Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoselective construction of β-, γ- and δ-lactam rings via enzymatic C–H amidation

A preprint version of the article is available at arXiv.

Abstract

Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Methods for the asymmetric synthesis of these molecules are therefore highly desirable, particularly through the selective functionalization of unreactive aliphatic C–H bonds. Here we show the development of a strategy for the asymmetric synthesis of β-, γ- and δ-lactams via the haemoprotein-catalysed intramolecular C–H amidation of readily accessible dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation, yielding the desired lactam products in high yields with high enantioselectivity and on a preparative scale. Mechanistic and computational studies were conducted to elucidate the nature of the C–H amidation and enantiodetermining steps and provide insights into the protein-mediated control of the regioselectivity and stereoselectivity. Additionally, an alkaloid natural product and a drug molecule were synthesized chemoenzymatically in fewer steps (7–8 versus 11–12) than previously reported, further demonstrating the power of biosynthetic strategies for the preparation of complex bioactive molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric lactam synthesis via enzyme-catalysed C(sp3)–H amidation.
Fig. 2: Biocatalytic intramolecular C(sp3)‒H amidation of dioxazolones.
Fig. 3: Substrate scope for Mb*-catalysed C–H amidation reaction.
Fig. 4: Mechanistic studies.
Fig. 5: Computational analysis of the enantio- and regiocontrol.
Fig. 6: Applications of the Mb*-catalysed C–H amidation reaction.

Similar content being viewed by others

Data availability

The crystallographic data of the small molecules have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1893087 (2a), 2157011 (2m), 2157007 (4j) and 2157010 (6c). The data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  PubMed  CAS  Google Scholar 

  2. Hong, B. K., Luo, T. P. & Lei, X. G. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Upp, D. M. & Lewis, J. C. Selective C–H bond functionalization using repurposed or artificial metalloenzymes. Curr. Opin. Chem. Biol. 37, 48–55 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ren, X. K. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green Sustain. Chem. 31, 100494 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

    Article  CAS  Google Scholar 

  10. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Royer, J. Chiral Amine Synthesis. Methods, Developments and Applications (Wiley-VCH, 2010).

  12. Tahlan, K. & Jensen, S. E. Origins of the β-lactam rings in natural products. J. Antibiot. 66, 401–410 (2013).

    Article  CAS  Google Scholar 

  13. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219–227 (2019).

    Article  CAS  Google Scholar 

  15. Zhou, Z. J. et al. Non-C2-symmetric chiral-at-ruthenium catalyst for highly efficient enantioselective intramolecular C(sp3)–H amidation. J. Am. Chem. Soc. 141, 19048–19057 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Breslow, R. & Gellman, S. H. Tosylamidation of cyclohexane by a cytochrome P450 model. J. Chem. Soc. Chem. Commun. 1400–1401 (1982).

  17. McIntosh, J. A. et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013).

    Article  CAS  Google Scholar 

  18. Singh, R., Bordeaux, M. & Fasan, R. P450-catalyzed intramolecular sp3 C–H amination with arylsulfonyl azide substrates. ACS Catal. 4, 546–552 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hyster, T. K., Farwell, C. C., Buller, A. R., McIntosh, J. A. & Arnold, F. H. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination. J. Am. Chem. Soc. 136, 15505–15508 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Singh, R., Kolev, J. N., Sutera, P. A. & Fasan, R. Enzymatic C(sp3)–H amination: P450-catalyzed conversion of carbonazidates into oxazolidinones. ACS Catal. 5, 1685–1691 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Steck, V., Kolev, J. N., Ren, X. K. & Fasan, R. Mechanism-guided design and discovery of efficient cytochrome P450-derived C–H amination biocatalysts. J. Am. Chem. Soc. 142, 10343–10357 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yang, Y., Cho, I., Qi, X. T., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nat. Chem. 11, 987–993 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Prier, C. K., Zhang, R. J. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Athavale, S. V. et al. Biocatalytic, intermolecular C–H bond functionalization for the synthesis of enantioenriched amides. Angew. Chem. Int. Ed. 60, 24864–24869 (2021).

    Article  CAS  Google Scholar 

  25. Liu, Z. et al. An enzymatic platform for primary amination of 1-aryl-2-alkyl alkynes. J. Am. Chem. Soc. 144, 80–85 (2022).

    Article  PubMed  CAS  Google Scholar 

  26. Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 139, 1750–1753 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Goldberg, N. W., Knight, A. M., Zhang, R. J. K. & Arnold, F. H. Nitrene transfer catalyzed by a non-heme iron enzyme and enhanced by non-native small-molecule ligands. J. Am. Chem. Soc. 141, 19585–19588 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vila, M. A., Steck, V., Giordano, S. R., Carrera, I. & Fasan, R. C–H amination via nitrene transfer catalyzed by mononuclear non-heme iron-dependent enzymes. ChemBioChem 21, 1981–1987 (2020).

    Article  PubMed  CAS  Google Scholar 

  29. van Vliet, K. M. & de Bruin, B. Dioxazolones: stable substrates for the catalytic transfer of acyl nitrenes. ACS Catal. 10, 4751–4769 (2020).

    Article  Google Scholar 

  30. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).

    Article  PubMed  Google Scholar 

  32. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rumo, C. et al. An artificial metalloenzyme based on a copper heteroscorpionate enables sp3 C–H functionalization via intramolecular carbene insertion. J. Am. Chem. Soc. 144, 11676–11684 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kweon, J. & Chang, S. Highly robust iron catalyst system for intramolecular C(sp3)–H amidation leading to γ-lactams. Angew. Chem. Int. Ed. 60, 2909–2914 (2021).

    Article  CAS  Google Scholar 

  35. Bordeaux, M., Tyagi, V. & Fasan, R. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. 54, 1744–1748 (2015).

    Article  CAS  Google Scholar 

  36. Bordeaux, M., Singh, R. & Fasan, R. Intramolecular C(sp3)–H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. Bioorg. Med. Chem. 22, 5697–5704 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pineda-Knauseder, A. J., Vargas, D. A. & Fasan, R. Organic solvent stability and long-term storage of myoglobin-based carbene transfer biocatalysts. Biotechnol. Appl. Biochem. 67, 516–526 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Deng, T. et al. Rh2(II)-catalyzed intermolecular N-aryl aziridination of olefins using nonactivated N atom precursors. J. Am. Chem. Soc. 143, 19149–19159 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sangster, J. J., Marshall, J. R., Turner, N. J. & Mangas-Sanchez, J. New trends and future opportunities in the enzymatic formation of C–C, C–N, and C–O bonds. ChemBioChem 23, e202100464 (2022).

    Article  PubMed  CAS  Google Scholar 

  40. Mai, B. K., Neris, N. M., Yang, Y. & Liu, P. C–N bond forming radical rebound is the enantioselectivity-determining step in P411-catalyzed enantioselective C(sp3)–H amination: a combined computational and experimental investigation. J. Am. Chem. Soc. 144, 11215–11225 (2022).

    Article  PubMed  CAS  Google Scholar 

  41. Lang, K., Hu, Y., Lee, W.-C. L. & Zhang, X. P. Combined radical and ionic approach for the enantioselective synthesis of β-functionalized amines from alcohols. Nat. Synth. 1, 548–557 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tinoco, A. et al. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase. ACS Catal. 9, 1514–1524 (2019).

    Article  PubMed  CAS  Google Scholar 

  43. Crombie, L., Haigh, D., Jones, R. C. F. & Matzin, A. R. Synthesis of the alkaloid homaline in (±) and natural (S,S)-(−) forms, using amination and transamidative ring expansion in liquid-ammonia. J. Chem. Soc. Perkin Trans. 1 2047–2054 (1993).

  44. Chincholkar, P. M., Kale, A. S., Gumaste, V. K. & Deshmukh, A. R. A. S. An efficient formal synthesis of (S)-dapoxetine from enantiopure 3-hydroxy azetidin-2-one. Tetrahedron 65, 2605–2609 (2009).

    Article  CAS  Google Scholar 

  45. Wang, J. P., Gao, H., Yang, L. J. & Gao, Y. Q. Role of engineered iron-haem enzyme in reactivity and stereoselectivity of intermolecular benzylic C–H bond amination. ACS Catal. 10, 5318–5327 (2020).

    Article  CAS  Google Scholar 

  46. Kalita, S., Shaik, S. & Dubey, K. D. MD simulations and QM/MM calculations reveal the key mechanistic elements which are responsible for the efficient C–H amination reaction performed by a bioengineered P450 enzyme. Chem. Sci. 12, 14507–14518 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bajaj, P., Sreenilayam, G., Tyagi, V. & Fasan, R. Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity. Angew. Chem. Int. Ed. 55, 16110–16114 (2016).

    Article  CAS  Google Scholar 

  48. Ren, X. K., Chandgude, A. L. & Fasan, R. Highly stereoselective synthesis of fused cyclopropane-γ-lactams via biocatalytic iron-catalyzed intramolecular cyclopropanation. ACS Catal. 10, 2308–2313 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chandgude, A. L., Ren, X. & Fasan, R. Stereodivergent intramolecular cyclopropanation enabled by engineered carbene transferases. J. Am. Chem. Soc. 141, 9145–9150 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institute of Health (grant no. GM098628, to R.F.) and Cancer Prevention and Research Institute of Texas (CPRIT, RR230018 to R.F.). R.F. acknowledges endowed professorship support from the Robert A. Welch Foundation. D.A.V. acknowledges support from the National Science Foundation Graduate Fellowship Program. K.N.H. acknowledges support from the US National Science Foundation (grant no. CHE-1764328), and the Natural Science Foundation of China (grant no. 22103060) provided the computational resources used in the QM analyses. We are grateful to W. Brennessel (University of Rochester) for assistance with the crystallographic analyses. MS and X-ray instrumentation at the University of Rochester are supported by US National Science Foundation (grant nos. CHE-0946653 and CHE-1725028) and the US National Institute of Health (grant no. S10OD030302).

Author information

Authors and Affiliations

Authors

Contributions

D.A.V., S.R. and R.F. conceived the project and designed the experiments. S.R. and D.A.V. performed the experiments with guidance from R.F. K.N.H. mentored P.M., A.S. and L.Z. in the molecular dynamics and quantum mechanics calculations and contributed to the writing of the mechanistic parts of the paper. D.A.V., S.R., A.S.and R.F wrote the paper. All authors discussed the results and contributed to the final paper.

Corresponding authors

Correspondence to K. N. Houk or Rudi Fasan.

Ethics declarations

Competing interests

The authors have no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Sabine Flitsch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Computational analyses, Crystal data collection, NMR spectra, tables, figures and references.

Reporting Summary

Supplementary Data

1Initial and final configurations of MD trajectories.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Vargas, D.A., Ma, P. et al. Stereoselective construction of β-, γ- and δ-lactam rings via enzymatic C–H amidation. Nat Catal 7, 65–76 (2024). https://doi.org/10.1038/s41929-023-01068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01068-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing