Abstract
The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the lineofsight passage of a “cusp”like defect on the horizon of the final black hole correlates with “chirp”like frequency peaks in the postmerger gravitationalwaves. These postmerger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increase and as future generation detectors, such as LISA and the Einstein Telescope, become operational.
Similar content being viewed by others
Introduction
A new field of astronomy has arisen with the detection of gravitational waves (GWs). To date, the Laser Interferometer Gravitationalwave Observatory (LIGO)^{1} and Virgo^{2} have observed twelve merging binary black holes (BBHs)^{3,4,5,6,7}, two binary neutron star mergers^{8,9}, and a putative neutron starblack hole merger^{10}. These detections are allowing us to understand the nature of compact objects, their populations^{11}, and their formation channels^{12,13}. These observations have also put to test general relativity (GR)^{14,15,16} in the strongfield regime for the first time, so far confirming its predictions^{17,18}. Despite this groundbreaking achievement, LIGO and Virgo have not yet reached the sensitivity to observe in exquisite detail the merger and the relaxation of the highly distorted black holes (BHs) left behind by BBHs, when dynamical gravity reaches its ultimate expression. As the sensitivity of LIGO and Virgo increases and future generation detectors, such as the Laser Interferometer Space Antenna (LISA) and the Einstein Telescope (ET), become operational, GWs will provide us with an unprecedented view of highly distorted BH horizons, allowing us to test in further detail fundamental aspects of GR like the “nohair” theorem^{15,19} and explore the quantum properties of BHs^{20}.
Such studies will rely on a deep understanding of how GW signals encode the dynamical properties of the source. In anticipation of future large signaltonoise ratio detections, it is important to investigate how GWs reflect not only the “common” properties of BBHs (e.g., BH masses and spins, orbital eccentricity, and orientation) but also other fundamental aspects that can be inferred from the morphology of the signal. For instance, all current observations show a rather simple “chirp” morphology^{4}, consisting of a monotonic increase of both frequency and amplitude. Initially, both quantities increase slowly, reflecting the low frequency and tightening of the orbit as the two BHs approach each other^{21}. Just before the merger, the two BHs reach speeds comparable to that of light, leading to a rapid rise of both frequency and amplitude^{21,22}. Once the BHs merge, a highly distorted BH settles into a Kerr BH radiating exponentially decaying ringdown emission^{3,19,23,24}. However, this simple morphology describes the GW signal only when the binary has comparable masses or it is viewed faceon so that the emission is vastly dominated by the socalled quadrupole mode.
In contrast, asymmetric BBHs also show strong GW emission in subdominant higherorder modes during the merger and ringdown stages^{25}, allowing for GWs with nontrivial morphology complexity^{26,27,28} that may unveil new features of the postmerger dynamics. The connection between the horizon dynamics and the GW emission has been widely studied in two main ways. The first consists of finding correlations between farfield signals and fields near the horizon, revealing close connections between the horizon geometry, the GW flux, and strongfield phenomena such as the antikick^{29,30,31,32}. The second approach has focused on the systematic development of analytical tools that can probe and explain the geometrodynamics of spacetime causing such correlations and relate it with the generation of GWs^{33,34,35,36,37}. None of these studies discuss a direct link to the GW strain observable by detectors. In this work, we follow the approach of^{29,30,31,32} to correlate a concrete observable feature of the GW strain to a geometrical property of the final BH horizon.
Using numerical relativity simulations, we show that multiple postmerger frequency peaks (or chirps) can be measured near the orbital plane of unequalmass binaries We show that these correlate to the lineofsight passage of strongly emitting regions of large mean curvature gradient and locally extremal Gaussian curvature, present on the dynamical apparent horizon of the final black hole (BH), which cluster around a “cusp”like defect on it. Conversely, frequency minima correlate to the passage of the “smoother” opposite region of the horizon, where curvature gradients are smaller.
Results and discussion
Postmerger chirps
Figure 1a depicts the different stages of a BBH. Figure 1b shows the GW strain time series and timefrequency maps recorded by observers in different locations around a numerically simulated BBH with a mass ratio q = m_{1}/m_{2} = 3. We perform our numerical simulations using the MAYA code, based on the EINSTEINTOOLKIT^{38} (for details, please see the “Methods” section). We use geometrical units in terms of the total mass of the binary M = m_{1} + m_{2} with the speed of light set to unity. The green vertical line denotes the formation of the common apparent horizon. The “faceon” panel shows the signal observed faceon, showing the “vanilla” chirp structure consistent with current observations^{4,5}. The different panels in Fig. 1b show the signals recorded at different positions on the orbital plane.
Some time after the common horizon forms, these signals show a clear drop in the frequency, followed by a secondary peak, or postmerger chirp. Depending on the location of the observer, the chirps occur at different times and involve different peak frequencies and intensities. It is illustrative to compare the signals observed in the direction of the recoil of the final BH^{26,28}, (kickon) to those observed in the opposite direction (kickoff). While the kickon observer records a secondary chirp with larger amplitude and peak frequency than the first, the converse is measured by the kickoff observer. We find that the secondary chirp is more intense compared to the first one in a direction ≃55° away from the final recoil (or kick) direction, measured in the direction of the original orbit. This signal is shown in the rightmost panel, showing a clear “doublechirp”. Notably, we find that this is also true for varying mass ratios. The corresponding signals are shown in Fig. 1c for binaries with mass ratios q = 1.1–10. These also make evident that the doublechirp signature becomes more pronounced as the binary becomes more asymmetric. We acknowledge that a similar nontrivial postmerger emission, visible in the timedomain, was shown by González et al.^{26}, in terms of the Newman–Penrose scalar Ψ_{4}. However, its frequency content, which is the departing point of our study and the reason behind the doublechirp name, was not shown.
Analytically, these complex and observerdependent postmerger waveform morphologies can be explained by the asymmetric interaction of the different quasinormal emission modes beyond the quadrupole one in different directions around the binary. These modes are triggered during the merger and ringdown of asymmetric binaries and have a larger impact on highly inclined binaries^{25,28,39}. However, the clarity of the doublechirp signature suggests a connection to some underlying postmerger feature, similar to how the increase of the frequency during the inspiral is connected to the increasing frequency of the binary. In the following, we argue that this feature is the existence of regions of locally extremal curvature that are distributed nonuniformly on the dynamical apparent horizon of the final BH. While three of these regions cluster around a global curvature maximum that we denote as the “cusp” forming a “trident”, a fourth one sits on the opposite or “back” side of the horizon. These coincide with regions of maximal GW emission. As the final BH relaxes, this structure rotates pointing to all observers on the orbital plane while fading away. We show that after the cusp (back) of the horizon crosses the lineofsight, frequency peaks (minima) are recorded at a time consistent with the GW travel time determined by the distance to the observer.
Emission profile far from the source
To make a first connection between the timefrequency morphology of the signal and the structure of the GW emission, the left panel of Fig. 2a shows a snapshot of the GW emission in the orbital plane of our q = 3 binary at a time of 52.3M after the merger after the waves have traveled far from the source. We represent the GW emission by the absolute value of the Newman–Penrose scalar Ψ_{4}^{40}, related to the GW strain h by \({\Psi }_{4}(t)=\frac{{d}^{2}{h}^{* }(t)}{{\mathrm{d}}{t}^{2}}\). As one goes around the final BH, it is clear that the recorded signal will depend on the viewing angle. This can be, in fact, observed in Fig. 2b, which showcases the timefrequency maps recorded by the kickon and kickoff observers highlighted in the left panel. The radial separation of \(\Delta R \sim {\mathcal{O}}(20M)\) between the wave trains reaching each observer in the left panel is consistent with the time delay \(\Delta t \sim {\mathcal{O}}(20M)\) between frequency peaks shown in the right one. Following the kickon and kickoff directions, it is also evident that the intensity of the GW fronts is different in each direction. While two wave trains of similar intensity reach the kickon observer, the second train reaching the kickoff observer has a much lower intensity. Consistently, the kickon observer records two chirps of similar intensity plus a weak third one, while the second chirp is barely visible for the kickoff observer.
The nearhorizon region
After making a first connection between the postmerger chirps and the emission profile far from the source, we now zoom in near the source to investigate the connection to the postmerger dynamics. The panels e–h in Fig. 3 show the structure of Ψ_{4} near the horizon at four selected times t_{frame} throughout its evolution. In the first frame (Fig. 3e), soon after the horizon forms, Ψ_{4} shows a clearly asymmetric pattern. Three arms (a central one, most prominent, and two surrounding weaker ones) cluster on one side of the horizon forming a “trident” while another arm is present on the opposite side (or “back”). We note that this structure does not form abruptly at merger but arises smoothly from the pattern it had when the BHs were approaching each other. The inset shows that the central arm sits on a “cusp” defect present on the horizon. The other three frames show how this structure rotates and fades away as the final BH evolves. As this happens, the three arms (in particular the central one) and the back of the BH cross the line of sight of every observer multiple times.
We now draw our attention to the observed signals. The panels a–d in Fig. 3 show the timefrequency maps and time series for the GW strain h (panels a and b) and Ψ_{4} (panels c and d) measured in the kickon and kickoff directions at retarded times t_{frame} − r_{ext}, with r_{ext} denoting the distance to the source, also known as the GW extraction radius. The vertical lines denote the retarded times that correspond to the four frames on Fig. 3b. As the three Ψ_{4} arms, and in particular the central, most prominent one, cross the lineofsight, a frequency peak is measured at a time r_{ext} later. This is also noticeable in the timedomain plots in terms of a short instantaneous signal wavelength, consistent with the short separation of the arriving wavefronts shown in Fig. 2a Similarly, a frequency minimum is observed r_{ext} after the back of the horizon crosses the line of sight. This is reflected in the timedomain signals by a larger instantaneous wavelength, consistent with the large separation of \({\mathcal{O}}(20M)\) of the arriving wave trains shown in Fig. 2a This way, we establish a timeconnection between the lineofsight passage of the three Ψ_{4} arms (in particular the most prominent one) and the back arm and the respective observation of postmerger frequency peaks and minima.
Connecting the horizon geometry with postmerger chirps
Next, we connect the arm structure of Ψ_{4} present on the dynamical apparent horizon with its curvature. To this, we measure Ψ_{4} on the intersection of the horizon with the original orbital plane of the binary (i.e., on the final horizon equator), together with the mean curvature H and the Gaussian curvature K. Figure 4 shows the absolute values of the gradient of the mean curvature dH/ds and Ψ_{4} as a function of the azimuthal angle φ at a time 5M after the common horizon has formed. The parameter s denotes the arclength along the horizon’s equator (for a detailed description of the arclength parameter and curvature quantities, please see “Methods” section) and the inset panel shows the corresponding simulation frame. A tight correlation is obvious. In particular, all four ∣Ψ_{4}∣ maxima, i.e., the arms highlighted in the inset, clearly correspond to local maxima of ∣dH/ds∣. The three tight Ψ_{4} arms correspond to three nearby regions of large ∣dH/ds∣ spanning barely ~2 radians, with the maximum of ∣dH/ds∣ (the cusp) matching the maximum of ∣Ψ_{4}∣, i.e., the “central” arm.
Figure 5a shows that the Ψ_{4} arms also match regions of locally extremal Gaussian curvature K which, unlike H, is intrinsic to the apparent horizon and coordinate independent. In Supplementary Fig. 1 and Supplementary Notes I, we show that the same relations hold for all the mass ratios shown in Fig. 1. Moreover, while the location of the apparent horizon itself depends on the gauge choice, we show that these relations also hold in an alternative gauge. Figure 5b–d and those in Supplementary Fig. 2 (and Supplementary Notes II) show that this relation is well preserved throughout the evolution of the final black hole, as the central arm points to the different observers in the orbital plane and the Ψ_{4} structure fades away. We observe that a slight degradation of this correlation occurs at very late times of ≃ 30M after the common horizon has formed when the emission is very weak and more prone to be affected by numerical artefacts. Despite this, the three maxima and minima of Ψ_{4} sitting around the central arm are well colocated with those of K. Also, while here we have used ∣dH/ds∣ to facilitate a visual comparison with the simulation frames, we show that Ψ_{4} actually follows −dH/ds.
Finally, even if not clearly visible Figs. 3e–h and 5 makes also evident that the highly asymmetric structure of the horizon understood as the “clustering” of three Ψ_{4} arms and the corresponding extremal curvature regions, is maintained during BH evolution, as these always span an angle that barely exceeds ~2.5 radians. This way, the passage of these Ψ_{4} arms by the lineofsight corresponds to the passage of three regions of extremal mean curvature gradient and extremal Gaussian curvature on the horizon, with the central arm corresponding to the cusp.
Discussion
The observation of the merger and ringdown stages of BH mergers grants access to the strongest regime of gravity, in which spacetime shows its ultimate phenomenology through the dynamical evolution of highly distorted BH horizons. Connections between these dynamics and the observed GWs have been proposed and widely investigated^{29,30,31,32,33,34,35,36,37}. However, no explicit examples of concrete observable features in the GWs have been described to date. In this work, we propose the first such connection. We have shown that nontrivial features consisting on multiple frequency peaks in the postmerger GW emission of edgeon, asymmetric BH mergers, are linked to the presence of large curvature regions in the dynamical apparent horizon of the final BH that is asymmetrically distributed.
First, we have shown that an asymmetric emission pattern forms around the final common horizon, with three arms clustering one side and one on the other. Second, we have shown that frequency peaks, which we refer to as postmerger chirps, are observed in the postmerger signal as the three arms cross the line of sight, after a time consistent with the GW travel time. Last, we show that these arms coincide with locally extremal values of the Gaussian curvature and the mean curvature gradient of the dynamical apparent horizon, with the strongest arm sitting on its largest curvature region, which we call cusp. While postmerger chirps may resemble the signature of BH echoes^{20}, these are not, as we are considering standard BHs. For all the mass ratios we have considered, we find this feature is more prominent on the orbital plane of the binary, ≃55° from the final kick direction measured in the direction of the original orbit (or that of the final spin). Nevertheless, we assume that this will be subject to change if spinning BHs were considered^{41,42}.
Finally, in the Supplementary Fig. 3 and Supplementary Notes III, we show that Advanced LIGO detectors working at their design sensitivity may observe the postmerger chirp signature for the case of a correctly oriented copy of the BBH GW170729^{4,43}, suggesting that such observation may be feasible before the arrival of the next generation of GW detectors.
Methods
Timefrequency maps
The continuous wavelet transform of a function g(t) is,
where ψ, the “mother wavelet”, is a continuous function in time and frequency, evaluated at scales a > 0 and translations b. The scale parameter dilates the mother wavelet ψ, providing a range of timefrequency resolutions, while the translations provide time localization of the signal power, ∣g^{2}(t)∣. By selecting for ψ a function which is compact in the time and frequencydomains, together with a judicious choice of scales appropriate for the problem at hand, one can use the continuous wavelet transform to resolve substructure in the signal g(t) of particular physical interest. A complete description of wavelet analysis may be found in ref. ^{44}.
The mother wavelet used in our decomposition is the Morlet wavelet, a Gaussianmodulated sinusoid with minimal compactness in the time and frequencydomains: \(\psi (x)=\frac{1}{{\pi }^{4}}\exp \left(2\pi i{f}_{0}x\right)\exp \left(2{\pi }^{2}{f}_{0}^{2}\right)\exp \left({x}^{2}/2\right)\), where \(x=\frac{tb}{a}\) and f_{0} is the frequency of the sinusoid, the center frequency of the wavelet.
As described, the continuous wavelet transform is expressed in terms of mother wavelet dilation scales a. Our interest lies in the frequency content of the signal, however. It may be shown, by considering the response to a sinusoid of frequency f, that the maximum of the mother wavelet W(a, b) lies at a = f_{0}/f, so that the focii of the timefrequency response of the signal to the wavelet transform are centered at frequencies f = f_{0}/a. For discretized time series data, f = F_{s}f_{c}/a, where F_{s} is the sample frequency of the data. We determine empirically, via visual inspection, that a mother wavelet center frequency f_{0} = 0.4, and scales a ∈ [1. . 128] yield a timefrequency resolution which allows us to resolve the pertinent substructure of the chirping features reported in this work. We have used the pyCWT software library available at https://pycwt.readthedocs.io/en/latest/ to perform these decompositions numerically.
Higher modes of the gravitationalwave emission
The complex GW strain emitted in a direction (ι, ϕ) on the sky of a BBH can be written as a superposition of different GW modes h_{ℓ,m}(ι, ϕ; t) as^{45}
Here, h_{+} and h_{×} denote the two GW polarizations, the Y_{ℓ,m}’s are spin −2 weighted spherical harmonics, and (ι, ϕ) are the polar and azimuthal angles of a spherical coordinate system centered on the binary. This is chosen so that, ι = 0 (faceon) denotes the direction of the orbital angular momentum, while the orbital plane of the binary is located at ι = π/2 (edgeon). For faceon binaries, the quadrupolar (ℓ, m) = (2, ± 2) modes vastly dominate during all the stages of the binary^{45}. As consequence, the frequency of the resulting GW is, to a good approximation, twice the orbital one and the observed signal shows a canonical single chirp morphology. Secondary GW modes are triggered during the merger and ringdown stages and are more visible near the orbital plane of the binary^{23,27,28}.
Computational methodology
We performed the simulations for this study using our MAYA code^{46,47,48,49}, a branch of the EINSTEINTOOLKIT^{38}. This code was also used produce the Georgia Tech catalog of gravitational waveforms^{50}. We evolve the BSSN formulation of the Einstein equations^{51} using the moving puncture gauge condition^{52,53} for binary BH systems. The MAYA code is built upon the CACTUS^{54} code, using KRANC^{55} for code generation and CARPET^{56} for mesh refinement. We extract gravitational waveforms from the simulation data using the Newman–Penrose scalar Ψ_{4}^{57}, which we calculate using the WEYLSCAL4 thorn of the EINSTEINTOOLKIT. We use the AHFINDERDIRECT^{58} thorn with minor modifications (see below) to locate and analyze apparent horizons.
Calculating curvatures on the apparent horizon
Consider an apparent horizon surface \({\mathcal{S}}\) (with 2metric γ_{ab}) in a spacelike hypersurface Σ_{t} (with 3metric g_{ij} and associated covariant derivative operator ∇_{i}). The surface \({\mathcal{S}}\) can be defined by the outwardpointing unit normal to the surface n^{i}, whose divergence is equal to the mean curvature of the surface H = ∇_{i}n^{i}. H is calculated at run time by the AHFINDERDIRECT thorn because it is an extrinsic quantity and therefore more difficult to calculate in postprocessing, as it depends on the metric and its derivatives in the neighborhood of horizon. On the other hand, the Gaussian curvature K of \({\mathcal{S}}\) is intrinsic to the surface and can therefore be calculated using only the metric induced on the horizon γ_{ij} = g_{ij} − n_{i}n_{j} and its derivatives. We have modified the AHFINDERDIRECT thorn to output γ_{ij} on \({\mathcal{S}}\) for this purpose.
On a twodimensional surface, the Riemann tensor has only one independent component and is therefore completely determined by the Ricci scalar. The Gaussian curvature of \({\mathcal{S}}\) is half of the Ricci scalar and is related to components of the Riemann tensor by R_{abcd} = K(γ_{ac}γ_{db} − γ_{ad}γ_{cb}), where the indices a, b, c, and d denote the polar (θ) and azimuthal (ϕ) angles on the horizon surface. Specifically, we use the R_{θϕθϕ} component of the Riemann tensor in our calculations. Furthermore, by calculating K in the orbital plane of the binary we significantly reduce the complexity of this expression by taking advantage of the symmetry properties of γ_{ab}.
We compute derivatives with respect to the arclength parameter s on the intersection of the orbital plane and the apparent horizon. This is related to the azimuthal angle ϕ by
Here, R denotes the coordinate radius of the horizon. The spherical components of γ_{ij} are related to the cartesian component’s output by the AHFINDERDIRECT thorn by:
Data availability
The numerical relativity waveforms in this work are part of the Georgia Tech catalogue^{61} and are publicly available at http://www.einstein.gatech.edu/table. The waveforms used are, ordered by mass ratio, are GT0717, GT0446, GT0453, GT0577, GT0604, and GT0568. The curvature and Ψ_{4} data for the figures in this work are publicly available at https://github.com/cevans216/postmergerchirpdata.
Code availability
The numerical evolution code MAYA is available upon request. The PyCBC and pyCWT codes are publicly available.
References
Aasi, J. et al. Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015).
Acernese, F. et al. Advanced Virgo: a secondgeneration interferometric gravitational wave detector. Class. Quant. Grav. 32, 024001 (2015).
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Abbott, B. et al. GWTC1: a gravitationalwave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).
The LIGO Scientific Collaboration et al. GW190412: observation of a binaryblackhole coalescence with asymmetric masses. Phys. Rev. D 102, 043015 https://doi.org/10.1103/PhysRevD.102.043015 (2020).
Abbott, B. et al. GW190425: observation of a compact binary coalescence with total mass ~ 3.4M. Astrophys. J. Lett. 892, L3 (2020).
Abbott et al. GW190521: a binary black hole merger with a total mass of 150 M. Phys. Rev. Lett. 125, 101102 (2020).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Abbott, B. P. et al. Gw190425: observation of a compact binary coalescence with total mass ~ 3.4m. Astrophys. J. 892, L3 (2020).
Abbott, R. et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object Astrophys. J. Lett, 896, L44 (2020).
Abbott, B. P. et al. Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo. Astrophys. J. Lett. 882, L24 (2019).
Abbott, B. P. et al. Astrophysical implications of the binary blackhole merger GW150914. Astrophys. J. 818, L22 (2016).
Stevenson, S. et al. Formation of the first three gravitationalwave observations through isolated binary evolution. Nat. Commun. 8, 14906 (2017).
Einstein, A. The foundation of the general theory of relativity. Ann. Phys. 49, 769–822 (1916).
Misner, C. W., Thorne, K. & Wheeler, J. Gravitation (Elsevier, 1974).
The LIGO Scientific Collaboration et al. Tests of general relativity with the binary black hole signals from the LIGOVirgo Catalog GWTC1. Phys. Rev. D 100, 104036 (2019).
Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016).
Abbott, B. P. et al. Binary black hole mergers in the first advanced ligo observing run. Phys. Rev. X 6, 041015 (2016).
Isi, M., Giesler, M., Farr, W. M., Scheel, M. A. & Teukolsky, S. A. Testing the nohair theorem with GW150914. Phys. Rev. Lett. 123, 111102 (2019).
Cardoso, V., Hopper, S., Macedo, C. F. B., Palenzuela, C. & Pani, P. Gravitationalwave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D94, 084031 (2016).
Maggiore, M. Gravitational Waves. Theory and Experiments Vol. 1 (Oxford University Press, 2007).
Pretorius, F. Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005).
Berti, E., Cardoso, V. & Starinets, A. O. Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009).
Owen, R. The final remnant of binary black hole mergers: multipolar analysis. Phys. Rev. D80, 084012 (2009).
Berti, E. et al. Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007).
Gonzalez, J. A., Sperhake, U. & Bruegmann, B. Blackhole binary simulations: The Mass ratio 10:1. Phys. Rev. D79, 124006 (2009).
Graff, P. B., Buonanno, A. & Sathyaprakash, B. Missing link: Bayesian detection and measurement of intermediatemass blackhole binaries. Phys. Rev. D92, 022002 (2015).
Calderón Bustillo, J., Clark, J. A., Laguna, P. & Shoemaker, D. Tracking black hole kicks from gravitational wave observations. Phys. Rev. Lett. 121, 191102 (2018).
Rezzolla, L., Macedo, R. P. & Jaramillo, J. L. Understanding the ‘antikick’ in the merger of binary black holes. Phys. Rev. Lett. 104, 221101 (2010).
Jaramillo, J. L., Panosso Macedo, R., Moesta, P. & Rezzolla, L. Blackhole horizons as probes of blackhole dynamics I: postmerger recoil in headon collisions. Phys. Rev. D85, 084030 (2012).
Jaramillo, J. L., Macedo, R. P., Moesta, P. & Rezzolla, L. Blackhole horizons as probes of blackhole dynamics II: geometrical insights. Phys. Rev. D85, 084031 (2012).
Jaramillo, J. L., Macedo, R. P., Moesta, P. & Rezzolla, L. Towards a crosscorrelation approach to strongfield dynamics in Black Hole spacetimes. AIP Conf. Proc. 1458, 158–173 (2012).
Owen, R. et al. Framedragging vortexes and tidal tendexes attached to colliding black holes: Visualizing the curvature of spacetime. Phys. Rev. Lett. 106, 151101 (2011).
Nichols, D. A. et al. Visualizing spacetime curvature via framedrag vortexes and tidal tendexes: general theory and weakgravity applications. Phys. Rev. D 84, 124014 (2011).
Zhang, F. et al. Visualizing spacetime curvature via framedrag vortexes and tidal tendexes. II. stationary black holes. Phys. Rev. D 86, 084049 (2012).
Nichols, D. A. et al. Visualizing spacetime curvature via framedrag vortexes and tidal tendexes. III. quasinormal pulsations of schwarzschild and kerr black holes. Phys. Rev. D 86, 104028 (2012).
Prasad, V., Gupta, A., Bose, S., Krishnan, B. & Schnetter, E. News from horizons in binary black hole mergers. Phys. Rev. Lett. 125, 121101 (2020).
Löffler, F. et al. The Einstein toolkit: a community computational infrastructure for relativistic astrophysics. Classic. Quant. Grav. 29, 115001 (2012).
Giesler, M., Isi, M., Scheel, M. A. & Teukolsky, S. A. Black hole ringdown: the importance of overtones. Phys. Rev. X 9, 041060 (2019).
Newman, E. & Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962).
Apostolatos, T. A., Cutler, C., Sussman, G. J. & Thorne, K. S. Spininduced orbital precession and its modulation of the gravitational waveforms from merging binaries. Phys. Rev. D 49, 6274–6297 (1994).
Kidder, L. E. Coalescing binary systems of compact objects to (post)5/2newtonian order. v. spin effects. Phys. Rev. D 52, 821–847 (1995).
Chatziioannou, K. et al. On the properties of the massive binary black hole merger GW170729. Phys. Rev. D 100, 104015 (2019).
Walnut, D. F. An Introduction to Wavelet Analysis (Birkhäuser Boston, 2004).
Blanchet, L. Gravitational radiation from postnewtonian sources and inspiralling compact binaries. Living Rev. Rel. 17, 2 (2014).
Herrmann, F., Hinder, I., Shoemaker, D. & Laguna, P. Unequal mass binary black hole plunges and gravitational recoil. Classic. Quant. Grav. 24, S33–S42 (2007).
Vaishnav, B., Hinder, I., Herrmann, F. & Shoemaker, D. Matched filtering of numerical relativity templates of spinning binary black holes. Phys. Rev. D 76, 084020 (2007).
Healy, J., Levin, J. & Shoemaker, D. ZoomWhirl Orbits in Black Hole Binaries. Phys. Rev. Lett. 103, 131101 (2009).
Pekowsky, L., O’Shaughnessy, R., Healy, J. & Shoemaker, D. Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame. Phys. Rev. D 88, 024040 (2013).
Jani, K. et al. Georgia tech catalog of gravitational waveforms. Classic. Quant. Grav. 33, 204001 (2016).
Baumgarte, T. W. & Shapiro, S. L. Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1998).
Campanelli, M., Lousto, C. O., Marronetti, P. & Zlochower, Y. Accurate evolutions of orbiting blackhole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006).
Baker, J. G., Centrella, J., Choi, D.I., Koppitz, M. & van Meter, J. Gravitationalwave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006).
Goodale, T. et al. The cactus framework and toolkit: design and applications. In 5th International Conference of VECPA Vector and Parallel Processing R’2002 (Springer, Berlin, 2003).
Husa, S., Hinder, I. & Lechner, C. Kranc: a mathematica package to generate numerical codes for tensorial evolution equations. Comput. Phys. Commun. 174, 983–1004 (2006).
Schnetter, E., Hawley, S. H. & Hawke, I. Evolutions in 3D numerical relativity using fixed mesh refinement. Classic. Quant. Grav. 21, 1465 (2004).
Reisswig, C., Bishop, N. T., Pollney, D. & Szilágyi, B. Characteristic extraction in numerical relativity: Binary black hole merger waveforms at null infinity. Classic. Quant. Grav. 27, 075014 (2010).
Thornburg, J. A fast apparent horizon finder for threedimensional Cartesian grids in numerical relativity. Classic. Quant. Grav. 21, 743 (2004).
PACE. Partnership for an Advanced Computing Environment (PACE). http://www.pace.gatech.edu (2017).
Schmidt, P., Harry, I. W. & Pfeiffer, H. P. Numerical relativity injection infrastructure. Preprint at https://arxiv.org/abs/1703.01076 (2017).
Jani, K. et al. Georgia tech catalog of gravitational waveforms. Classic. Quant. Grav. 33, 204001 (2016).
Acknowledgements
We thank Paul D. Lasky and Valentin Christiaens for their comments on the manuscript. Work supported by NSF grants 1505824, 1505524, 1550461, 1908042, 1806580, 1550461, 2003893, XSEDE TGPHY120016 and NASA 80NSSC19K0322. J.C.B. acknowledges support from the Australian Research Council Discovery Project DP180103155 and the Direct Grant from the CUHK Research Committee with Project ID: 4053406. The project that gave rise to these results also received the support of a fellowship from “la Caixa” Foundation (ID 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 847648. The fellowship code is LCF/BQ/PI20/11760016. G.K. acknowledges support from the President’s Undergraduate Research Salary Award of the Georgia Institute of Technology. Computational support through PACE at the Georgia Institute of Technology^{59}. The results of Fig. 3 in our Supplementary material made use of the Python Numerical Relativity Injection infrastructure described in ref. ^{60}. This manuscript has LIGO DCC number P1900139.
Author information
Authors and Affiliations
Contributions
J.C.B. lead the project, noticed the multiple postmerger frequency peaks and its connection to the horizon curvature. C.E. performed the numerical simulations and developed the methods to compute quantities on the apparent horizon. J.C. provided the code to obtain timefrequency maps. G.K. developed the code used to compute sensitive distances. P.L. and D.S. provided key theoretical insights and supervised the work. All authors contributed to the writing and review of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Calderon Bustillo, J., Evans, C., Clark, J.A. et al. Postmerger chirps from binary black holes as probes of the final blackhole horizon. Commun Phys 3, 176 (2020). https://doi.org/10.1038/s42005020004467
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005020004467
This article is cited by

Probing the nature of black holes: Deep in the mHz gravitationalwave sky
Experimental Astronomy (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.