2011).

    ADS  Google Scholar 

  59. 59.

    Soluyanov, A. A. & Vanderbilt, D. Wannier representation of \({{\mathbb{z}}}_{2}\) topological insulators. Phys. Rev. B 83, 035108 (2011).

    ADS  Google Scholar 

  60. 60.

    Alexandradinata, A., Dai, X. & Bernevig, B. A. Wilson-loop characterization of inversion-symmetric topological insulators. Phys. Rev. B 89, 155114 (2014). Refs. 58–60 proposed the method of Wannier charge centre evolution and Wilson loop to evaluate the topology.

    ADS  Google Scholar 

  61. 61.

    Fidkowski, L., Jackson, T. & Klich, I. Model characterization of gapless edge modes of topological insulators using intermediate Brillouin-zone functions. Phys. Rev. Lett. 107, 036601 (2011).

    ADS  Google Scholar 

  62. 62.

    Taherinejad, M., Garrity, K. F. & Vanderbilt, D. Wannier center sheets in topological insulators. Phys. Rev. B 89, 115102 (2014).

    ADS  Google Scholar 

  63. 63.

    Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    ADS  Google Scholar 

  64. 64.

    Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    Google Scholar 

  65. 65.

    Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 1–9 (2017).

    Google Scholar 

  66. 66.

    Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  Google Scholar 

  67. 67.

    Bradlyn, B. et al. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem. Phys. Rev. B 97, 035138 (2018).

    ADS  Google Scholar 

  68. 68.

    Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017). Refs. 63–66 and ref. 68 proposed the symmetry indicators to classify general topological states and materials.

    Google Scholar 

  69. 69.

    Zak, J. Band representations and symmetry types of bands in solids. Phys. Rev. B 23, 2824 (1981).

    ADS  MathSciNet  Google Scholar 

  70. 70.

    Zak, J. Band representations of space groups. Phys. Rev. B 26, 3010–3023 (1982).

    ADS  Google Scholar 

  71. 71.

    Bacry, H., Michel, L. & Zak, J. in Group Theoretical Methods in Physics (eds. Doebner, H.-D. et al.) 289–308 (Springer, 1988).

  72. 72.

    Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer Science & Business Media, 2007).

  73. 73.

    Vergniory, M. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    ADS  Google Scholar 

  74. 74.

    Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    ADS  Google Scholar 

  75. 75.

    Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    ADS  Google Scholar 

  76. 76.

    Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019).

    Google Scholar 

  77. 77.

    Michel, L. & Zak, J. Connectivity of energy bands in crystals. Phys. Rev. B 59, 5998 (1999).

    ADS  Google Scholar 

  78. 78.

    Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. & Wondratschek, H. Bilbao crystallographic server. ii. representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115–128 (2006).

    ADS  MATH  Google Scholar 

  79. 79.

    Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford Univ. Press, 2009).

  80. 80.

    Po, H. C. Symmetry indicators of band topology. J. Phys. Condens. Matter 32, 263001 (2020).

    ADS  Google Scholar 

  81. 81.

    He, Y. et al. Symtopo: An automatic tool for calculating topological properties of nonmagnetic crystalline materials. Chin. Phys. B 28, 087102 (2019).

    ADS  Google Scholar 

  82. 82.

    Gao, J., Wu, Q., Persson, C. & Wang, Z. Irvsp: to obtain irreducible representations of electronic states in the vasp. Comput. Phys. Commun. 261, 107760 (2021).

    MathSciNet  Google Scholar 

  83. 83.

    Teo, J. C., Fu, L. & Kane, C. Surface states and topological invariants in three-dimensional topological insulators: application to Bi1−xSbx. Phys. Rev. B 78, 045426 (2008).

    ADS  Google Scholar 

  84. 84.

    Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    ADS  Google Scholar 

  85. 85.

    Turner, A. M., Zhang, Y., Mong, R. S. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    ADS  Google Scholar 

  86. 86.

    Gao, J.et al. High-throughput screening for weyl semimetals with s4 symmetry. Sci. Bull. https://doi.org/10.1016/j.scib.2020.12.028 (2020).

  87. 87.

    Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 4, eaat8685 (2018).

    ADS  Google Scholar 

  88. 88.

    Elcoro, L. et al. Magnetic topological quantum chemistry. Preprint at https://arXiv.org/abs/2010.00598 (2020).

  89. 89.

    Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    ADS  Google Scholar 

  90. 90.

    Yan, B. et al. Theoretical prediction of topological insulator in ternary rare earth chalcogenides. Phys. Rev. B 82, 161108 (2010).

    ADS  Google Scholar 

  91. 91.

    Sancho, M. L., Sancho, J. L. & Rubio, J. Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205 (1984).

    ADS  Google Scholar 

  92. 92.

    Dai, X., Hughes, T. L., Qi, X.-L., Fang, Z. & Zhang, S.-C. Helical edge and surface states in HgTe quantum wells and bulk insulators. Phys. Rev. B 77, 125319 (2008).

    ADS  Google Scholar 

  93. 93.

    Zhang, H.-J. et al. Electronic structures and surface states of the topological insulator Bi1−xSbx. Phys. Rev. B 80, 085307 (2009).

    ADS  Google Scholar 

  94. 94.

    Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9, 541–545 (2010).

    ADS  Google Scholar 

  95. 95.

    Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9, 546 – 549 (2010).

    Google Scholar 

  96. 96.

    Liu, Z. et al. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln = Lu, Y). Nat. Commun. 7, 1–7 (2016).

    ADS  Google Scholar 

  97. 97.

    Yan, B. et al. Topological states on the gold surface. Nat. Commun. 6, 10167 (2015).

    ADS  Google Scholar 

  98. 98.

    Zhang, P. et al. Topologically entangled Rashba-split Shockley states on the surface of grey arsenic. Phys. Rev. Lett. 118, 046802 (2017).

    ADS  Google Scholar 

  99. 99.

    Yan, B., Jansen, M. & Felser, C. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 9, 709–711 (2013).

    Google Scholar 

  100. 100.

    Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Google Scholar 

  101. 101.

    Hsu, C.-H. et al. Topology on a new facet of bismuth. Proc. Natl Acad. Sci. USA 116, 13255–13259 (2019).

    ADS  Google Scholar 

  102. 102.

    Fang, C. & Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. Sci. Adv. 5, eaat2374 (2019).

    ADS  Google Scholar 

  103. 103.

    Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    ADS  Google Scholar 

  104. 104.

    Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019).

    ADS  Google Scholar 

  105. 105.

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    ADS  Google Scholar 

  106. 106.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  107. 107.

    Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  108. 108.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS  Google Scholar 

  109. 109.

    Yang, L. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Google Scholar 

  110. 110.

    Sun, Y., Wu, S.-C. & Yan, B. Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP. Phys. Rev. B 92, 115428 (2015).

    ADS  Google Scholar 

  111. 111.

    Yang, H. F. et al. Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs. Nat. Commun. 10, 3478 (2019).

    ADS  Google Scholar 

  112. 112.

    Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645 – 649 (2015).

    Google Scholar 

  113. 113.

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Google Scholar 

  114. 114.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  115. 115.

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  116. 116.

    Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

  117. 117.

    Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 11615 (2016).

    ADS  Google Scholar 

  118. 118.

    Dos Reis, R. et al. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J. Phys. 18, 085006 (2016).

    Google Scholar 

  119. 119.

    Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac–Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    Google Scholar 

  120. 120.

    Arnold, F. et al. Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs. Phys. Rev. Lett. 117, 146401 (2016).

    ADS  Google Scholar 

  121. 121.

    Klotz, J. et al. Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP. Phys. Rev. B 93, 121105 (2016).

    ADS  Google Scholar 

  122. 122.

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    ADS  Google Scholar 

  123. 123.

    Zaheer, S. et al. Spin texture on the Fermi surface of tensile-strained HgTe. Phys. Rev. B 87, 045202 (2013).

    ADS  Google Scholar 

  124. 124.

    Wieder, B. J., Kim, Y., Rappe, A. & Kane, C. Double Dirac semimetals in three dimensions. Phy. Rev. Lett. 116, 186402 (2016).

    ADS  Google Scholar 

  125. 125.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

  126. 126.

    Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    ADS  Google Scholar 

  127. 127.

    Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    ADS  Google Scholar 

  128. 128.

    Weng, H., Fang, C., Fang, Z. & Dai, X. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 93, 241202 (2016).

    ADS  Google Scholar 

  129. 129.

    Zhu, Z., Winkler, G. W., Wu, Q., Li, J. & Soluyanov, A. A. Triple point topological metals. Phys. Rev. X 6, 031003 (2016).

    Google Scholar 

  130. 130.

    Weng, H., Fang, C., Fang, Z. & Dai, X. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys. Rev. B 94, 165201 (2016).

    ADS  Google Scholar 

  131. 131.

    Chang, G. et al. Nexus fermions in topological symmorphic crystalline metals. Sci. Rep. 7, 1–13 (2017).

    ADS  Google Scholar 

  132. 132.

    Yang, H. et al. Prediction of triple point fermions in simple half-Heusler topological insulators. Phys. Rev. Lett. 119, 136401 (2017).

    ADS  Google Scholar 

  133. 133.

    Weng, H. et al. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 92, 045108 (2015).

    ADS  Google Scholar 

  134. 134.

    Ahn, J., Kim, D., Kim, Y. & Yang, B.-J. Band topology and linking structure of nodal line semimetals with Z2 monopole charges. Phys. Rev. Lett. 121, 106403 (2018).

    ADS  Google Scholar 

  135. 135.

    Wieder, B. J. & Kane, C. Spin–orbit semimetals in the layer groups. Phys. Rev. B 94, 155108 (2016).

    ADS  Google Scholar 

  136. 136.

    Chen, Y., Lu, Y.-M. & Kee, H.-Y. Topological crystalline metal in orthorhombic perovskite iridates. Nat. Commun. 6, 6593 (2015).

    ADS  Google Scholar 

  137. 137.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 – 1592 (2010).

    ADS  Google Scholar 

  138. 138.

    Weng, H., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).

    ADS  Google Scholar 

  139. 139.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Google Scholar 

  140. 140.

    Sun, Y., Zhang, Y., Felser, C. & Yan, B. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett 117, 146403 (2016).

    ADS  Google Scholar 

  141. 141.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Google Scholar 

  142. 142.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870(2016).

    ADS  Google Scholar 

  143. 143.

    Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. N. J. Phys. 19, 015008 (2017).

    Google Scholar 

  144. 144.

    Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Google Scholar 

  145. 145.

    Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 1–8 (2018).

    ADS  Google Scholar 

  146. 146.

    Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119 – 1124 (2018).

    Google Scholar 

  147. 147.

    Li, P. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020).

    ADS  Google Scholar 

  148. 148.

    Behnia, K. Fundamentals of Thermoelectricity (Oxford Univ. Press, 2015).

  149. 149.

    Ding, L. et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Phys. Rev. X 9, 041061 (2019).

    Google Scholar 

  150. 150.

    Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020).

    ADS  Google Scholar 

  151. 151.

    Deyo, E., Golub, L. E., Ivchenko, E. L. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at https://arxiv.org/abs/0904.1917 (2009).

  152. 152.

    Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

    ADS  Google Scholar 

  153. 153.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  Google Scholar 

  154. 154.

    Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    ADS  Google Scholar 

  155. 155.

    Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    ADS  Google Scholar 

  156. 156.

    Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Google Scholar 

  157. 157.

    von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981).

    ADS  Google Scholar 

  158. 158.

    Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    ADS  Google Scholar 

  159. 159.

    Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    ADS  Google Scholar 

  160. 160.

    Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Google Scholar 

  161. 161.

    Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471 (2019).

    ADS  Google Scholar 

  162. 162.

    Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    ADS  Google Scholar 

  163. 163.

    Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    ADS  Google Scholar 

  164. 164.

    Ventura, G. B., Passos, D. J., Lopes dos Santos, J. M. B., Viana Parente Lopes, J. M. & Peres, N. M. R. Gauge covariances and nonlinear optical responses. Phys. Rev. B 96, 035431 (2017).

    ADS  Google Scholar 

  165. 165.

    Parker, D. E., Morimoto, T., Orenstein, J. & Moore, J. E. Diagrammatic approach to nonlinear optical response with application to Weyl semimetals. Phys. Rev. B 99, 045121 (2019).

    ADS  Google Scholar 

  166. 166.

    Holder, T., Kaplan, D. & Yan, B. Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion. Phys. Rev. Research 2, 033100 (2020).

    ADS  Google Scholar 

  167. 167.

    Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    ADS  Google Scholar 

  168. 168.

    Zhang, Y., van den Brink, J., Felser, C. & Yan, B. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. 2D Mater. 5, 044001 (2018).

    Google Scholar 

  169. 169.

    Zhang, Y. et al. Photogalvanic effect in Weyl semimetals from first principles. Phys. Rev. B 97, 241118 (2018).

    ADS  Google Scholar 

  170. 170.

    Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).

    ADS  Google Scholar 

  171. 171.

    Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 10, 3783 (2019).

    ADS  Google Scholar 

  172. 172.

    Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in PT-symmetric magnetictopological quantum materials. npj Comput. Mater. 199, 6 (2020).

    Google Scholar 

  173. 173.

    Le, C., Zhang, Y., Felser, C. & Sun, Y. Ab initio study of quantized circular photogalvanic effect in chiral multifoldsemimetals. Phys. Rev. B 102, 121111 (2020).

    ADS  Google Scholar 

  174. 174.

    Xu, Q. et al. Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response. npj Comput. Mater. 6, 32 (2020).

    ADS  Google Scholar 

  175. 175.

    de Juan, F. et al. Difference frequency generation in topological semimetals. Phys. Rev. Research 2, 012017 (2020).

    ADS  Google Scholar 

  176. 176.

    Chang, G. et al. Unconventional photocurrents from surface Fermi arcs in topological chiral semimetals. Phys. Rev. Lett. 124, 166404 (2020).

    ADS  Google Scholar 

  177. 177.

    Fei, R., Song, W. & Yang, L. Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators. Phys. Rev. B 102, 035440 (2020).

    ADS  Google Scholar 

  178. 178.

    Kaplan, D., Holder, T. & Yan, B. Nonvanishing subgap photocurrent as a probe of lifetime effects. Phys. Rev. Lett. 125, 227401 (2020).

    ADS  Google Scholar 

  179. 179.

    Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    ADS  Google Scholar 

  180. 180.

    Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Wanniertools: An open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    ADS  Google Scholar 

  181. 181.

    Gresch, D. et al. Z2pack: numerical implementation of hybrid Wannier centers for identifying topological materials. Phys. Rev. B 95, 075146 (2017).

    ADS  Google Scholar 

  182. 182.

    Tsirkin, S. S. High performance wannier interpolation of berry curvature and related quantities with wannierberri code. npj Comput. Mater. 7, 1–9 (2021).

    Google Scholar 

  183. 183.

    Iraola, M. et al. IrRep: symmetry eigenvalues and irreducible representations of ab initio band structures. Preprint at https://arxiv.org/abs/2009.01764 (2020).

  184. 184.

    Hellenbrandt, M. The inorganic crystal structure database (ICSD) — present and future. Crystallogr. Rev. 10, 17–22 (2004).

    Google Scholar 

  185. 185.

    Jain, A. et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    ADS  Google Scholar 

  186. 186.

    Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Google Scholar 

  187. 187.

    Kokalj, A. XCrySDen — a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    Google Scholar 

  188. 188.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  Google Scholar 

  189. 189.

    Weng, H., Dai, X. & Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: a paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 4, 011002 (2014).

    Google Scholar 

  190. 190.

    Yuting, Q. et al. Layer construction of topological crystalline insulator LaSbTe. Sci. China Phys. Mech. Astron. 63, 107011 (2020).

  191. 191.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS  Google Scholar 

  192. 192.

    Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    ADS  Google Scholar 

  193. 193.

    Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

B.Y. acknowledges financial support by the Willner Family Leadership Institute for the Weizmann Institute of Science, the Benoziyo Endowment Fund for the Advancement of Science, Ruth and Herman Albert Scholars Program for New Scientists and the European Research Council (ERC) (ERC Consolidator Grant No. 815869, “NonlinearTopo”).

Author information

Affiliations

Authors

Contributions

B.Y. conceived the review. J.X. made calculations and wrote the manuscript with input from B.Y.

Corresponding author

Correspondence to Binghai Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Quansheng Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bilbao Crystallographic Server: https://www.cryst.ehu.es/

GitHub: https://github.com/jiewen-xiao/Topological-materials

ICSD: https://icsd.fiz-karlsruhe.de/index.xhtml;jsessionid=E7F703F10787B541228F8C8DA4953199

IrRep: https://github.com/stepan-tsirkin/irrep

Irvsp: https://github.com/zjwang11/irvsp/

Materiae: http://materiae.iphy.ac.cn/

Materials Project: https://materialsproject.org/

Springer Materials: https://materials.springer.com/

SymTopo: http://materiae.iphy.ac.cn/symtopo

Topological Materials Arsenal: https://ccmp.nju.edu.cn/

Topological Materials Database: https://topologicalquantumchemistry.org/#/

VASP2Trace: https://www.cryst.ehu.es/cgi-bin/cryst/programs/topological.pl

VESTA: https://jp-minerals.org/vesta/en/

Wannier90: http://www.wannier.org/

WannierBerri: https://wannier-berri.org/

WannierTools: http://www.wanniertools.com/

XCrySDen: http://www.xcrysden.org/

Z2Pack: http://z2pack.ethz.ch/

Supplementary information

Glossary

Space groups

Symmetry groups that include all crystal symmetries. There are 230 space groups in total for 3D crystals.

Irreducible representation

For a space group, a representation is a set of matrices, each of which responds to a symmetry operation. The relation of symmetry operations is equivalent to the calculation of matrices. The irreducible, block-diagonal form of the matrix representation is called irreducible representation or irrep.

Wyckoff sites

In a space group, Wyckoff positions denote the symmetry-allowed positions, including sites and multiplicity, where atoms can be found.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Yan, B. First-principles calculations for topological quantum materials. Nat Rev Phys 3, 283–297 (2021). https://doi.org/10.1038/s42254-021-00292-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing