Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver

Abstract

Ag-catalysed ethene epoxidation is the only viable route for making ethene oxide (EO) in industry, but the active site remains elusive due to the lack of tools to probe this reaction under high temperature and high-pressure conditions. Here, aided by advanced machine-learning grand canonical global structure exploration and in situ experiments, we identify a unique surface oxide phase, namely O5 phase, grown on Ag(100) under industrial catalytic conditions. This phase features square-pyramidal subsurface O and strongly adsorbed ethene, which can selectively convert ethene to EO. The other Ag surface facets, although also reconstructing to surface oxide phases, only contain surface O and produce CO2. The complex in situ surface phases with distinct selectivity contribute to an overall medium (50%) selectivity of Ag catalyst to EO. Our further catalysis experiments with in situ infra-red spectroscopy confirm the theory-predicted infra-red-active C=C vibration of adsorbed ethene on O5 phase and the microkinetics simulation results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ag surface structure evolution under various conditions.
Fig. 2: Electronic properties and vibrational spectrum of Ag surface oxides.
Fig. 3: Gibbs free energy profile and overall mechanism.
Fig. 4: Structure characterizations and catalytic performance of Ag/α-Al2O3.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). Data are also available from the corresponding author upon request.

Code availability

The software code for LASP and the NN potentials used within the article are available from the corresponding author upon request or on the website: LASP software, http://www.lasphub.com; the LASP binary code for the Ag–C–H–O system, http://www.lasphub.com/supportings/lasp-free.tgz, and Ag–C–H–O G-NN potential, http://www.lasphub.com/supportings/AgCHO.pot.

References

  1. Rebsdat, S. & Mayer, D. Ullmann’s Encyclopedia of Industrial Chemistry, 547–572 (American Cancer Society, 2001).

  2. Serafin, J. G., Liu, A. C. & Seyedmonir, S. R. Surface science and the silver-catalyzed epoxidation of ethylene: an industrial perspective. J. Mol. Catal. A 131, 157–168 (1998).

    Article  CAS  Google Scholar 

  3. Lambert, R. M., Williams, F. J., Cropley, R. L. & Palermo, A. Heterogeneous alkene epoxidation: past, present and future. J. Mol. Catal. A 228, 27–33 (2005).

    Article  CAS  Google Scholar 

  4. Pu, T., Tian, H., Ford, M. E., Rangarajan, S. & Wachs, I. E. Overview of selective oxidation of ethylene to ethylene oxide by Ag catalysts. ACS Catal. 9, 10727–10750 (2019).

    Article  CAS  Google Scholar 

  5. Kilty, P. A. & Sachtler, W. M. H. The mechanism of the selective oxidation of ethylene to ethylene oxide. Catal. Rev. 10, 1–16 (1974).

    Article  CAS  Google Scholar 

  6. Cant, N. W. & Hall, W. K. Catalytic oxidation: VI. Oxidation of labeled olefins over silver. J. Catal. 52, 81–94 (1978).

    Article  CAS  Google Scholar 

  7. Linic, S. & Barteau, M. A. Formation of a stable surface oxametallacycle that produces ethylene oxide. J. Am. Chem. Soc. 124, 310–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Ozbek, M. O. & van Santen, R. A. The mechanism of ethylene epoxidation catalysis. Catal. Lett. 143, 131–141 (2013).

    Article  Google Scholar 

  9. Michaelides, A., Reuter, K. & Scheffler, M. When seeing is not believing: oxygen on Ag(111), a simple adsorption system? J. Vac. Sci. Technol. A 23, 1487–1497 (2005).

    Article  CAS  Google Scholar 

  10. Schmid, M. et al. Structure of Ag(111)-p(4x4)-O: no silver oxide. Phys. Rev. Lett. 96, 146102 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Schnadt, J. et al. Revisiting the structure of the p(4x4) surface oxide on Ag(111). Phys. Rev. Lett. 96, 146101 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Martin, N. M. et al. High-coverage oxygen-induced surface structures on Ag(111). J. Phys. Chem. C. 118, 15324–15331 (2014).

    Article  ADS  CAS  Google Scholar 

  13. Derouin, J., Farber, R. G., Turano, M. E., Iski, E. V. & Killelea, D. R. Thermally selective formation of subsurface oxygen in Ag(111) and consequent surface structure. ACS Catal. 6, 4640–4646 (2016).

    Article  CAS  Google Scholar 

  14. Rocha, T. C. R. et al. The silver–oxygen system in catalysis: new insights by near ambient pressure X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 14, 4554–4564 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, T. E. et al. Thermodynamic and spectroscopic properties of oxygen on silver under an oxygen atmosphere. Phys. Chem. Chem. Phys. 17, 9288–9312 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Jones, T. E. et al. The selective species in ethylene epoxidation on silver. ACS Catal. 8, 3844–3852 (2018).

    Article  CAS  Google Scholar 

  17. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Harriott, P. The oxidation of ethylene using silver on different supports. J. Catal. 21, 56–65 (1971).

    Article  CAS  Google Scholar 

  20. Rovida, G., Pratesi, F., Maglietta, M. & Ferroni, E. Chemisorption of oxygen on silver (111) surface. Surf. Sci. 43, 230–256 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Bocklein, S., Gunther, S. & Wintterlin, J. High-pressure scanning tunneling microscopy of a silver surface during catalytic formation of ethylene oxide. Angew. Chem. Int. Ed. 52, 5518–5521 (2013).

    Article  Google Scholar 

  22. Böcklein, S. et al. Detection and quantification of steady-state ethylene oxide formation over an Ag(111) single crystal. J. Catal. 299, 129–136 (2013).

    Article  Google Scholar 

  23. Campbell, C. The selective epoxidation of ethylene catalyzed by Ag(111)—a comparison with Ag(110). J. Catal. 94, 436–444 (1985).

    Article  CAS  Google Scholar 

  24. Christopher, P. & Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 130, 11264–11265 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Christopher, P. & Linic, S. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2, 78–83 (2010).

    Article  CAS  Google Scholar 

  26. Grant, R. B. & Lambert, R. M. A single crystal study of the silver-catalysed selective oxidation and total oxidation of ethylene. J. Catal. 92, 364–375 (1985).

    Article  CAS  Google Scholar 

  27. Costina, I. et al. Combined STM, LEED and DFT study of Ag(100) exposed to oxygen near atmospheric pressures. Surf. Sci. 600, 617–624 (2006).

    Article  ADS  CAS  Google Scholar 

  28. Carlisle, C. I., King, D. A., Bocquet, M. L., Cerda, J. & Sautet, P. Imaging the surface and the interface atoms of an oxide film on Ag{111} by scanning tunneling microscopy: experiment and theory. Phys. Rev. Lett. 84, 3899–3902 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Reichelt, R. et al. High-pressure STM of the interaction of oxygen with Ag(111). Phys. Chem. Chem. Phys. 9, 3590–3599 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, T. E. et al. Insights into the electronic structure of the oxygen species active in alkene epoxidation on silver. ACS Catal. 5, 5846–5850 (2015).

    Article  CAS  Google Scholar 

  31. Carbonio, E. A. et al. Are multiple oxygen species selective in ethylene epoxidation on silver? Chem. Sci. 9, 990–998 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, T. E. et al. Oxidation of ethylene on oxygen reconstructed silver surfaces. J. Phys. Chem. C 120, 28630–28638 (2016).

    Article  CAS  Google Scholar 

  33. Bukhtiyarov, V., Prosvirin, I. & Kvon, R. Study of reactivity of oxygen states adsorbed at a silver surface towards C2h4 by XPS, TPD and TPR. Surf. Sci. 320, L47–L50 (1994).

    Article  ADS  CAS  Google Scholar 

  34. van Santen, R. A. & de Groot, C. P. M. The mechanism of ethylene epoxidation. J. Catal. 98, 530–539 (1986).

    Article  Google Scholar 

  35. Bukhtiyarov, V. I., Boronin, A. I. & Savchenko, V. I. Stages in the modification of a silver surface for catalysis of the partial oxidation of ethylene: I. action of oxygen. J. Catal. 150, 262–267 (1994).

    Article  CAS  Google Scholar 

  36. Bukhtiyarov, V. I., Boronin, A. I., Prosvirin, I. P. & Savchenko, V. I. Stages in the modification of a silver surface for catalysis of the partial oxidation of ethylene: II. action of the reaction medium. J. Catal. 150, 268–273 (1994).

    Article  CAS  Google Scholar 

  37. Carbonio, E. A. et al. Adjusting the chemical reactivity of oxygen for propylene epoxidation on silver by rational design: the use of an oxyanion and Cl. ACS Catal. 13, 5906–5913 (2023).

    Article  CAS  Google Scholar 

  38. Chen, D., Kang, P.-L. & Liu, Z.-P. Active site of catalytic ethene epoxidation: machine-learning global pathway sampling rules out the metal sites. ACS Catal. 11, 8317–8326 (2021).

    Article  CAS  Google Scholar 

  39. Kokalj, A., Gava, P., Degironcoli, S. & Baroni, S. What determines the catalyst’s selectivity in the ethylene epoxidation reaction. J. Catal. 254, 304–309 (2008).

    Article  CAS  Google Scholar 

  40. Huš, M. & Hellman, A. Ethylene epoxidation on Ag(100), Ag(110), and Ag(111): a Joint ab initio and kinetic monte carlo study and comparison with experiments. ACS Catal. 9, 1183–1196 (2019).

    Article  Google Scholar 

  41. Özbek, M. O., Önal, I. & van Santen, R. A. Ethylene epoxidation catalyzed by silver oxide. ChemCatChem 3, 150–153 (2011).

    Article  Google Scholar 

  42. Ozbek, M. O., Onal, I. & van Santen, R. A. Why silver is the unique catalyst for ethylene epoxidation. J. Catal. 284, 230–235 (2011).

    Article  CAS  Google Scholar 

  43. Chen, B. W. J., Wang, B., Sullivan, M. B., Borgna, A. & Zhang, J. Unraveling the synergistic effect of Re and Cs promoters on ethylene epoxidation over silver catalysts with machine learning-accelerated first-principles simulations. ACS Catal. 12, 2540–2551 (2022).

    Article  CAS  Google Scholar 

  44. Xu, H., Zhu, L., Nan, Y., Xie, Y. & Cheng, D. Revisit the role of metal dopants in enhancing the selectivity of Ag-catalyzed ethylene epoxidation: optimizing oxophilicity of reaction site via cocatalytic mechanism. ACS Catal. 11, 3371–3383 (2021).

    Article  CAS  Google Scholar 

  45. Li, H., Cao, A. & Nørskov, J. K. Understanding trends in ethylene epoxidation on group IB metals. ACS Catal. 11, 12052–12057 (2021).

    Article  CAS  Google Scholar 

  46. Huš, M. et al. Going beyond silver in ethylene epoxidation with first-principles catalyst screening. Angew. Chem. Int. Ed. 62, e202305804 (2023).

    Article  Google Scholar 

  47. Li, W. X., Stampfl, C. & Scheffler, M. Why is a noble metal catalytically active? The role of the O–Ag interaction in the function of silver as an oxidation catalyst. Phys. Rev. Lett. 90, 256102 (2003).

    Article  ADS  PubMed  Google Scholar 

  48. Stierle, A., Costina, I., Kumaragurubaran, S. & Dosch, H. In situ X-ray diffraction study of Ag(100) at ambient oxygen pressures. J. Phys. Chem. C 111, 10998–11002 (2007).

    Article  CAS  Google Scholar 

  49. Wexler, R. B., Qiu, T. & Rappe, A. M. Automatic prediction of surface phase diagrams using ab lnitio grand canonical monte carlo. J. Phys. Chem. C 123, 2321–2328 (2019).

    Article  CAS  Google Scholar 

  50. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  ADS  PubMed  Google Scholar 

  51. Behler, J. Four generations of high-dimensional neural network potentials. Chem. Rev. 121, 10037–10072 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Ma, S. & Liu, Z.-P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future. ACS Catal. 10, 13213–13226 (2020).

    Article  CAS  Google Scholar 

  53. Liu, Q.-Y., Shang, C. & Liu, Z.-P. In situ active site for CO activation in Fe-catalyzed fischer–tropsch synthesis from machine learning. J. Am. Chem. Soc. 143, 11109–11120 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Q.-Y., Chen, D., Shang, C. & Liu, Z.-P. An optimal Fe–C coordination ensemble for hydrocarbon chain growth: a full Fischer–Tropsch synthesis mechanism from machine learning. Chem. Sci. 14, 9461–9475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, Y.-F., Kang, P.-L., Shang, C. & Liu, Z.-P. Methanol synthesis from CO2/CO mixture on Cu–Zn catalysts from microkinetics-guided machine learning pathway search. J. Am. Chem. Soc. 144, 13401–13414 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Li, J.-L., Li, Y.-F. & Liu, Z.-P. In situ structure of a Mo-doped Pt–Ni catalyst during electrochemical oxygen reduction resolved from machine learning-based grand canonical global optimization. JACS Au 3, 1162–1175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jorgensen, M. S. et al. Atomistic structure learning. J. Chem. Phys. 151, 054111 (2019).

    Article  ADS  Google Scholar 

  58. Mortensen, H. L., Meldgaard, S. A., Bisbo, M. K., Christiansen, M.-P. & Hammer, B. Atomistic structure learning algorithm with surrogate energy model relaxation. Phys. Rev. B 102, 075427 (2020).

    Article  ADS  CAS  Google Scholar 

  59. Liu, J.-X., Lu, S., Ann, S.-B. & Linic, S. Mechanisms of ethylene epoxidation over silver from machine learning-accelerated first-principles modeling and microkinetic simulations. ACS Catal. 13, 8955–8962 (2023).

    Article  CAS  Google Scholar 

  60. Chen, D., Shang, C. & Liu, Z.-P. Machine-learning atomic simulation for heterogeneous catalysis. NPJ Comput. Mater. 9, 1–9 (2023).

    Article  ADS  CAS  Google Scholar 

  61. Chen, D., Shang, C. & Liu, Z.-P. Automated search for optimal surface phases (ASOPs) in grand canonical ensemble powered by machine learning. J. Chem. Phys. 156, 094104 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Shang, C. & Liu, Z.-P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 9, 1838–1845 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Huang, S.-D., Shang, C., Zhang, X.-J. & Liu, Z.-P. Material discovery by combining stochastic surface walking global optimization with a neural network. Chem. Sci. 8, 6327–6337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, S.-D., Shang, C., Kang, P.-L. & Liu, Z.-P. Atomic structure of boron resolved using machine learning and global sampling. Chem. Sci. 9, 8644–8655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, S.-D., Shang, C., Kang, P.-L., Zhang, X.-J. & Liu, Z.-P. LASP: fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 9, e1415 (2019).

    Article  CAS  Google Scholar 

  66. Schnadt, J. et al. Experimental and theoretical study of oxygen adsorption structures on Ag(111). Phys. Rev. B 80, 075424 (2009).

    Article  ADS  Google Scholar 

  67. Van den Hoek, P. J., Baerends, E. J. & Van Santen, R. A. Ethylene epoxidation on silver(110): the role of subsurface oxygen. J. Phys. Chem. 93, 6469–6475 (1989).

    Article  Google Scholar 

  68. Xu, Y., Greeley, J. & Mavrikakis, M. Effect of subsurface oxygen on the reactivity of the Ag(111) surface. J. Am. Chem. Soc. 127, 12823–12827 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Kang, P.-L., Shang, C. & Liu, Z.-P. Glucose to 5-hydroxymethylfurfural: origin of site-selectivity resolved by machine learning based reaction sampling. J. Am. Chem. Soc. 141, 20525–20536 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Linic, S. & Barteau, M. A. Control of ethylene epoxidation selectivity by surface oxametallacycles. J. Am. Chem. Soc. 125, 4034–4035 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Jones, G. S., Mavrikakis, M., Barteau, M. A. & Vohs, J. M. First synthesis, experimental and theoretical vibrational spectra of an oxametallacycle on a metal surface. J. Am. Chem. Soc. 120, 3196–3204 (1998).

    Article  CAS  Google Scholar 

  72. Linic, S., Piao, H., Adib, K. & Barteau, M. A. Ethylene epoxidation on Ag: identification of the crucial surface intermediate by experimental and theoretical investigation of its electronic structure. Angew. Chem., Int. Ed. 43, 2918–2921 (2004).

    Article  CAS  Google Scholar 

  73. van Hoof, A. J. F., Hermans, E. A. R., van Bavel, A. P., Friedrich, H. & Hensen, E. J. M. Structure sensitivity of silver-catalyzed ethylene epoxidation. ACS Catal. 9, 9829–9839 (2019).

    Article  Google Scholar 

  74. Pu, T. et al. Nature and reactivity of oxygen species on/in silver catalysts during ethylene oxidation. ACS Catal. 12, 4375–4381 (2022).

    Article  CAS  Google Scholar 

  75. Liu, C. et al. Computational and experimental insights into reactive forms of oxygen species on dynamic Ag surfaces under ethylene epoxidation conditions. J. Catal. 405, 445–461 (2022).

    Article  CAS  Google Scholar 

  76. Alzahrani, H. A. & Bravo-Suárez, J. J. In situ Raman spectroscopy study of silver particle size effects on unpromoted Ag/α-Al2O3 during ethylene epoxidation with molecular oxygen. J. Catal. 418, 225–236 (2023).

    Article  CAS  Google Scholar 

  77. Linic, S. & Barteau, M. A. Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J. Catal. 214, 200–212 (2003).

    Article  CAS  Google Scholar 

  78. Stegelmann, C., Schiodt, N. C., Campbell, C. T. & Stoltze, P. Microkinetic modeling of ethylene oxidation over silver. J. Catal. 221, 630–649 (2004).

    Article  CAS  Google Scholar 

  79. Byrne, G. D. & Hindmarsh, A. C. A Polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Softw. 1, 71–96 (1975).

    Article  MathSciNet  Google Scholar 

  80. Johansson, F. et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic (2017). http://mpmath.org/

  81. Teržan, J., Huš, M., Likozar, B. & Djinović, P. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review. ACS Catal. 10, 13415–13436 (2020).

    Article  Google Scholar 

  82. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  83. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  84. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  86. Lide, R. D. CRC Handbook of Chemistry and Physics (CRC Press, 2015).

  87. Hoflund, G. B., Hazos, Z. F. & Salaita, G. N. Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys. Rev. B 62, 11126–11133 (2000).

    Article  ADS  CAS  Google Scholar 

  88. van Hoof, A. J. F., van der Poll, R. C. J., Friedrich, H. & Hensen, E. J. M. Dynamics of silver particles during ethylene epoxidation. Appl. Catal. B-Environ. 272, 118983 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work received financial support from the National Science Foundation of China (12188101, 22033003, 91945301, 91745201, 92145302, 22122301 and 92061112), Fundamental Research Funds for the Central Universities (20720220011) and the Tencent Foundation for XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

Z.-P.L. conceived the project and guided the research. D.C. designed and performed the theoretical simulations. L.C. designed and performed the experiments. Q.-C.Z. helped on the experiments. Z.-X.Y. helped on the code development and data analysis for the simulation of infra-red spectrum, C.S. helped on the code development. D.C. and L.C. drafted the manuscript. All authors discussed the manuscript and agreed with the content.

Corresponding author

Correspondence to Zhi-Pan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Marc-Olivier Coppens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–11 and Notes 1–5.

Supplementary Data 1

XYZ coordinates for the surface phases and transition states. List data include the VASP POSCAR format of all four major phases (listed are supercell models for reaction pathway calculations) of Ag catalyst under reaction conditions, and the key transition states in their corresponding reaction pathways. An INCAR sample for DFT calculation is also appended to this file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Chen, L., Zhao, QC. et al. Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01135-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing