Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics

Abstract

The catalytic conversion of lithium polysulfides is a promising way to inhibit the shuttling effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear, which prevents the rational design of cathode catalysts. Here we propose the machine-learning-assisted design of a binary descriptor for Li-S battery performance composed of a band match (IBand) and a lattice mismatch (ILatt) indexes, which captures the electronic and structural contributions of cathode materials. Among our Ni-based catalysts, NiSe2 exhibits a moderate IBand and the smallest ILatt and is predicted and subsequently verified to improve the sulfur reduction kinetics and cycling stability, even with a high sulfur loading of 15.0 mg cm−2 or at low temperature (−20 °C). A pouch cell with NiSe2 delivers a gravimetric specific energy of 402 Wh kg−1 under high sulfur loading and lean-electrolyte operation. Such a fundamental understanding of the catalytic activity from electronic and structural aspects offers a rational viewpoint to design Li–S battery catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction of electronic and structure descriptors.
Fig. 2: The influence of anions in TMCs from an electronic aspect.
Fig. 3: The influence of anions in TMCs from a structural aspect.
Fig. 4: Development of a BD to reveal the influence of anions on catalytic processes.
Fig. 5: The influence of anions in TMCs on the electrochemical performance of cathodes.

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Wild, M. et al. Lithium–sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477–3494 (2015).

  2. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article  CAS  Google Scholar 

  3. Peng, L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).

    Article  CAS  Google Scholar 

  4. Shi, Z. X., Ding, Y. F., Zhang, Q. & Sun, J. Y. Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: from strategic probing to mechanistic understanding. Adv. Energy Mater. 12, 2201056 (2022).

  5. Wang, P. et al. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021).

  6. Chen, H. et al. Catalytic materials for lithium–sulfur batteries: mechanisms, design strategies and future perspective. Mater. Today 52, 364–388 (2022).

  7. Tao, X. et al. Balancing surface adsorption and diffusion of lithium–polysulfides on non-conductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016).

  8. Zhou, G. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl Acad. Sci. USA 114, 840–845 (2017).

  9. Zhao, M. et al. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem. Int. Ed. 59, 9011–9017 (2020).

    Article  CAS  Google Scholar 

  10. Shi, Z. et al. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 33, e2103050 (2021).

  11. Shen, Z. H. et al. Cation-doped Zn–S catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).

  12. Han, Z. Y. et al. Catalytic effect in LiS batteries: from band theory to practical application. Mater. Today 57, 84–120 (2022).

  13. Zeng, P. et al. Propelling polysulfide redox conversion by d-band modulation for high sulfur loading and low-temperature lithium–sulfur batteries. J. Mater. Chem. A 9, 18526–18536 (2021).

  14. Wang, J. Y. et al. ‘Soft on rigid’ nanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium–polysulfide batteries. Nano Energy 78, 105293 (2020).

  15. Li, Z. et al. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 32, 1907444 (2020).

    Article  CAS  Google Scholar 

  16. Tian, Y. et al. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Adv. Mater. 32, 1904876 (2020).

  17. Jiang, B. et al. Crystal-facet engineering induced active tin-dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11, 2102995 (2021).

  18. Li, R. et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium–sulfur batteries. Nat. Commun. 12, 3102 (2021).

  19. Shen, Z. et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium–sulfur batteries. ACS Nano 14, 6673–6682 (2020).

  20. Han, Z. et al. Engineering dp orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. 33, e2105947 (2021).

  21. Liu, G. et al. Strengthened dp orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium–sulfur batteries. Nano Lett. 22, 6366–6374 (2022).

  22. Zhou, J. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li–S chemistry. Joule 2, 2681–2693 (2018).

  23. Zhang, Z. et al. Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium–sulfur batteries. Matter 3, 920–934 (2020).

  24. Wang, M. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5, 3041–3050 (2020).

  25. Liu, F. et al. Dual redox mediators accelerate the electrochemical kinetics of lithium–sulfur batteries. Nat. Commun. 11, 5215 (2020).

  26. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, R. et al. Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32, e2000315 (2020).

  28. Xiao, J. et al. Following the transient reactions in lithium–sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 15, 3309–3316 (2015).

  29. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  30. Liu, N. et al. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. Proc. Natl Acad. Sci. USA 116, 765–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, A. et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol. 15, 231–237 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, G. et al. Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li–S batteries. Sci. Adv. 6, eaay5098 (2020).

  33. Zhou, G. et al. Electrotunable liquid sulfur microdroplets. Nat. Commun. 11, 606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao, W. et al. P-doped NiTe2 with Te vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, e2106370 (2022).

  35. Wang, L. et al. Design rules of a sulfur redox electrocatalyst for lithium–sulfur batteries. Adv. Mater. 34, e2110279 (2022).

  36. Hou, W. et al. Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries. Adv. Mater. 34, e2202222 (2022).

  37. Zhao, M., Chen, X., Li, X. Y., Li, B. Q. & Huang, J. Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries. Adv. Mater. 33, e2007298 (2021).

  38. Zhao, C. X. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium–sulfur batteries. J. Am. Chem. Soc. 143, 19865–19872 (2021).

  39. Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

  40. Luo, L., Li, J., Yaghoobnejad Asl, H. & Manthiram, A. In situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries. ACS Energy Lett. 5, 1177–1185 (2020).

  41. Zhong, M. E. et al. A cost- and energy density-competitive lithium–sulfur battery.Energy Stor. Mater. 41, 588–598 (2021).

  42. Ma, Z. et al. Wide-temperature-range Li–S batteries enabled by thiodimolybdate [Mo2S12]2− as a dual-function molecular catalyst for polysulfide redox and lithium intercalation. ACS Nano 16, 14569–14581 (2022).

  43. Chen, Y. et al. Co–Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium–sulfur batteries. ACS Nano 13, 4731–4741 (2019).

  44. Kim, M.-S. et al. Facile and scalable fabrication of high-energy-density sulfur cathodes for pragmatic lithium–sulfur batteries. J. Power Sources 422, 104–112 (2019).

  45. Li, Y. et al. Two birds with one stone: interfacial engineering of multifunctional Janus separator for lithium–sulfur batteries. Adv. Mater. 34, 2107638 (2022).

  46. Luo, L., Chung, S. H., Yaghoobnejad Asl, H. & Manthiram, A. Long-life lithium–sulfurbatteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 30, 1804149 (2018).

  47. Qie, L. & Manthiram, A. High-energy-density lithium–sulfur batteries based on blade-cast pure sulfur electrodes. ACS Energy Lett. 1, 46–51 (2016).

  48. Fang, Z. et al. Mesoporous carbon nanotube aerogel–sulfur cathodes: A strategy to achieve ultrahigh areal capacity for lithium–sulfur batteries via capillary action. Carbon 166, 183–192 (2020).

  49. Hu, S. et al. Ionic-liquid-assisted synthesis of FeSe–MnSe heterointerfaces with abundant Se vacancies embedded in N, B co-doped hollow carbon microspheres for accelerating the sulfur reduction reaction. Adv. Mater. 34, 2204147 (2022).

  50. Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).

  51. Huang, Y. et al. Sulfur cathodes with self-organized cellulose nanofibers in stable Ah-level, >300 Wh kg−1 lithium–sulfur cells. Adv. Energy Mater. 12, 2202474 (2022).

  52. Zhao, C.-X. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium–sulfur batteries. J. Am. Chem. Soc. 143, 19865–19872 (2021).

  53. Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173, (2021).

  54. Zhao, M. et al. Redox co-mediation with organopolysulfides in working lithium–sulfur batteries. Chem 6, 3297–3311 (2020).

  55. Song, Y.-W. et al. Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8, 3031–3050 (2022).

  56. Chen, J. et al. Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).

  57. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

  58. Sander, J., Erb, R. M., Li, L., Gurijala, A. & Chiang, Y.-M. High-performance battery electrodes via magnetic templating. Nat. Energy 1, 16099 (2016).

    Article  CAS  Google Scholar 

  59. Kang, N. et al. Cathode porosity is a missing key parameter to optimize lithium–sulfur battery energy density. Nat. Commun. 10, 4597 (2019).

  60. Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).

  61. Kim, M. S. et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018).

  62. Liang, X. et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017).

    Article  CAS  Google Scholar 

  63. Cha, E. et al. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol. 13, 337–344 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  Google Scholar 

  65. Wang, Q. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article  CAS  Google Scholar 

  67. Ko, S. et al. Electrode potential influences the reversibility of lithium metal anodes. Nat. Energy 7, 1217–1224 (2022).

  68. Yin, Y. J. et al. Fire-extinguishing, recyclable liquefied-gas electrolytes for temperature-resilient lithium metal batteries. Nat. Energy 7, 548–559 (2022).

  69. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  70. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane–wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  71. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  73. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  74. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  75. Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition-metal oxides within the GGA + U framework. Phys. Rev. B 73, 195107 (2006).

  76. Ren, Y. X., Zhao, T. S., Liu, M., Tan, P. & Zeng, Y. K. Modeling of lithium–sulfur batteries incorporating the effect of Li2S precipitation. J. Power Sources 336, 115–125 (2016).

  77. Zhang, T., Marinescu, M., Walus, S. & Offer, G. J. Modelling transport-limited discharge capacity of lithium–sulfur cells. Electrochim. Acta 219, 502–508 (2016).

Download references

Acknowledgements

G.Z. acknowledges support from the National Key Research and Development Program of China (2021YFB2500200), the Joint Funds of the National Natural Science Foundation of China (U21A20174), the National Natural Science Foundation of China (no. 52072205), Shenzhen Science and Technology Program (KQTD20210811090112002), Guangdong Innovative and Entrepreneurial Research Team Program (2021ZT09L197), Start-up Fund and the Overseas Research Cooperation Fund of Tsinghua Shenzhen International Graduate School. T.W. was supported by the Fundamental Research Funds for the Central Universities (D5000220443) and Young Talent Fund of Association for Science and Technology in Shaanxi, China.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and Z.H. conceived the idea and designed the project. G.Z. supervised the experiments and edited the paper. Z.H., R.G., Y.J. and Z.L. performed the catalyst synthesis and tested the catalysts. T.W. contributed to the DFT calculations parts. S.T. and J.Z. contributed to the Pearson correlation and machine-learning analysis. M.Z. conducted the COMSOL simulations. All authors analysed the data and discussed the results.

Corresponding author

Correspondence to Guangmin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jinjin Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–50 and Tables 1–10.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Gao, R., Wang, T. et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat Catal 6, 1073–1086 (2023). https://doi.org/10.1038/s41929-023-01041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01041-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing