Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The physics of brain network structure, function and control

Abstract

The brain is characterized by heterogeneous patterns of structural connections supporting unparalleled feats of cognition and a wide range of behaviours. New non-invasive imaging techniques now allow comprehensive mapping of these patterns. However, a fundamental challenge remains to understand how the brain’s structural wiring supports cognitive processes, with major implications for personalized mental health treatments. Here, we review recent efforts to meet this challenge, drawing on physics intuitions, models and theories, spanning the domains of statistical mechanics, information theory, dynamical systems and control. We first describe the organizing principles of brain network architecture instantiated in structural wiring under constraints of spatial embedding and energy minimization. We then survey models of brain network function that stipulate how neural activity propagates along structural connections. Finally, we discuss perturbative experiments and models for brain network control; these use the physics of signal transmission along structural connections to infer intrinsic control processes that support goal-directed behaviour and to inform stimulation-based therapies for neurological and psychiatric disease. Throughout, we highlight open questions that invite the creative efforts of pioneering physicists.

Key points

  • From the first measurement of the nerve impulse by Hermann von Helmholtz in 1849 to the cutting-edge superconducting devices used in magnetoencephalography, physics and neuroscience have always been inextricably linked.

  • Today, network neuroscience — the study of the brain as a complex web of interacting components — draws intuitions and techniques from nearly every branch of physics.

  • The architecture of structural connections between neurons or brain regions is constrained by requirements of energy minimization and efficient information transfer.

  • The materialization of long-range correlations and synchronization from the collective firing of individual neurons conjures notions of emergence and criticality from statistical mechanics.

  • Together, these investigations of brain network structure and function guide targeted treatments for cognitive disorders using theories of network control.

  • Now more than ever, understanding the complexities of the mind lies at the feet of curious and pioneering physicists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measuring and modelling brain network structure.
Fig. 2: Measuring and modelling brain network function.
Fig. 3: Controllability metrics provide summary statistics regarding the ease with which a given node can enact influence on the network.

Similar content being viewed by others

References

  1. Scott, A. Neurophysics (Wiley, 1977).

  2. Koch, C. & Poggio, T. A theoretical analysis of electrical properties of spines. Proc. R. Soc. Lond. B Biol. Sci. 218, 455–477 (1983).

    ADS  Google Scholar 

  3. Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012).

    Google Scholar 

  4. Friston, K., Kilner, J. & Harrison, L. A free energy principle for the brain. J. Physiol. Paris 100, 70–87 (2006).

    Google Scholar 

  5. Plewes, D. B. & Kucharczyk, W. Physics of MRI: a primer. J. Magn. Reson Imaging 35, 1038–1054 (2012).

    Google Scholar 

  6. Hari, R. & Salmelin, R. Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th anniversary special edition. Neuroimage 61, 386–396 (2012).

    Google Scholar 

  7. Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555, 657–661 (2018).

    ADS  Google Scholar 

  8. Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    Google Scholar 

  9. Piazza, S., Bianchini, P., Sheppard, C., Diaspro, A. & Deisseroth, K. Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping. J. Biophotonics 11, e201700050 (2018).

    Google Scholar 

  10. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Google Scholar 

  11. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5, 115–133 (1943).

    MathSciNet  MATH  Google Scholar 

  12. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Google Scholar 

  13. Betzel, R. F. & Bassett, D. S. Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc. Natl Acad. Sci. USA 115, E4880–E4889 (2018).

    Google Scholar 

  14. Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).

    Google Scholar 

  15. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    Google Scholar 

  16. Poo, M. M. et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing. Neuron 92, 591–596 (2016).

    Google Scholar 

  17. Okano, H., Miyawaki, A. & Kasai, K. Brain/MINDS: brain-mapping project in Japan. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140310 (2015).

    Google Scholar 

  18. Bassett, D. S. & Gazzaniga, M. S. Understanding complexity in the human brain. Trends Cogn. Sci. 15, 200–209 (2011).

    Google Scholar 

  19. Sethna, J. P. Statistical Mechanics: Entropy, Order Parameters and Complexity (Oxford University Press, 2006).

  20. Bassett, D. S. & Bullmore, E. T. Small-world brain networks revisited. Neuroscientist 23, 499–516 (2016).

    Google Scholar 

  21. Albert, E. & Barabasi, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  22. Butts, C. T. Revisiting the foundations of network analysis. Science 325, 414–416 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  23. Costa, Ld. F., Rodrigues, F. A., Travieso, G. & Villas Boas, P. R. Characterization of complex networks: a survey of measurements. Adv. Phys. 56, 167–242 (2006).

    ADS  Google Scholar 

  24. Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).

    Google Scholar 

  25. Zhang, X., Moore, C. & Newman, M. E. J. Random graph models for dynamic networks. Eur. Phys. J. B 90, 200 (2017).

    ADS  MathSciNet  Google Scholar 

  26. Hackett, A., Melnik, s & Gleeson, J. P. Cascades on a class of clustered random networks. Phys. Rev. E 83, 056107 (2011).

    ADS  Google Scholar 

  27. Newman, M. E. J. The structure and function of complex networks. Siam Rev. 45, 167–256 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  28. Motter, A. E. Networkcontrology. Chaos 25, 097621 (2015).

    ADS  MathSciNet  Google Scholar 

  29. Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018).

    Google Scholar 

  30. Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014).

    Google Scholar 

  31. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2017).

    Google Scholar 

  32. Ising, E. Beitrag zur theorie des ferromagnetismus [German]. Z. Für Phys. 31, 253–258 (1925).

    ADS  MATH  Google Scholar 

  33. Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944).

    ADS  MathSciNet  MATH  Google Scholar 

  34. Brush, S. G. History of the lenz-ising model. Rev. Mod. Phys. 39, 883 (1967).

    ADS  Google Scholar 

  35. Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

    Google Scholar 

  36. Medaglia, J. D., Lynall, M. E. & Bassett, D. S. Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

    Google Scholar 

  37. Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).

    Google Scholar 

  38. Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).

    Google Scholar 

  39. Misic, B. & Sporns, O. From regions to connections and networks: new bridges between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7 (2016).

    Google Scholar 

  40. Wallace, E., Maei, H. R. & Latham, P. E. Randomly connected networks have short temporal memory. Neural Comput. 25, 1408–1439 (2013).

    MathSciNet  MATH  Google Scholar 

  41. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of sequence generation and memory. Neuron 90, 128–142 (2016).

    Google Scholar 

  42. Chaudhuri, R. & Fiete, I. Computational principles of memory. Nat. Neurosci. 19, 394–403 (2016).

    Google Scholar 

  43. Hermundstad, A. M., Brown, K. S., Bassett, D. S. & Carlson, J. M. Learning, memory, and the role of neural network architecture. PLoS Comput. Biol. 7, e1002063 (2011).

    ADS  MathSciNet  Google Scholar 

  44. Teşileanu, T., Olveczky, B. & Balasubramanian, V. Rules and mechanisms for efficient two-stage learning in neural circuits. Elife 6, e20944 (2017).

    Google Scholar 

  45. Takemura, S. Y. et al. A visual motion detection circuit suggested by drosophila connectomics. Nature 500, 175–181 (2013).

    ADS  Google Scholar 

  46. Zhen, M. & Samuel, A. D. C. elegans locomotion: small circuits, complex functions. Curr. Opin. Neurobiol. 33, 117–126 (2015).

    Google Scholar 

  47. Shepherd, G. M. Foundations of the Neuron Doctrine (Oxford University Press, 2015).

  48. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    ADS  Google Scholar 

  49. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    ADS  Google Scholar 

  50. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    ADS  Google Scholar 

  51. Hsieh, J. et al. Computed Tomography: Principles, Design, Artifacts, and Recent Advances. (SPIE Bellingham, 2009).

  52. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A. & Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996).

    Google Scholar 

  53. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn. Reson Med 44, 625–632 (2000).

    Google Scholar 

  54. Behrens, T. E. & Johansen-Berg, H. Relating connectional architecture to grey matter function using diffusion imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 903–911 (2005).

    Google Scholar 

  55. Stephan, K. E. et al. Advanced database methodology for the collation of connectivity data on the Macaque brain (CoCoMac). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1159–1186 (2001).

    Google Scholar 

  56. Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    Google Scholar 

  57. Young, M. P., Scannell, J. W., Burns, G. A. & Blakemore, C. Analysis of connectivity: neural systems in the cerebral cortex. Rev. Neurosci. 5, 227–250 (1994).

    Google Scholar 

  58. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    ADS  Google Scholar 

  59. Shih, C. T. et al. Connectomics-based analysis of information flow in the Drosophila brain. Curr. Biol. 25, 1249–1258 (2015).

    Google Scholar 

  60. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Google Scholar 

  61. Betzel, R. F. & Bassett, D. S. Generative models for network neuroscience: prospects and promise. J. R. Soc. Interface 14, 20170623 (2017).

    Google Scholar 

  62. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Google Scholar 

  63. Thompson, P. M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253 (2001).

    Google Scholar 

  64. Raz, N. et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689 (2005).

    Google Scholar 

  65. Gong, G. et al. Age-and gender-related differences in the cortical anatomical network. J. Neurosci. 29, 15684–15693 (2009).

    Google Scholar 

  66. Kanai, R. & Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci. 12, 231 (2011).

    Google Scholar 

  67. Banissy, M. J., Kanai, R., Walsh, V. & Rees, G. Inter-individual differences in empathy are reflected in human brain structure. Neuroimage 62, 2034–2039 (2012).

    Google Scholar 

  68. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J. & Rees, G. Relating introspective accuracy to individual differences in brain structure. Science 329, 1541–1543 (2010).

    ADS  Google Scholar 

  69. Hartley, C. A., Fischl, B. & Phelps, E. A. Brain structure correlates of individual differences in the acquisition and inhibition of conditioned fear. Cereb. Cortex 21, 1954–1962 (2011).

    Google Scholar 

  70. Kanai, R., Feilden, T., Firth, C. & Rees, G. Political orientations are correlated with brain structure in young adults. Curr. Biol. 21, 677–680 (2011).

    Google Scholar 

  71. Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1960).

    MathSciNet  MATH  Google Scholar 

  72. Sherrington, C. S. The Integrative Action of the Nervous System (Yale University Press, 1906).

  73. Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. cortex 10, 127–141 (2000).

    Google Scholar 

  74. Hilgetag, C.-C., Burns, G. A., O’Neill, M. A., Scannell, J. W. & Young, M. P. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos. Trans. R. Soc. Lon. B 355, 91–110 (2000).

    Google Scholar 

  75. Sporns, O. & Zwi, J. D. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).

    Google Scholar 

  76. Sporns, O. & Betzel, R. F. Modular brain networks. Annu Rev. Psychol. 67, 613–640 (2016).

    Google Scholar 

  77. Bassett, D. S. et al. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput. Biol. 6, e1000748 (2010).

    Google Scholar 

  78. Taylor, P. N., Wang, Y. & Kaiser, M. Within brain area tractography suggests local modularity using high resolution connectomics. Sci. Rep. 7, 39859 (2017).

    ADS  Google Scholar 

  79. Lesicko, A. M., Hristova, T. S., Maigler, K. C. & Llano, D. A. Connectional modularity of top-down and bottom-up multimodal inputs to the lateral cortex of the mouse inferior colliculus. J. Neurosci. 36, 11037–11050 (2016).

    Google Scholar 

  80. Sohn, Y., Choi, M. K., Ahn, Y. Y., Lee, J. & Jeong, J. Topological cluster analysis reveals the systemic organization of the Caenorhabditis elegans connectome. PLoS Comput. Biol. 7, e1001139 (2011).

    MathSciNet  Google Scholar 

  81. Azulay, A., Itskovits, E. & Zaslaver, A. The C. elegans connectome consists of homogenous circuits with defined functional roles. PLoS Comput. Biol. 12, e1005021 (2016).

    ADS  Google Scholar 

  82. Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2017).

    Google Scholar 

  83. Khambhati, A. N., Sizemore, A. E., Betzel, R. F. & Bassett, D. S. Modeling and interpreting mesoscale network dynamics. Neuroimage 180, 337–349 (2017).

    Google Scholar 

  84. Aicher, C., Jacobs, A. Z. & Clauset, A. Learning latent block structure in weighted networks. J. Complex Netw. 3, 221–248 (2015).

    MathSciNet  MATH  Google Scholar 

  85. Betzel, R. F., Medaglia, J. D. & Bassett, D. S. Diversity of meso-scale architecture in human and non-human connectomes. Nat. Commun. 9, 346 (2018).

    ADS  Google Scholar 

  86. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Google Scholar 

  87. Liao, X., Vasilakos, A. V. & He, Y. Small-world human brain networks: perspectives and challenges. Neurosci. Biobehav Rev. 77, 286–300 (2017).

    Google Scholar 

  88. Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430 (2015).

    Google Scholar 

  89. Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).

    ADS  Google Scholar 

  90. Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLOS Comput. Biol. 2, e95 (2006).

    ADS  Google Scholar 

  91. Travers, J. & Milgram, S. The small world problem. Phychology Today 1, 61–67 (1967).

    Google Scholar 

  92. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    ADS  MATH  Google Scholar 

  93. Gong, G. et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. cortex 19, 524–536 (2008).

    Google Scholar 

  94. Wedeen, V. J., Hagmann, P., Tseng, W.-Y. I., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

    Google Scholar 

  95. de Solla Price, D. J. Networks of scientific papers. Science 149, 510–515 (1965).

    ADS  Google Scholar 

  96. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  97. Dall, J. & Christensen, M. Random geometric graphs. Phys. Rev. E 66, 016121 (2002).

    ADS  MathSciNet  Google Scholar 

  98. Vertes, P. E. et al. Simple models of human brain functional networks. Proc. Natl Acad. Sci. USA 109, 5868–5873 (2012).

    ADS  Google Scholar 

  99. Rubinov, M., Ypma, R., Watson, C. & Bullmore, E. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–7 (2015).

    ADS  Google Scholar 

  100. Kaiser, M. Mechanisms of connectome development. Trends Cogn. Sci. 21, 703–717 (2017).

    Google Scholar 

  101. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

    Google Scholar 

  102. Scholtens, L. H., Schmidt, R., de Reus, M. A. & van den Heuvel, M. P. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

    Google Scholar 

  103. Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H. & Wang, X. J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    Google Scholar 

  104. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    Google Scholar 

  105. Bentley, B. et al. The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016).

    Google Scholar 

  106. Mejias, J. F., Murray, J. D., Kennedy, H. & Wang, X. J. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci. Adv. 2, e1601335 (2016).

    ADS  Google Scholar 

  107. Seung, H. S. & Sumbul, U. Neuronal cell types and connectivity: lessons from the retina. Neuron 83, 1262–1272 (2014).

    Google Scholar 

  108. Arnatkeviciute, A., Fulcher, B. D., Pocock, R. & Fornito, A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput. Biol. 14, e1005989 (2018).

    ADS  Google Scholar 

  109. Nicosia, V., Vértes, P. E., Schafer, W. R., Latora, V. & Bullmore, E. T. Phase transition in the economically modeled growth of a cellular nervous system. Proc. Natl Acad. Sci. USA 110, 7880–7885 (2013).

    ADS  Google Scholar 

  110. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    Google Scholar 

  111. Baum, G. L. et al. Modular segregation of structural brain networks supports the development of executive function in youth. Curr. Biol. 27, 1561–1572 (2017).

    Google Scholar 

  112. Zuo, X. N. et al. Human connectomics across the life span. Trends Cogn. Sci. 21, 32–45 (2017).

    Google Scholar 

  113. Holme, P. & Saramaki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    ADS  Google Scholar 

  114. Li, A., Cornelius, S. P., Liu, Y.-Y., Wang, L. & Barabási, A.-L. The fundamental advantages of temporal networks. Science 358, 1042–1046 (2017).

    ADS  Google Scholar 

  115. Hebb, D. The Organization of Behavior (Wiley, 1949).

  116. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Google Scholar 

  117. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Google Scholar 

  118. Song, S., Miller, K. D. & Abbott, L. F. Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919 (2000).

    Google Scholar 

  119. Chialvo, D. R. Emergent complex neural dynamics. Nat. Phys. 6, 744 (2010).

    Google Scholar 

  120. Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: from consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450–461 (2016).

    Google Scholar 

  121. Abbott, L. F. & Dayan, P. Theoretical Neuroscience (MIT Press, 2001).

  122. Dechery, J. B. & MacLean, J. N. Emergent cortical circuit dynamics contain dense, interwoven ensembles of spike sequences. J. Neurophysiol. 118, 1914–1925 (2017).

    Google Scholar 

  123. Brody, C. D. Correlations without synchrony. Neural Comput. 11, 1537–1551 (1999).

    Google Scholar 

  124. Brody, C. D. Disambiguating different covariation types. Neural Comput. 11, 1527–1535 (1999).

    Google Scholar 

  125. Sporns, O., Tononi, G. & Edelman, G. M. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 13, 909–922 (2000).

    Google Scholar 

  126. Schneidman, E., Berry, M. J. II, Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007 (2006).

    ADS  Google Scholar 

  127. Levina, A., Herrmann, J. M. & Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 3, 857 (2007).

    Google Scholar 

  128. Vuksanovic, V. & Hovel, P. Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. Neuroimage 97, 1–8 (2014).

    Google Scholar 

  129. Green, D. J. & Gillette, R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 245, 198–200 (1982).

    Google Scholar 

  130. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflüg. Arch. 414, 600–612 (1989).

    Google Scholar 

  131. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003).

    ADS  Google Scholar 

  132. Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7, 399 (2010).

    Google Scholar 

  133. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier, 2011).

  134. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography–theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413 (1993).

    ADS  Google Scholar 

  135. Bailey, D. L., Maisey, M. N., Townsend, D. W. & Valk, P. E. Positron Emission Tomography (Springer, 2005).

  136. Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl Acad. Sci. USA 95, 765–772 (1998).

    ADS  Google Scholar 

  137. Zarahn, E., Aguirre, G. K. & D’Esposito, M. Empirical analyses of bold fmri statistics. Neuroimage 5, 179–197 (1997).

    Google Scholar 

  138. Van Den Heuvel, M. P. & Pol, H. E. H. Exploring the brain network: a review on resting-state fmri functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010).

    Google Scholar 

  139. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Google Scholar 

  140. Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of network connectivity. Neuroimage 60, 2096–2106 (2012).

    Google Scholar 

  141. He, Y. et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PloS One 4, e5226 (2009).

    ADS  Google Scholar 

  142. Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005).

    Google Scholar 

  143. Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

    Google Scholar 

  144. Bettencourt, L. M., Stephens, G. J., Ham, M. I. & Gross, G. W. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E 75, 021915 (2007).

    ADS  MathSciNet  Google Scholar 

  145. Sadovsky, A. J. & MacLean, J. N. Scaling of topologically similar functional modules defines mouse primary auditory and somatosensory microcircuitry. J. Neurosci. 33, 14048–14060 (2013).

    Google Scholar 

  146. Yue, Q. et al. Brain modularity mediates the relation between task complexity and performance. J. Cogn. Neurosci. 29, 1532–1546 (2017).

    Google Scholar 

  147. Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    Google Scholar 

  148. Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).

    Google Scholar 

  149. Goñi, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl Acad. Sci. USA 111, 833–838 (2014).

    ADS  Google Scholar 

  150. Honey, C. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    ADS  Google Scholar 

  151. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    Google Scholar 

  152. David, O. & Friston, K. J. A neural mass model for meg/eeg:: coupling and neuronal dynamics. NeuroImage 20, 1743–1755 (2003).

    Google Scholar 

  153. David, O., Cosmelli, D. & Friston, K. J. Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 21, 659–673 (2004).

    Google Scholar 

  154. Cabral, J., Hugues, E., Sporns, O. & Deco, G. Role of local network oscillations in resting-state functional connectivity. Neuroimage 57, 130–139 (2011).

    Google Scholar 

  155. Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc. Natl Acad. Sci. USA 108, 9679–9684 (2011).

    ADS  Google Scholar 

  156. Medaglia, J. D. et al. Functional alignment with anatomical networks is associated with cognitive flexibility. Nat. Human. Behav. 2, 156–164 (2018).

    Google Scholar 

  157. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Google Scholar 

  158. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    ADS  Google Scholar 

  159. Beurle, R. L. Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. Lond. B 240, 55–94 (1956).

    ADS  Google Scholar 

  160. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    ADS  Google Scholar 

  161. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    ADS  MathSciNet  MATH  Google Scholar 

  162. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence Vol. 19 (Springer Science & Business Media, 2012).

  163. Cash, S. & Yuste, R. Linear summation of excitatory inputs by ca1 pyramidal neurons. Neuron 22, 383–394 (1999).

    Google Scholar 

  164. Ferrell, J. E. & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in xenopus oocytes. Science 280, 895–898 (1998).

    ADS  Google Scholar 

  165. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. 13, 18–28 (1998).

    Google Scholar 

  166. Kleene, S. C. Representation of Events in Nerve Nets and Finite Automata (RAND Corporation,1951).

  167. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    Google Scholar 

  168. Egmont-Petersen, M., de Ridder, D. & Handels, H. Image processing with neural networks–a review. Pattern Recognit. 35, 2279–2301 (2002).

    MATH  Google Scholar 

  169. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012).

    ADS  Google Scholar 

  170. Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484 (2016).

    ADS  Google Scholar 

  171. Newman, C. M. Memory capacity in neural network models: rigorous lower bounds. Neural Netw. 1, 223–238 (1988).

    Google Scholar 

  172. Hertz, J., Krogh, A. & Palmer, R. G. Introduction to the Theory of Neural Computation. (Addison-Wesley/Addison Wesley Longman, 1991).

  173. Moosavi, S. A. & Montakhab, A. Structural versus dynamical origins of mean-field behavior in a self-organized critical model of neuronal avalanches. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 052804 (2015).

    ADS  Google Scholar 

  174. Woodrow, W. L. et al. Adaptation to sensory input tunes visual cortex to criticality. Nat. Phys. 11, 659–663 (2015).

    Google Scholar 

  175. Haldeman, C. & Beggs, J. M. Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94, 058101 (2005).

    ADS  Google Scholar 

  176. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Google Scholar 

  177. Kinouchi, O. & Copelli, M. Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–351 (2006).

    Google Scholar 

  178. Shew, W. L., Yang, H., Petermann, T., Roy, R. & Plenz, D. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29, 15595–15600 (2009).

    Google Scholar 

  179. Bertschinger, N. & Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436 (2004).

    MATH  Google Scholar 

  180. Lee, S.-G., Neiman, A. & Kim, S. Coherence resonance in a hodgkin-huxley neuron. Phys. Rev. E 57, 3292 (1998).

    ADS  Google Scholar 

  181. Hille, B. et al. Ion Channels of Excitable Membranes 507 (Sinauer Sunderland, 2001).

  182. Plant, R. & Kim, M. Mathematical description of a bursting pacemaker neuron by a modification of the hodgkin-huxley equations. Biophys. J. 16, 227–244 (1976).

    ADS  Google Scholar 

  183. Andersen, S. S., Jackson, A. D. & Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 88, 104–113 (2009).

    Google Scholar 

  184. Pakdaman, K., Thieullen, M. & Wainrib, G. Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. Appl. Probab. 42, 761–794 (2010).

    MathSciNet  MATH  Google Scholar 

  185. Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962).

    Google Scholar 

  186. Niebur, E. & Erdös, P. Theory of the locomotion of nematodes: control of the somatic motor neurons by interneurons. Math. Biosci. 118, 51–82 (1993).

    MATH  Google Scholar 

  187. Bryden, J. & Cohen, N. In From Animals to Animats 8: Proc. Eighth Int. Conf. Sim. Adapt. Behav. (eds Schaal, S. et al.)183–192 (MIT Press, 2004).

  188. Arena, P., Patané, L. & Termini, P. S. In 2010 Int. Joint Conf. Neurol Networks https://doi.org/10.1109/IJCNN.2010.5596513 (IEEE, 2010).

  189. Markram, H. The blue brain project. Nat. Rev. Neurosci. 7, 153 (2006).

    Google Scholar 

  190. Kishimoto, K. & Amari, S.-i Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol. 7, 303–318 (1979).

    MathSciNet  MATH  Google Scholar 

  191. Pinto, D. J. & Ermentrout, G. B. Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math. 62, 206–225 (2001).

    MathSciNet  MATH  Google Scholar 

  192. Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).

    ADS  Google Scholar 

  193. Kuramoto, Y. & Araki, H. Lecture notes in physics, international symposium on mathematical problems in theoretical physics (1975).

  194. Ward, L. M. Synchronous neural oscillations and cognitive processes. Trends Cogn. Sci. 7, 553–559 (2003).

    Google Scholar 

  195. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Google Scholar 

  196. Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).

    Google Scholar 

  197. Schnitzler, A. & Gross, J. Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285 (2005).

    Google Scholar 

  198. Petersson, K. M., Nichols, T. E., Poline, J.-B. & Holmes, A. P. Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354, 1239–1260 (1999).

    Google Scholar 

  199. Petersson, K. M., Nichols, T. E., Poline, J.-B. & Holmes, A. P. Statistical limitations in functional neuroimaging ii. signal detection and statistical inference. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354, 1261–1281 (1999).

    Google Scholar 

  200. Bancaud, J. & Talairach, J. Methodology of stereo eeg exploration and surgical intervention in epilepsy. Rev. Otoneuroophtalmol. 45, 315–328 (1973).

    Google Scholar 

  201. Chauvel, P., Vignal, J., Biraben, A., Badier, J. & Scarabin, J. Stereoelectroencephalography, 80–108 (Springer Verlag, 1996).

  202. Todaro, C., Marzetti, L., Valdes Sosa, P. A., Valdes-Hernandez, P. A. & Pizzella, V. Mapping brain activity with electrocorticography: resolution properties and robustness of inverse solutions. Brain Topogr. https://doi.org/10.1007/s10548-018-0623-1 (2018).

  203. Menon, R. S. & Kim, S.-G. Spatial and temporal limits in cognitive neuroimaging with fmri. Trends Cogn. Sci. 3, 207–216 (1999).

    Google Scholar 

  204. Aguirre, G. K. Functional neuroimaging: technical, logical, and social perspectives. Hastings Cent. Rep. 44, S8–S18 (2014).

    Google Scholar 

  205. Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017).

    Google Scholar 

  206. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    Google Scholar 

  207. Lynall, M. E. et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

    Google Scholar 

  208. Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

    Google Scholar 

  209. Khazaee, A., Ebrahimzadeh, A. & Babajani-Feremi, A. Identifying patients with alzheimer’s disease using resting-state fMRI and graph theory. Clin. Neurophysiol. 126, 2132–2141 (2015).

    Google Scholar 

  210. Amari, S.-i, Nakahara, H., Wu, S. & Sakai, Y. Synchronous firing and higher-order interactions in neuron pool. Neural Comput. 15, 127–142 (2003).

    MATH  Google Scholar 

  211. Sizemore, A. E. et al. Cliques and cavities in the human connectome. J. Comput. Neurosci. 44, 115–145 (2017).

    MathSciNet  MATH  Google Scholar 

  212. Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J. Comput. Neurosci. 41, 1–14 (2016).

    MathSciNet  Google Scholar 

  213. Giusti, C., Pastalkova, E., Curto, C. & Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl Acad. Sci. USA 112, 13455–13460 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  214. Reimann, M. W. et al. Cliques of neurons bound into cavities provide a missing link between structure and function. Front Comput. Neurosci. 11, 48 (2017).

    Google Scholar 

  215. Battaglia, D., Witt, A., Wolf, F. & Geisel, T. Dynamic effective connectivity of inter-areal brain circuits. PLoS Comput. Biol. 8, e1002438 (2012).

    ADS  Google Scholar 

  216. Zylberberg, J., Pouget, A., Latham, P. E. & Shea-Brown, E. Robust information propagation through noisy neural circuits. PLoS Comput. Biol. 13, e1005497 (2017).

    ADS  Google Scholar 

  217. Kirst, C., Timme, M. & Battaglia, D. Dynamic information routing in complex networks. Nat. Commun. 7, 11061 (2016).

    ADS  Google Scholar 

  218. McIntyre, C. C., Savasta, M., Kerkerian-Le Goff, L. & Vitek, J. L. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin. Neurophysiol. 115, 1239–1248 (2004).

    Google Scholar 

  219. Lozano, A. M. & Lipsman, N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77, 406–424 (2013).

    Google Scholar 

  220. Liu, Y.-Y. & Barabási, A.-L. Control principles of complex systems. Rev. Mod. Phys. 88, 035006 (2016).

    ADS  Google Scholar 

  221. Schiff, S. J. Neural Control Engineering: The Emerging Intersection between Control Theory and Neuroscience (MIT Press, 2012).

  222. Kim, J. Z. et al. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 14, 91–98 (2018).

    Google Scholar 

  223. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

    ADS  MATH  Google Scholar 

  224. Jeganathan, J. et al. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. Neuroimage Clin. 19, 71–81 (2018).

    Google Scholar 

  225. Muldoon, S. F. et al. Stimulation-based control of dynamic brain networks. PLoS Comput. Biol. 12, e1005076 (2016).

    Google Scholar 

  226. Taylor, P. N. et al. Optimal control based seizure abatement using patient derived connectivity. Front Neurosci. 9, 202 (2015).

    Google Scholar 

  227. Medaglia, J. D. et al. Network controllability in the inferior frontal gyrus relates to controlled language variability and susceptibility to TMS. J. Neurosci. 38, 6399–6410 (2018).

    Google Scholar 

  228. Holt, A. B., Wilson, D., Shinn, M., Moehlis, J. & Netoff, T. I. Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS Comput. Biol. 12, e1005011 (2016).

    ADS  Google Scholar 

  229. Holmes, G. Disturbances of vision by cerebral lesions. Br. J. Ophthalmol. 2, 353 (1918).

    Google Scholar 

  230. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E. & Robbins, T. W. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28, 1021–1034 (1990).

    Google Scholar 

  231. Walsh, V. & Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1, 73 (2000).

    Google Scholar 

  232. Amassian, V. E. et al. Measurement of information processing delays in human visual cortex with repetitive magnetic coil stimulation. Brain Res. 605, 317–321 (1993).

    Google Scholar 

  233. Pascual-Leone, A., Grafman, J. & Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994).

    ADS  Google Scholar 

  234. Pascual-Leone, A., Gates, J. R. & Dhuna, A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41, 697–702 (1991).

    Google Scholar 

  235. Walsh, V., Ellison, A., Battelli, L. & Cowey, A. Task–specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proc. R. Soc. Lond., B, Biol. Sci. 265, 537–543 (1998).

    Google Scholar 

  236. Kringelbach, M. L., Jenkinson, N., Owen, S. L. & Aziz, T. Z. Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623 (2007).

    Google Scholar 

  237. George, M. S., Lisanby, S. H. & Sackeim, H. A. Transcranial magnetic stimulation: applications in neuropsychiatry. Arch. General. Psychiatry 56, 300–311 (1999).

    Google Scholar 

  238. Perlmutter, J. S. & Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006).

    Google Scholar 

  239. Tass, P. et al. Detection of n: m phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 81, 3291 (1998).

    ADS  Google Scholar 

  240. Santaniello, S. et al. Therapeutic mechanisms of high-frequency stimulation in parkinson’s disease and neural restoration via loop-based reinforcement. Proc. Natl Acad. Sci. USA 112, E586–E595 (2015).

    Google Scholar 

  241. Zeki, S. A Vision of the Brain (Blackwell Scientific Publ., 1993).

  242. Chiken, S. & Nambu, A. Disrupting neuronal transmission: mechanism of dbs? Front. Syst. Neurosci. 8, 33 (2014).

    Google Scholar 

  243. Berényi, A., Belluscio, M., Mao, D. & Buzsáki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735–737 (2012).

    ADS  Google Scholar 

  244. Kedzior, K. K., Gierke, L., Gellersen, H. M. & Berlim, M. T. Cognitive functioning and deep transcranial magnetic stimulation (dtms) in major psychiatric disorders: a systematic review. J. Psychiatr. Res. 75, 107–115 (2016).

    Google Scholar 

  245. Ching, S. et al. Real-time closed-loop control in a rodent model of medically induced coma using burst suppression. Anesthesiology 119, 848–860 (2013).

    ADS  Google Scholar 

  246. Holt, A. B. & Netoff, T. I. Origins and suppression of oscillations in a computational model of parkinson’s disease. J. Comput. Neurosci. 37, 505–521 (2014).

    MathSciNet  MATH  Google Scholar 

  247. Heck, C. N. et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 55, 432–441 (2014).

    Google Scholar 

  248. Crinion, J. et al. Spatial normalization of lesioned brains: performance evaluation and impact on fmri analyses. Neuroimage 37, 866–875 (2007).

    Google Scholar 

  249. Santaniello, S., Fiengo, G., Glielmo, L. & Grill, W. M. Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 15–24 (2011).

    Google Scholar 

  250. Iudice, F. L., Garofalo, F. & Sorrentino, F. Structural permeability of complex networks to control signals. Nat. Commun. 6, 8349 (2015).

    ADS  Google Scholar 

  251. Posner, M. I., Snyder, C. R. & Solso, R. in Cognitive Psychology: Key Readings (Key Readings in Cognition) 205–223 (eds Balota, D. & Marsh, E.) (Psychology Press, 2004).

  252. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    ADS  Google Scholar 

  253. Goldman, P. S. & Rosvold, H. E. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp. Neurol. 27, 291–304 (1970).

    Google Scholar 

  254. Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994).

    Google Scholar 

  255. Dias, R., Robbins, T. & Roberts, A. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69 (1996).

    ADS  Google Scholar 

  256. Gu, S. et al. Optimal trajectories of brain state transitions. Neuroimage 148, 305–317 (2017).

    Google Scholar 

  257. Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F. & Bassett, D. S. Optimally controlling the human connectome: the role of network topology. Sci. Rep. 6, 30770 (2016).

    ADS  Google Scholar 

  258. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1, 40–52 (2014).

    MathSciNet  MATH  Google Scholar 

  259. Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).

    ADS  Google Scholar 

  260. Tang, E. & Bassett, D. S. Control of dynamics in brain networks. Preprint in arXiv https://arxiv.org/abs/1701.01531 (2018).

  261. Tang, E. et al. Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nat. Commun. 8, 1252 (2017).

    ADS  Google Scholar 

  262. Cornblath, E. J. et al. Sex differences in network controllability as a predictor of executive function in youth. NeuroImage 188, 122–134 (2019).

    Google Scholar 

  263. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & De Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420 (2007).

    ADS  Google Scholar 

  264. Deisseroth, K. Optogenetics. Nat. Methods 8, 26 (2011).

    Google Scholar 

  265. Gunaydin, L. A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387 (2010).

    Google Scholar 

  266. Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Google Scholar 

  267. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171 (2012).

    Google Scholar 

  268. Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816 (2014).

    Google Scholar 

  269. Becker, C. O., Bassett, D. & Preciado, V. M. Large-scale dynamic modeling of task-fMRI signals via subspace system identification. J. Neural Eng. 15, 066016 (2018).

    ADS  Google Scholar 

  270. Coron, J.-M. Control and Nonlinearity 136 (American Mathematical Soc., 2007).

  271. Klickstein, I., Shirin, A. & Sorrentino, F. Locally optimal control of complex networks. Phys. Rev. Let. 119, 268301 (2017).

    ADS  MATH  Google Scholar 

  272. Haynes, G. & Hermes, H. Nonlinear controllability via lie theory. SIAM J. Control 8, 450–460 (1970).

    MathSciNet  MATH  Google Scholar 

  273. Sussmann, H. J. & Jurdjevic, V. Controllability of nonlinear systems. Differ. Equ. 12, 95–116 (1972).

    ADS  MathSciNet  MATH  Google Scholar 

  274. Hermann, R. & Krener, A. Nonlinear controllability and observability. IEEE Trans. Autom. Contr. 22, 728–740 (1977).

    MathSciNet  MATH  Google Scholar 

  275. Cornelius, S. P., Kath, W. L. & Motter, A. E. Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013).

    ADS  Google Scholar 

  276. Whalen, A. J., Brennan, S. N., Sauer, T. D. & Schiff, S. J. Observability and controllability of nonlinear networks: the role of symmetry. Phys. Rev. X 5, 011005 (2015).

    Google Scholar 

  277. Isidori, A. Nonlinear Control Systems (Springer Science & Business Media, 2013).

  278. Chopra, N. & Spong, M. W. On exponential synchronization of kuramoto oscillators. IEEE Trans. Autom. Contr. 54, 353–357 (2009).

    MathSciNet  MATH  Google Scholar 

  279. Lynn, C. W. & Lee, D. D. Statistical mechanics of influence maximization with thermal noise. EPL 117, 66001 (2017).

    ADS  Google Scholar 

  280. Lynn, C. W. & Lee, D. D. In Thirty-Second AAAI Conference on Artificial Intelligence 679–686 (AAAI, 2018).

  281. Amunts, K. & Zilles, K. Architectonic mapping of the human brain beyond Brodmann. Neuron 88, 1086–1107 (2015).

    Google Scholar 

  282. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    Google Scholar 

  283. van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

    Google Scholar 

  284. Persichetti, A. S., Aguirre, G. K. & Thompson-Schill, S. L. Value is in the eye of the beholder: early visual cortex codes monetary value of objects during a diverted attention task. J. Cogn. Neurosci. 27, 893–901 (2015).

    Google Scholar 

  285. Dore, B. P. et al. Brain activity tracks population information sharing by capturing consensus judgments of value. Cereb Cortex https://doi.org/10.1093/cercor/bhy176 (2018).

  286. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    ADS  Google Scholar 

  287. Kailath, T. Linear Systems (Prentice-Hall, Inc., 1980).

  288. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).

    ADS  Google Scholar 

  289. Klickstein, I., Shirin, A. & Sorrentino, F. Energy scaling of targeted optimal control of complex networks. Nat. Commun. 8, 15145 (2017).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to L. Papadopoulos, J. Z. Kim and V. Buch for helpful comments on an earlier version of this manuscript. The authors also thank A. E. Sizemore for artistic inspiration. D.S.B. and C.W.L. acknowledge support from the Penn NSF MRSEC Grant DMR-1720530, the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the ISI Foundation, the Paul Allen Foundation, the Army Research Laboratory (W911NF-10-2-0022), the Army Research Office (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474 and DCIST- W911NF-17-2-0181), the Office of Naval Research, the US National Institute of Mental Health (2-R01-DC-009209-11, R01-MH112847, R01-MH107235 and R21-M MH-106799), the US National Institute of Child Health and Human Development (1R01HD086888-01), the US National Institute of Neurological Disorders and Stroke (R01 NS099348) and the US National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-1631550).

Reviewer information

Nature Reviews Physics thanks Y. He and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation, revision and editing.

Corresponding author

Correspondence to Danielle S. Bassett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynn, C.W., Bassett, D.S. The physics of brain network structure, function and control. Nat Rev Phys 1, 318–332 (2019). https://doi.org/10.1038/s42254-019-0040-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0040-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing