Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organocatalytic olefin C–H functionalization for enantioselective synthesis of atropisomeric 1,3-dienes

Abstract

The availability of structurally and stereochemically diverse chemical scaffolds is important to support continual development of drug discovery, functional materials and asymmetric synthesis. Axially chiral 1,3-dienes, particularly acyclic ones, are potentially valuable yet underutilized skeletons due to concerns about chiral stability and the absence of suitable synthetic conditions. Here we show an organocatalytic strategy for the direct functionalization of alkenyl C–H bonds, enabling the challenging atroposelective construction of a broad range of acyclic chiral 1,3-dienes in a modular manner. Intensive studies on the reaction mechanism show that the current strategy not only bypasses the traditional indirect process for olefinic C–H functionalization but also represents a departure from transition-metal-catalysed C(sp2)–H activation. These findings are expected to open avenues for research on olefin chemistry and to inspire investigation into the organocatalytic activation of other inert structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background of atropisomeric 1,3-dienes and our design.
Fig. 2: Reaction development.
Fig. 3: Substrate generality.
Fig. 4: One-pot asymmetric transformation of 1,3-dienes with other electrophiles.
Fig. 5: Transformations and applications of atropisomeric dienes.
Fig. 6: Control experiments.
Fig. 7: Computational investigation of the reaction mechanism.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the structure of 2w reported in this Article have been deposited at the CCDC under deposition number CCDC 2184813. These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/data_request/cif. The data supporting the findings of this work are provided in the Supplementary Information, including experimental procedures, the characterization of new compounds and data of the DFT calculations, or are available from the authors upon reasonable request.

References

  1. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Carroll, M. P. & Guiry, P. J. P,N ligands in asymmetric catalysis. Chem. Soc. Rev. 43, 819–833 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Giacalone, F., Gruttadauria, M., Agrigento, P. & Noto, R. Low-loading asymmetric organocatalysis. Chem. Soc. Rev. 41, 2406–2447 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  6. Noyori, R. & Takaya, H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 23, 345–350 (1990).

    Article  CAS  Google Scholar 

  7. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Zask, A., Murphy, J. & Ellestad, G. A. Biological stereoselectivity of atropisomeric natural products and drugs. Chirality 25, 265–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Szlávik, Z. et al. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J. Med. Chem. 62, 6913–6924 (2019).

    Article  PubMed  Google Scholar 

  10. Su, S. et al. Biphenyl acid derivatives as APJ receptor agonists. J. Med. Chem. 62, 10456–10465 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, Z. et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 531, 352–356 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bisoyi, H. K. & Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116, 15089–15166 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev. 104, 1687–1716 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Doherty, S. et al. Zirconium-mediated synthesis of a new class of 1,4-bis(diphenylphosphino)-1,3-butadiene-bridged diphosphine, NUPHOS: highly efficient catalysts for palladium-mediated cross couplings. J. Am. Chem. Soc. 123, 5110–5111 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Doherty, S. et al. Lewis acid platinum complexes of conformationally flexible NUPHOS diphosphines: highly efficient catalysts for the carbonyl−ene reaction. Organometallics 24, 5945–5955 (2005).

    Article  CAS  Google Scholar 

  16. Doherty, S., Smyth, C. H., Harriman, A., Harrington, R. W. & Clegg, W. Can a butadiene-based architecture compete with its biaryl counterpart in asymmetric catalysis? Enantiopure Me-CATPHOS, a remarkably efficient ligand for asymmetric hydrogenation. Organometallics 28, 888–895 (2009).

    Article  CAS  Google Scholar 

  17. Doherty, S., Knight, J. G. & Mehdi-Zodeh, H. Asymmetric carbonyl-ene and Friedel–Crafts reactions catalyzed by Lewis acid platinum group metal complexes of the enantiopure atropisomeric biaryl-like diphosphine (S)-Me2-CATPHOS: a comparison with BINAP. Tetrahedron Asymmetry 23, 209–216 (2012).

    Article  CAS  Google Scholar 

  18. Ogasawara, M. et al. Atropisomeric chiral dienes in asymmetric catalysis: C2-symmetric (Z,Z)-2,3-bis[1-(diphenylphosphinyl)ethylidene]tetralin as a highly active Lewis base organocatalyst. Angew. Chem. Int. Ed. 52, 13798–13802 (2013).

    Article  CAS  Google Scholar 

  19. Boer, F. P., Doorakian, G. A., Freedman, H. H. & McKinley, S. V. A study of the rotational process in sterically hindered dienes. J. Am. Chem. Soc. 92, 1225–1233 (1970).

    Article  CAS  Google Scholar 

  20. Köbrich, G. et al. Chirale butadiene, 1H-NMR-spektroskopischer nachweis der behinderten rotation bei hexasubstituierten butadienen. Chem. Ber. 105, 3794–3806 (1972).

    Article  Google Scholar 

  21. Rösner, M. & Köbrich, G. Enantiomerization of optically stable substituted butadienes. Angew. Chem. Int. Ed. 14, 708–709 (1975).

    Article  Google Scholar 

  22. Pasto, D. J. & Scheidt, W. R. X-ray and dynamic nuclear magnetic resonance structural study of a 1,2-bis exocyclic diene. An example of a severely skewed diene. J. Org. Chem. 40, 1444–1447 (1975).

    Article  CAS  Google Scholar 

  23. Yamada, M., Rivera-Fuentes, P., Schweizer, W. B. & Diederich, F. Optical stability of axially chiral push–pull-substituted buta-1,3-dienes: effect of a single methyl group on the C60 surface. Angew. Chem. Int. Ed. 49, 3532–3535 (2010).

    Article  CAS  Google Scholar 

  24. Ervin, K. M. & DeTuri, V. F. Anchoring the gas-phase acidity scale. J. Phys. Chem. A 106, 9947–9956 (2002).

    Article  CAS  Google Scholar 

  25. Beletskaya, I. P. & Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Wei, Y. & Shi, M. Recent advances in organocatalytic asymmetric Morita–Baylis–Hillman/aza-Morita–Baylis–Hillman reactions. Chem. Rev. 113, 6659–6690 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Tang, S., Liu, K., Liu, C. & Lei, A. Olefinic C–H functionalization through radical alkenylation. Chem. Soc. Rev. 44, 1070–1082 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Mbofana, C. T. & Miller, S. J. Diastereo- and enantioselective addition of anilide-functionalized allenoates to N‑acylimines catalyzed by a pyridylalanine-based peptide. J. Am. Chem. Soc. 136, 3285–3292 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J. et al. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem. Soc. Rev. 50, 3263–3314 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Schreib, B. S. & Carreira, E. M. Palladium-catalyzed regioselective C–H iodination of unactivated alkenes. J. Am. Chem. Soc. 141, 8758–8763 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Jin, L., Zhang, P., Li, Y., Yu, X. & Shi, B.-F. Atroposelective synthesis of conjugated diene-based axially chiral styrenes via Pd (II)-catalyzed thioether-directed alkenyl C–H olefination. J. Am. Chem. Soc. 143, 12335–12344 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Metrano, A. J. & Miller, S. J. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc. Chem. Res. 52, 199–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Chen, J. et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science 360, 1438–1442 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Beeson, T. D., Mastracchio, A., Hong, J.-B., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Mao, J.-H. et al. Organocatalyst-controlled site-selective arene C–H functionalization. Nat. Chem. 13, 982–991 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Gustafson, J. L., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination. Science 328, 1251–1255 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beleh, O. M., Miller, E., Toste, F. D. & Miller, S. J. Catalytic dynamic kinetic resolutions in tandem to construct two axis terphenyl atropisomers. J. Am. Chem. Soc. 142, 16461–16470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rauniyar, V., Lackner, A. D., Hamilton, G. L. & Toste, F. D. Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. Science 334, 1681–1683 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Wang, Y.-M., Wu, J., Hoong, C., Rauniyar, V. & Toste, F. D. Enantioselective halocyclization using reagents tailored for chiral anion phase-transfer catalysis. J. Am. Chem. Soc. 134, 12928–12931 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, T., Lu, Z., Ma, Z.-X., Zhang, Y. & Hsung, R. P. Allenamides: a powerful and versatile building block in organic synthesis. Chem. Rev. 113, 4862–4904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Petrova, M. et al. Experimental and theoretical studies of bromination of diethyl 2,4,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylate. Heteroat. Chem. 25, 114–126 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Key R&D Program of China (2022YFA1503703 to B.T. and 2021YFF0701604 to B.T.), National Natural Science Foundation of China (22231004 to B.T., 22371113 to Y.-B.W., 22271135 to S.-H.X. and 21825105 to B.T.), Guangdong Innovative Program (2019BT02Y335 to B.T.) and Shenzhen Science and Technology Program (JCYJ20220818100604009 to Y.-B.W., JCYJ20210324105005015 to S.-H.X., JCYJ20210324104212035 to Y.-B.W. and KQTD20210811090112004 to B.T.). Computational work was supported by the resources from the Center of Computational Science and Engineering at SUSTech.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and Y.-B.W. conceived and directed the project. Q.-H.W. and Y.-B.W. designed and performed the experiments. K.N.H. directed the DFT calculations and mechanism analysis. M.D. and Y.C. performed the DFT calculations and mechanism analysis. J.K.C. and S.-H.X. helped with the collection of some compounds and data analysis. B.T., K.N.H., Y.-B.W., Q.-H.W., P.Y., J.K.C. and S.-H.X. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yong-Bin Wang, Kendall N. Houk or Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yan Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–6, Methods and references.

Supplementary Data 1

Checkcif file of 2w.

Supplementary Data 2

Cif file of 2w.

Supplementary Data 3

Structure factors of 2w.

Supplementary Data 4

Structure factors of 2w.

Supplementary Data 5

Data of DFT Calculations Coordinates

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, QH., Duan, M., Chen, Y. et al. Organocatalytic olefin C–H functionalization for enantioselective synthesis of atropisomeric 1,3-dienes. Nat Catal 7, 185–194 (2024). https://doi.org/10.1038/s41929-023-01097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01097-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing