Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

An organic perspective on photocatalytic production of hydrogen peroxide

Photocatalytic hydrogen peroxide formation is an advancing field with various approaches motivated by the promise of a green oxidant and energy carrier for a sustainable future. An assessment on quantification methods, sacrificial agents and best practices is provided to avoid false positives and support progress in the field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration and energy diagram of the production of H2O2 over a photoactive semiconductor.
Fig. 2: Comparison of quantification techniques for H2O2.
Fig. 3: Production versus productivity.

References

  1. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    Article  CAS  Google Scholar 

  2. Zeng, X., Liu, Y., Hu, X. & Zhang, X. Green Chem. 23, 1466–1494 (2021).

    Article  CAS  Google Scholar 

  3. Ding, Y. et al. Matter 5, 2119–2167 (2022).

    Article  CAS  Google Scholar 

  4. Yu, W. et al. Nano Energy 104, 107906 (2022).

  5. Hou, H., Zeng, X. & Zhang, X. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).

    Article  CAS  Google Scholar 

  6. Sun, Y., Han, L. & Strasser, P. Chem. Soc. Rev. 49, 6605–6631 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, H., Cheng, J., Wang, L. & Xu, H. Chem. Mater. 34, 4259–4273 (2022).

    Article  CAS  Google Scholar 

  8. Guo, Y., Tong, X. & Yang, N. Nan-Micro Lett. 15, 77 (2023).

    Article  CAS  Google Scholar 

  9. Yamada, Y., Yoneda, M. & Fukuzumi, S. Energy Environ. Sci. 8, 1698–1701 (2015).

    Article  CAS  Google Scholar 

  10. Mennen, S. M. et al. Org. Process Res. Dev. 23, 1213–1242 (2019).

    Article  CAS  Google Scholar 

  11. Kato, S., Jung, J., Suenobu, T. & Fukuzumi, S. Energy Environ. Sci. 6, 3756–3764 (2013).

    Article  CAS  Google Scholar 

  12. Tsukamoto, D. et al. ACS Catal. 2, 599–603 (2012).

    Article  CAS  Google Scholar 

  13. Isaka, Y. et al. Chem. Commun. 54, 9270–9273 (2018).

    Article  CAS  Google Scholar 

  14. Zhao, W. et al. J. Am. Chem. Soc. 144, 9902–9909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gopakumar, A. et al. J. Am. Chem. Soc. 144, 2603–2613 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, T. et al. Nat. Commun. 13, 1034 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, L. et al. J. Am. Chem. Soc. 143, 19287–19293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, Z. et al. Energy Environ. Sci. 11, 2581–2589 (2018).

    Article  CAS  Google Scholar 

  19. Shiraishi, Y. et al. Nat. Mater. 18, 985–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Schneider, J. & Bahnemann, D. W. J. Phys. Chem. Lett. 4, 3479–3483 (2013).

    Article  CAS  Google Scholar 

  21. Krivtsov, I., Vazirani, A., Mitoraj, D. & Beranek, R. ChemCatChem 15, e202201215 (2023).

    Article  CAS  Google Scholar 

  22. Moon, B. C., Bayarkhuu, B., Zhang, K. A. I., Lee, D. K. & Byun, J. Energy Environ. Sci. 15, 5082–5092 (2022).

    Article  CAS  Google Scholar 

  23. Miglbauer, E., Gryszel, M. & Głowacki, E. D. Green Chem. 22, 673–677 (2020).

    Article  CAS  Google Scholar 

  24. Gill, T. M. & Zheng, X. Chem. Mater. 32, 6285–6294 (2020).

    Article  CAS  Google Scholar 

  25. Tantawi, O., Baalbaki, A., el Asmar, R. & Ghauch, A. Sci. Total Environ. 654, 107–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Nat. Energy 8, 361–371 (2023).

  27. Kisch, H. Angew. Chem. Int. Ed. 49, 9588–9589 (2010).

    Article  CAS  Google Scholar 

  28. Herrmann, J.-M. Appl. Catal. B 99, 461–468 (2010).

    Article  CAS  Google Scholar 

  29. Anastas, P. & Eghbali, N. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. L. Feringa or S. B. Beil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yongfa Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freese, T., Meijer, J.T., Feringa, B.L. et al. An organic perspective on photocatalytic production of hydrogen peroxide. Nat Catal 6, 553–558 (2023). https://doi.org/10.1038/s41929-023-00980-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00980-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing