Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Taking atom interferometric quantum sensors from the laboratory to real-world applications

This article has been updated


Since the first proof-of-principle experiments over 25 years ago, atom interferometry has matured to a versatile tool that can be used in fundamental research in particle physics, general relativity and cosmology. At the same time, atom interferometers are currently moving out of the laboratory to be used as ultraprecise quantum sensors in metrology, geophysics, space, civil engineering, oil and minerals exploration, and navigation. This Perspective discusses the associated scientific and technological challenges and highlights recent advances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Building blocks of an atom interferometer and its use as a gravity sensor.
Fig. 2: A roadmap for the development of portable quantum sensors.
Fig. 3: Modified interferometer schemes.
Fig. 4: Examples of portable atom interferometers.

Change history

  • 09 December 2019

    Updated Philippe Bouyer’s address from “Institut d’Optique Graduate School (IOGS), University of Bordeaux, Talence Cedex, France” to “CNRS, Institut d’Optique Graduate School (IOGS), University of Bordeaux, Talence Cedex, France”.


  1. 1.

    De Broglie, L. Recherches sur la théorie des quanta [French]. Thesis, Univ. Paris (1924). English translation: J. W. Haslett. Am. J. Phys. 40, 1315–1320 (1972).

    Google Scholar 

  2. 2.

    Möllenstedt, G. & Düker, H. Observations and measurements of biprism interference with electron waves. Z. Phys. 145, 377–397 (1956).

    ADS  Google Scholar 

  3. 3.

    Jönsson, C. Electron diffraction at multiple slits. Am. J. Phys. 42, 4–11 (1974).

    ADS  Google Scholar 

  4. 4.

    Rauch, H. & Werner, S. A. in Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement 2nd edn (Oxford Univ. Press, 2015).

  5. 5.

    Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974).

    ADS  Google Scholar 

  6. 6.

    Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).

    ADS  Google Scholar 

  7. 7.

    Carnal, O. & Mlynek, J. Young’s double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).

    ADS  Google Scholar 

  8. 8.

    Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991).

    ADS  Google Scholar 

  9. 9.

    Riehle, F., Kisters, T., Witte, A., Helmcke, J. & Bordé, C. J. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177–180 (1991).

    ADS  Google Scholar 

  10. 10.

    Hackermüller, L. et al. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003).

    ADS  Google Scholar 

  11. 11.

    Linskens, A. F., Holleman, I., Dam, N. & Reuss, J. Two-photon Rabi oscillations. Phys. Rev. A 54, 4854–4862 (1996).

    ADS  Google Scholar 

  12. 12.

    Kasevich, M. & Chu, S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54, 321–332 (1992).

    ADS  Google Scholar 

  13. 13.

    Richard, H. P., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the standard model. Science 360, 191–195 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  14. 14.

    Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    ADS  Google Scholar 

  15. 15.

    Gillot, P., Cheng, B., Imanaliev, A., Merlet, S. & Pereira Dos Santos, F. The LNE-SYRTE cold atom gravimeter. IEEE (2016).

  16. 16.

    Menoret, V. et al. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci. Rep. 8, 12300 (2018).

    ADS  Google Scholar 

  17. 17.

    Weiss, D. S., Young, B. C. & Chu, S. Precision measurement of the photon recoil of an atom using atomic interferometry. Phys. Rev. Lett. 70, 2706–2709 (1993).

    ADS  Google Scholar 

  18. 18.

    Bureau International des Poids et Mesures. Resolution 1 of the 26th meeting of the General Conference on Weights and Measures (BIPM, 2018).

  19. 19.

    Andreas, B. et al. Determination of the Avogadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Lett. 106, 030801 (2011).

    ADS  Google Scholar 

  20. 20.

    Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011).

    ADS  Google Scholar 

  21. 21.

    Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    ADS  Google Scholar 

  22. 22.

    Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. State of the art in the determination of the fine structure constant: test of quantum electrodynamics and determination of h/m u. Ann. Phys. 525, 484–492 (2013).

    Google Scholar 

  23. 23.

    Fixler, J. B., Foster, G. T., McGuirk, J. M. & Kasevich, M. A. Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74–77 (2007).

    ADS  Google Scholar 

  24. 24.

    Gundlach, J. H. & Merkowitz, S. M. Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett. 85, 2869–2872 (2000).

    ADS  Google Scholar 

  25. 25.

    Quinn, T. J., Speake, C. C. & Davis, R. S. Novel torsion balance for the measurement of the Newtonian gravitational constant. Metrologia 34, 245–249 (1997).

    ADS  Google Scholar 

  26. 26.

    Li, Q. et al. Measurements of the gravitational constant using two independent methods. Nature 560, 582–588 (2018).

    ADS  Google Scholar 

  27. 27.

    Rosi, G. A proposed atom interferometry determination of G at 10−5 using a cold atomic fountain. Metrologia 55, 50–55 (2017).

    ADS  Google Scholar 

  28. 28.

    Schiff, L. I. On experimental tests of the general theory of relativity. Am. J. Phys. 28, 340–343 (1960).

    ADS  MathSciNet  Google Scholar 

  29. 29.

    Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4–115 (2014).

    ADS  MATH  Google Scholar 

  30. 30.

    Hofmann, F. & Müller, J. Relativistic tests with lunar laser ranging. Class. Quantum Gravity 35, 035015 (2018).

    ADS  MATH  Google Scholar 

  31. 31.

    Schlamminger, S., Choi, K. Y., Wagner, T. A., Gundlach, J. H. & Adelberger, E. G. Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2007).

    ADS  Google Scholar 

  32. 32.

    Niebauer, T. M., McHugh, M. P. & Faller, J. E. Galilean test for the fifth force. Phys. Rev. Lett. 59, 609–612 (1987).

    ADS  Google Scholar 

  33. 33.

    Touboul, P. et al. MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017).

    ADS  Google Scholar 

  34. 34.

    Merlet, S. et al. Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L11 (2010).

    Google Scholar 

  35. 35.

    Zhou, L. et al. Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015).

    ADS  Google Scholar 

  36. 36.

    Fray, S., Diez, C. A., Hansch, T. W. & Weitz, M. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004).

    ADS  Google Scholar 

  37. 37.

    Bonnin, A., Zahzam, N., Bidel, Y. & Bresson, A. Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 88, 043615 (2013).

    ADS  Google Scholar 

  38. 38.

    Tarallo, M. G. et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys. Rev. Lett. 113, 023005 (2014).

    ADS  Google Scholar 

  39. 39.

    Schlippert, D. et al. Quantum test of the universality of free fall. Phys. Rev. Lett. 112, 203002 (2014).

    ADS  Google Scholar 

  40. 40.

    Rosi, G. et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 8, 15529 (2017).

    ADS  Google Scholar 

  41. 41.

    Geiger, R. & Trupke, M. Proposal for a quantum test of the weak equivalence principle with entangled atomic species. Phys. Rev. Lett. 120, 043602 (2018).

    ADS  Google Scholar 

  42. 42.

    Zych, M., Costa, F., Pikovski, I. & Brukner, C. Quantum interferometric visibility as a witness of general relativistic proper time. Nat. Commun. 2, 505 (2011).

    ADS  Google Scholar 

  43. 43.

    Roura, A. Gravitational redshift in quantum-clock interferometry. Preprint at arXiv (2018).

  44. 44.

    Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).

    ADS  Google Scholar 

  45. 45.

    Elder, B. et al. Chameleon dark energy and atom interferometry. Phys. Rev. D. 94, 044051 (2016).

    ADS  Google Scholar 

  46. 46.

    Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).

    ADS  Google Scholar 

  47. 47.

    Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 13, 938–942 (2017).

    Google Scholar 

  48. 48.

    Strigari, L. E. Galactic searches for dark matter. Phys. Rep. 531, 1–88 (2013).

    ADS  Google Scholar 

  49. 49.

    Magaña, J. & Matos, T. A brief review of the scalar field dark matter model. J. Phys. Conf. Ser. 378, 012012 (2012).

    Google Scholar 

  50. 50.

    Arvanitaki, A., Graham, P. W., Hogan, J. M., Rajendran, S. & Tilburg, K. V. Search for light scalar dark matter with atomic gravitational wave detectors. Phys. Rev. D. 97, 075020 (2018).

    ADS  Google Scholar 

  51. 51.

    Hees, A., Guena, J., Abgrall, M., Bize, S. & Wolf, P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117, 061301 (2016).

    ADS  Google Scholar 

  52. 52.

    Dimopoulos, S., Graham, P. W., Hogan, J. M., Kasevich, M. A. & Rajendran, S. Atomic gravitational wave interferometric sensor. Phys. Rev. D. 78, 122002 (2008).

    ADS  Google Scholar 

  53. 53.

    Hogan, J. M. & Kasevich, M. A. Atom-interferometric gravitational-wave detection using heterodyne laser links. Phys. Rev. A 94, 033632 (2016).

    ADS  Google Scholar 

  54. 54.

    Hogan, J. M. et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2009).

    ADS  MathSciNet  Google Scholar 

  55. 55.

    Amaro-Seoane, P. et al. Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Gravity 29, 124016 (2012).

    ADS  Google Scholar 

  56. 56.

    Amaro-Seoane, P. et al. The gravitational universe. Preprint at arXiv (2013).

  57. 57.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Google Scholar 

  58. 58.

    Chaibi, W. et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys. Rev. D. 93, 021101(R) (2016).

    ADS  Google Scholar 

  59. 59.

    Canuel, B. et al. Exploring gravity with the MIGA large scale atom interferometer. Sci. Rep. 8, 14064 (2018).

    ADS  Google Scholar 

  60. 60.

    Overstreet, C. et al. Effective inertial frame in an atom interferometric test of the equivalence principle. Phys. Rev. Lett. 120, 183604 (2018).

    ADS  Google Scholar 

  61. 61.

    Hartwig, J. et al. Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J. Phys. 17, 035011 (2015).

    ADS  Google Scholar 

  62. 62.

    Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 111102 (2007).

    ADS  Google Scholar 

  63. 63.

    Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013).

    ADS  Google Scholar 

  64. 64.

    Zhou, L. et al. Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement. Gen. Relativ. Gravit. 43, 1931–1942 (2011).

    ADS  Google Scholar 

  65. 65.

    Aguilera, D. N. et al. STE-QUEST—test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 11, 115010 (2015).

    MATH  Google Scholar 

  66. 66.

    Williams, J. R., Chiow, S. W., Yu, N. & Müller, H. Quantum test of the equivalence principle and space-time aboard the International Space Station. New J. Phys. 18, 025018 (2016).

    ADS  Google Scholar 

  67. 67.

    Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. Large momentum beam splitter using Bloch oscillations. Phys. Rev. Lett. 102, 240402 (2009).

    ADS  Google Scholar 

  68. 68.

    Müller, H., Chiow, S. W., Long, Q., Herrmann, S. & Chu, S. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100, 180405 (2008).

    ADS  Google Scholar 

  69. 69.

    Kovachy, T. et al. Quantum superposition at the half-metre scale. Nature 528, 530 (2015).

    ADS  Google Scholar 

  70. 70.

    Asenbaum, P. et al. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett. 118, 183602 (2017).

    ADS  Google Scholar 

  71. 71.

    Schkolnik, V., Leykauf, B., Hauth, M., Freier, C. & Peters, A. The effect of wavefront aberrations in atom interferometry. Appl. Phys. B 120, 311–316 (2015).

    ADS  Google Scholar 

  72. 72.

    Trimeche, A., Langlois, M., Merlet, S. & Pereira Dos Santos, F. Active control of laser wavefronts in atom interferometers. Phys. Rev. Appl. 7, 034016 (2017).

    ADS  Google Scholar 

  73. 73.

    Langlois M., Trimeche A., Merlet S. & Pereira Dos Santos F. Correction of laser wavefronts in an atom interferometer with a deformable mirror (IEEE, 2017).

  74. 74.

    Li, W., Tuchman, A. K., Chien, H. C. & Kasevich, M. A. Extended coherence time with atom-number squeezed states. Phys. Rev. Lett. 98, 040402 (2007).

    ADS  Google Scholar 

  75. 75.

    Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. 42, 481–486 (1998).

    ADS  Google Scholar 

  76. 76.

    D’Amico, G. et al. Canceling the gravity gradient phase shift in atom interferometry. Phys. Rev. Lett. 119, 253201 (2017).

    ADS  Google Scholar 

  77. 77.

    Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).

    ADS  Google Scholar 

  78. 78.

    Antoine, C. & Bordé, C. J. Quantum theory of atomic clocks and gravito-inertial sensors: an update. J. Opt. B Quantum Semiclass. Opt. 5, S199 (2003).

    ADS  Google Scholar 

  79. 79.

    Bongs, K., Launay, R. & Kasevich, M. A. High-order inertial phase shifts for time-domain atom interferometers. Appl. Phys. B 84, 599–602 (2006).

    ADS  Google Scholar 

  80. 80.

    Hogan, J. M., Johnson, D. M. S. & Kasevich, M. A. in Proceedings of the International Summer School of Physics “Enrico Fermi” on Atom Optics and Space Physics (eds Arimondo, E., Ertmer, W., Rasel, E. M. & Schleich, W. P.) (IOS, 2009).

  81. 81.

    Roura, A., Zeller, W. & Schleich, W. P. Overcoming loss of contrast in atom interferometry due to gravity gradients. New J. Phys. 16, 123012 (2014).

    ADS  Google Scholar 

  82. 82.

    Kleinert, S., Kajari, E., Roura, A. & Schleich, W. P. Representation-free description of light-pulse atom interferometry including non-inertial effects. Phys. Rep. 605, 1–50 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  83. 83.

    Audretsch, J. & Marzlin, K. Atom interferometry with arbitrary laser configurations: exact phase shift for potentials including inertia and gravitation. J. Phys. II 4, 2073–2087 (1994).

    Google Scholar 

  84. 84.

    Bordé, C. J. in Les Houches Lectures, Session LIII, 1990: Fundamental Systems in Quantum Optics (eds Dalibard, J. M., Raimond, J. & Zinn-Justin, J.) (Elsevier, 1992).

  85. 85.

    Chiow, S. W., Williams, J. R., Yu, N. & Müller, H. Gravity-gradient suppression in spaceborne atomic tests of the equivalence principle. Phys. Rev. A 95, 021603(R) (2017).

    ADS  Google Scholar 

  86. 86.

    Geiger, R. et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011).

    ADS  Google Scholar 

  87. 87.

    Roura, A. Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle. Phys. Rev. Lett. 118, 160401 (2017).

    ADS  MathSciNet  Google Scholar 

  88. 88.

    Stodolsky, L. Matter and light wave interferometry in gravitational fields. Gen. Relativ. Gravit. 11, 391–405 (1979).

    ADS  MathSciNet  Google Scholar 

  89. 89.

    Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. General relativistic effects in atom interferometry. Phys. Rev. D 78, 042003 (2008).

    ADS  Google Scholar 

  90. 90.

    Jaekel, M. T., Lamine, B. & Reynaud, S. Phases and relativity in atomic gravimetry. Gen. Relativ. Gravit. 30, 065006 (2013).

    Google Scholar 

  91. 91.

    Stock, M. Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram. Metrologia 50, 3936–3953 (2013).

    Google Scholar 

  92. 92.

    Genevès, G. et al. The BNM Watt balance project. IEEE Trans. Instrum. Meas. 2, 850–853 (2005).

    Google Scholar 

  93. 93.

    Karcher, R., Imanaliev, A., Merlet, S. & Pereira Dos Santos, F. Improving the accuracy of atom interferometers with ultracold sources. New J. Phys. 20, 113041 (2018).

    ADS  Google Scholar 

  94. 94.

    Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R. & Klopping, F. A new generation of absolute gravimeters. Metrologia 32, 159–180 (1995).

    ADS  Google Scholar 

  95. 95.

    Louchet-Chauvet, A. et al. The influence of transverse motion within an atomic gravimeter. New J. Phys. 13, 065025 (2011).

    ADS  Google Scholar 

  96. 96.

    Djamour, Y. et al. GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophys. J. Int. 183, 1287–1301 (2010).

    ADS  Google Scholar 

  97. 97.

    Olsson, P., Milne, G., Scherneck, H. & Ågren, J. The relation between gravity rate of change and vertical displacement in previously glaciated areas. J. Geodynamics 83, 76–84 (2015).

    ADS  Google Scholar 

  98. 98.

    Andersen, O. B. & Hinderer, J. Global inter-annual gravity changes from GRACE: Early results. Geophys. Res. Lett. 32, L01402 (2005).

    ADS  Google Scholar 

  99. 99.

    Jacob, Th. et al. Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac Plateau (Southern France). J. Hydrol. 359, 105–117 (2008).

    ADS  Google Scholar 

  100. 100.

    Le Coq, Y., Retter, J. A., Richard, S., Aspect, A. & Bouyer, P. Coherent matter wave inertial sensors for precision measurements in space. Appl. Phys. B 84, 627–632 (2006).

    ADS  Google Scholar 

  101. 101.

    van Zoest, T. et al. Bose-Einstein condensation in microgravity. Science 328, 1540–1543 (2010).

    ADS  Google Scholar 

  102. 102.

    Müntinga, H. et al. Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013).

    ADS  Google Scholar 

  103. 103.

    Rudolph, J. et al. A high-flux BEC source for mobile atom interferometers. New J. Phys. 17, 065001 (2015).

    ADS  Google Scholar 

  104. 104.

    Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).

    ADS  Google Scholar 

  105. 105.

    Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. NPJ Microgravity 4, 16 (2018).

    ADS  Google Scholar 

  106. 106.

    Devani, D. et al. Gravity sensing: in-orbit demonstration of a cold atom trap onboard a 6U CubeSat. 4S Symp. (2018).

  107. 107.

    Tino, G. M. et al. Precision gravity tests with atom interferometry in space. Nucl. Phys. B 234, 243–244 (2013).

    Google Scholar 

  108. 108.

    Chiow, S., Williams, J. R. & Yu, N. Laser-ranging long-baseline differential atom interferometers for space. Phys. Rev. A 92, 063613 (2015).

    ADS  Google Scholar 

  109. 109.

    Carraz, O., Siemes, C., Massotti, L., Haagmans, R. & Silvestrin, P. A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Sci. Technol. 26, 139–145 (2014).

    ADS  Google Scholar 

  110. 110.

    Douch, K., Wu, H., Schubert, C., Müller, J. & Pereira Dos Santos, F. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv. Space Res. 61, 1307–1323 (2018).

    ADS  Google Scholar 

  111. 111.

    Boddice, D., Metje, N. & Tuckwell, G. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying. J. Appl. Geophys. 146, 149–159 (2017).

    ADS  Google Scholar 

  112. 112.

    McGuirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J. & Kasevich, M. A. Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002).

    ADS  Google Scholar 

  113. 113.

    Snadden, M. J., McGuirk, J. M., Bouyer, P., Haritos, K. G. & Kasevich, M. A. Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81, 971–974 (1998).

    ADS  Google Scholar 

  114. 114.

    van Staveren, M. Risk, Innovation and Change (Legatron Electronic Publishing, 2009).

  115. 115.

    Metje, N., Chapman, D. N., Rogers, C. D. F. & Bongs, K. Seeing through the ground: the potential of gravity gradient as a complementary technology. Adv. Civ. Eng. 2011, 1–9 (2011).

    Google Scholar 

  116. 116.

    Lamb, A. Cold Atom Gravity Gradiometer for Field Applications. Thesis, Univ. Birmingham (2019).

  117. 117.

    Hinton, A. et al. A portable magneto-optical trap with prospects for atom interferometry in civil engineering. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160238 (2017).

    ADS  Google Scholar 

  118. 118.

    Nettleton, L. L. Gravity and Magnetics in Oil Prospecting (McGraw-Hill, 1976).

  119. 119.

    Earl, L. Developing Cold Atoms Systems for Novel and Transportable Platforms. Thesis, Univ. Birmingham (2019).

  120. 120.

    Cheiney, P. et al. Navigation-compatible hybrid quantum accelerometer using a Kalman filter. Phys. Rev. A 10, 034030 (2018).

    Google Scholar 

  121. 121.

    Rakholia, A. V., McGuinness, H. J. & Biedermann, G. W. Dual-axis high-data-rate atom interferometer via cold ensemble exchange. Phys. Rev. Appl. 2, 054012 (2014).

    ADS  Google Scholar 

  122. 122.

    Bidel, Y. et al. Absolute marine gravimetry with matter-wave interferometry. Nat. Commun. 9, 627 (2018).

    ADS  Google Scholar 

  123. 123.

    Vovrosh, J. et al. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors. Sci. Rep. 8, 2023 (2018).

    ADS  Google Scholar 

  124. 124.

    Saint, R. et al. 3D-printed components for quantum devices. Sci. Rep. 8, 8368 (2018).

    ADS  Google Scholar 

  125. 125.

    Norrgard, E. B. et al. Note: A 3D-printed alkali metal dispenser. Rev. Sci. Instrum. 89, 056101 (2018).

    ADS  Google Scholar 

  126. 126.

    Lévèque, T., Antoni-Micollier, L., Faure, B. & Berthon, J. A laser setup for rubidium cooling dedicated to space applications. Appl. Phys. B 116, 997–1004 (2014).

    ADS  Google Scholar 

  127. 127.

    Theron, F. et al. Narrow linewidth single laser source system for onboard atom interferometry. Appl. Phys. B 118, 1–5 (2015).

    ADS  Google Scholar 

  128. 128.

    Carraz, O. et al. Compact and robust laser system for onboard atom interferometry. Appl. Phys. B 97, 405–411 (2009).

    ADS  Google Scholar 

  129. 129.

    Zhu, L. et al. Application of optical single-sideband laser in Raman atom interferometry. Opt. Express 26, 6542–6553 (2018).

    ADS  Google Scholar 

  130. 130.

    Lee, K. I., Kim, J. A., Noh, H. R. & Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177–1179 (1996).

    ADS  Google Scholar 

  131. 131.

    Pollock, S., Cotter, J. P., Laliotis, A. & Hinds, E. A. Integrated magneto-optical traps on a chip using silicon pyramid structures. Opt. Express 17, 14109–14114 (2009).

    ADS  Google Scholar 

  132. 132.

    Abend, S. et al. Atom-chip fountain gravimeter. Phys. Rev. Lett. 117, 203003 (2016).

    ADS  Google Scholar 

  133. 133.

    Bodart, Q. et al. A cold atom pyramidal gravimeter with a single laser beam. Appl. Phys. Lett. 96, 134101 (2010).

    ADS  Google Scholar 

  134. 134.

    Knappe, S. et al. A chip-scale atomic clock based on 87Rb with improved frequency stability. Opt. Express 13, 1249–1253 (2005).

    ADS  Google Scholar 

  135. 135.

    Knappe, S. et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt. Lett. 30, 2351–2353 (2005).

    ADS  Google Scholar 

  136. 136.

    Rushton, J. A., Aldous, M. & Himsworth, M. D. Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Inst. 85, 121501 (2014).

    ADS  Google Scholar 

  137. 137.

    Kitching, J. Chip-scale atomic devices. Appl. Phys. Rev. 5, 031302 (2018).

    ADS  Google Scholar 

  138. 138.

    Riedl, S., Hoth, G. W., Pelle, B., Kitching, J. & Donley, E. A. Compact atom-interferometer gyroscope based on an expanding ball of atoms. J. Phys. Conf. Ser. 723, 012058 (2016).

    Google Scholar 

  139. 139.

    Gallacher, K. et al. Integrated DFB lasers on Si3N4 photonic platform for chip-scale atomic systems. OSA Tech. Digest (2019).

Download references


The authors thank our co-workers and collaborators for their long-term efforts and their support. Moreover, we have benefited enormously from many discussions with our colleagues who share our love of this field. K.B., M.H. and J.V. acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) through grants EP/M013294 (UK National Quantum Technology Hub for Sensors and Metrology) and EP/R002525/1 (CASPA), the Defence Science and Technology Laboratory (DSTL) through contract DSTLX-1000095040 and Innovate UK through the Gravity Pioneer grant 104613. P.B. and G.C. acknowledge funding from Agence Nationale de la Recherche and the Délégation Générale de l’Armement under grant “HYBRIDQUANTA” no. ANR-17-ASTR-0025-01, grant “TAIOL” no. ANR-18-QUAN-00L5-02 and grant “EOSBECMR” no. ANR-18-CE91-0003-01, the European Space Agency, IFRAF (Institut Francilien de Recherche sur les Atomes Froids), the action spécifique GRAM (Gravitation, Relativité, Astronomie et Métrologie) and Conseil Régional de Nouvelle-Aquitaine for the Excellence Chair. Hybrid navigation systems are the result of a joint laboratory between iXBlue and LP2N. E.R. and C.S. acknowledge financial support by the CRC 1227 DQmat, the CRC 1128 geo-Q, the Deutsche Forschungsgemeinschaft under the German Excellence Strategy (EXC-2123-B2), the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant nos. DLR 50WM1952, 50WP1700, 50WM1431 and “Niedersächsisches Vorab” through “Förderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute, and through the “Quantum and Nanometrology (QUANOMET)” initiative within the project QT3. The work of W.P.S. and A.R. is supported by the DLR with funds provided by the BMWi due to an enactment of the German Bundestag under grant nos. DLR50WM1331-1137, 50WM1556 (QUANTUS IV) and 50WM1641. Moreover, W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study and to Texas A&M AgriLife Research for the support of this work. The research of IQST is financially supported by the Ministry of Science, Research and the Arts of Baden-Württemberg.

Reviewer information

Nature Reviews Physics thanks Guglielmo Tino, Shau-Yu Lan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kai Bongs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bongs, K., Holynski, M., Vovrosh, J. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys 1, 731–739 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing