Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks

Abstract

Organic semiconductors are attractive photocatalysts, but their quantum yields are limited by the transfer of photogenerated charges to the surface. A promising strategy for low-loss charge transfer is to shorten the distance from the bulk exciton coupling region to the catalyst surface. Here we employ the hydrogen-bonded organic framework 1,3,6,8-tetrakis(p-benzoic acid)pyrene (HOF-H4TBAPy) with hydrophilic one-dimensional micropore channels as a proof of concept for this approach. Under irradiation, photogenerated excitons rapidly transfer to the inner surface of adjacent micropores, engendering a mere 1.88 nm transfer route, thus significantly improving exciton utilization. When the micropore channel length does not exceed 0.59 μm, the sacrificial photocatalytic H2 evolution rate of HOF-H4TBAPy reaches 358 mmol h−1 g−1 and the apparent quantum yield at 420 nm is 28.6%. We further demonstrated a stable 1.03 mol day−1 m−2 H2 evolution on a 0.5 m2 HOF-H4TBAPy-loaded fibre under 1 Sun irradiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of HOF-H4TBAPy.
Fig. 2: Probing exciton transfer confined within micropores using ultrafast spectroscopy.
Fig. 3: Tuning the accessibility of micropores to enhance the contribution of micropore-confined excitons.
Fig. 4: Identification of reaction sites in micropores.
Fig. 5: Photocatalytic H2 evolution performance of HOF-H4TBAPy.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the text and Supplementary Information. Additional data and information are available from the corresponding author on request. Source data are provided with this paper.

References

  1. Lin, L. et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020).

    CAS  Google Scholar 

  2. Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6, 964–970 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    CAS  Google Scholar 

  5. Sprick, R. S. et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 137, 3265–3270 (2015).

    CAS  PubMed  Google Scholar 

  6. Wang, H. et al. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 142, 14007–14022 (2020).

    CAS  PubMed  Google Scholar 

  7. Sun, C. et al. Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ. Sci. 10, 1784–1791 (2017).

    CAS  Google Scholar 

  8. Mikhnenko, O. V., Blom, P. W. M. & Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Google Scholar 

  9. Liu, A. et al. Panchromatic ternary polymer dots involving sub-picosecond energy and charge transfer for efficient and stable photocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 2875–2885 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Woods, D. J., Sprick, R. S., Smith, C. L., Cowan, A. J. & Cooper, A. I. A solution-processable polymer photocatalyst for hydrogen evolution from water. Adv. Energy Mater. 7, 1700479 (2017).

    Google Scholar 

  11. Kosco, J. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 7, 340–351 (2022).

    CAS  Google Scholar 

  12. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    CAS  PubMed  Google Scholar 

  13. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pachfule, P. et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140, 1423–1427 (2018).

    CAS  PubMed  Google Scholar 

  15. Yang, S. et al. Transformation of covalent organic frameworks from N-acylhydrazone to oxadiazole linkages for smooth electron transfer in photocatalysis. Angew. Chem. Int. Ed. 61, e202115655 (2022).

    CAS  Google Scholar 

  16. Wang, B., Lin, R. B., Zhang, Z., Xiang, S. & Chen, B. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142, 14399–14416 (2020).

    CAS  PubMed  Google Scholar 

  17. Aitchison, C. M. et al. Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. J. Mater. Chem. A 8, 7158–7170 (2020).

    CAS  Google Scholar 

  18. Yin, Q. et al. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed. 57, 7691–7696 (2018).

    CAS  Google Scholar 

  19. Feng, J. F., Liu, T. F. & Cao, R. An electrochromic hydrogen-bonded organic framework film. Angew. Chem. Int. Ed. 59, 22392–22396 (2020).

    CAS  Google Scholar 

  20. Zhao, W. et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 1, 87–95 (2022).

    Google Scholar 

  21. Bai, Y. et al. Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory. J. Am. Chem. Soc. 141, 9063–9071 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiitala, K. W., Hoye, T. R. & Cramer, C. J. Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution. J. Chem. Theory Comput. 2, 1085–1092 (2006).

    CAS  PubMed  Google Scholar 

  23. Seifrid, M., Reddy, G. N. M., Chmelka, B. F. & Bazan, G. C. Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy. Nat. Rev. Mater. 5, 910–930 (2020).

    CAS  Google Scholar 

  24. Le Bahers, T., Adamo, C. & Ciofini, I. A qualitative index of spatial extent in charge-transfer excitations. J. Chem. Theory Comput. 7, 2498–2506 (2011).

    PubMed  Google Scholar 

  25. Hestand, N. J. et al. Extended-charge-transfer excitons in crystalline supramolecular photocatalytic scaffolds. J. Am. Chem. Soc. 138, 11762–11774 (2016).

    CAS  PubMed  Google Scholar 

  26. Yang, L. et al. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun. 8, 1–7 (2017).

    Google Scholar 

  27. Guo, Y., Dai, B., Peng, J., Wu, C. & Xie, Y. Electron transport in low dimensional solids: a surface chemistry perspective. J. Am. Chem. Soc. 141, 723–732 (2019).

    CAS  PubMed  Google Scholar 

  28. Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).

    CAS  PubMed  Google Scholar 

  29. Kazantsev, R. V. et al. Molecular control of internal crystallization and photocatalytic function in supramolecular nanostructures. Chem 4, 1596–1608 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin, X.-H. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018).

    CAS  PubMed  Google Scholar 

  31. Pinto, R. M. et al. Effect of molecular stacking on exciton diffusion in crystalline organic semiconductors. J. Am. Chem. Soc. 137, 7104–7110 (2015).

    CAS  PubMed  Google Scholar 

  32. Yu, J., Park, J., Van Wyk, A., Rumbles, G. & Deria, P. Excited-state electronic properties in Zr-based metal–organic frameworks as a function of a topological network. J. Am. Chem. Soc. 140, 10488–10496 (2018).

    CAS  PubMed  Google Scholar 

  33. Flanders, N. C. et al. Large exciton diffusion coefficients in two-dimensional covalent organic frameworks with different domain sizes revealed by ultrafast exciton dynamics. J. Am. Chem. Soc. 142, 14957–14965 (2020).

    CAS  PubMed  Google Scholar 

  34. Chandrabose, S. et al. High exciton diffusion coefficients in fused ring electron acceptor films. J. Am. Chem. Soc. 141, 6922–6929 (2019).

    CAS  PubMed  Google Scholar 

  35. Wiesenhofer, H. et al. Limitations of the Förster description of singlet exciton migration: the illustrative example of energy transfer to ketonic defects in ladder-type poly(para-phenylenes). Adv. Funct. Mater. 15, 155–160 (2005).

    CAS  Google Scholar 

  36. Murthy, D. H. K. et al. Origin of the overall water splitting activity of Ta3N5 revealed by ultrafast transient absorption spectroscopy. Chem. Sci. 10, 5353–5362 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    CAS  Google Scholar 

  38. Li, L., Kazoe, Y., Mawatari, K., Sugii, Y. & Kitamori, T. Viscosity and wetting property of water confined in extended nanospace simultaneously measured from highly-pressurized meniscus motion. J. Phys. Chem. Lett. 3, 2447–2452 (2012).

    CAS  PubMed  Google Scholar 

  39. Kosco, J. et al. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 8, 1802181 (2018).

    Google Scholar 

  40. Li, L. et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J. Am. Chem. Soc. 138, 7681–7686 (2016).

    CAS  PubMed  Google Scholar 

  41. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  42. Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).

    CAS  Google Scholar 

  43. Cho, K. H. et al. Rational design of a robust aluminum metal-organic framework for multi-purpose water-sorption-driven heat allocations. Nat. Commun. 11, 11–18 (2020).

    Google Scholar 

  44. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    CAS  Google Scholar 

  45. Wang, Z. et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 1, 756–763 (2018).

    CAS  Google Scholar 

  46. Moss, B. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021).

    CAS  PubMed  Google Scholar 

  47. Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    CAS  PubMed  Google Scholar 

  48. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    CAS  PubMed  Google Scholar 

  49. Zhao, D. et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6, 388–397 (2021).

    CAS  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    CAS  Google Scholar 

  51. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 1–5 (2006).

    Google Scholar 

  52. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Google Scholar 

  53. Frisch, M. J. et al. Gaussian 16 revision B.01 (Gaussian Inc., 2016).

  54. Ma, J., Zhang, X., Basarić, N. & Phillips, D. L. Direct observation of photoinduced ultrafast generation of singlet and triplet quinone methides in aqueous solutions and insight into the roles of acidic and basic sites in quinone methide formation. J. Am. Chem. Soc. 139, 18349–18357 (2017).

    CAS  PubMed  Google Scholar 

  55. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21872077), the National Key Research and Development Project of China (2020YFA0710304) and the Collaborative Innovation Center for Regional Environmental Quality. We thank Y. Weng, Z. Wang and Y. Xu (all IOP) for their support on the transient absorption spectroscopy tests. We are grateful to R. Zong, S. Yue and C. Ma (THU, Analysis Center) for their help with the electron microscopic analysis. We are also very grateful to E. Zhu (JLNU) for his useful suggestions in organic synthesis. Finally, we thank S. Yang, D. Wang (IMU) and Y. Guo (HNU) for their technical work in constructing outdoor photocatalytic systems.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., Y.Z. and Q.Z. co-proposed the idea and designed the experiments. Y.G. carried out the route design of organic synthesis and the sample synthesis. Y.G. and Q.Z. performed the ultrafast spectroscopic measurements and analysed the data. Y.G. performed the DFT calculations. Q.Z. carried out the crystal engineering design and physical modelling. Y.G and Q.Z. co-analysed the results. Y.G. and Y.Z. supervised the project. All the authors discussed the results and contributed to the writing of the paper.

Corresponding authors

Correspondence to Yan Guo or Yongfa Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Robert Godin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figures 1–58, Notes 1–6, Tables 1–11 and References 1–78.

Supplementary Video 1

A plate reactor evolving and expelling H2 gas bubbles under an Xe lamp array (irradiation intensity: ~100 mW cm−2).

Supplementary Video 2

A plate reactor evolving and expelling H2 gas bubbles under natural sunlight (irradiation intensity: ~12.2 mW cm−2).

Supplementary Video 3

Nucleation of H2 bubbles on a non-woven fabric loaded with HOF under irradiation from a Xe lamp.

Supplementary Data 1

DFT atomic coordinates of the H4TBAPy molecule.

Supplementary Data 2

DFT atomic coordinates of a HOF crystal.

Source data

Source Data Fig. 1

Source data involved in Fig. 1.

Source Data Fig. 2

Source data involved in Fig. 2.

Source Data Fig. 3

Source data involved in Fig. 3.

Source Data Fig. 4

Source data involved in Fig. 4.

Source Data Fig. 5

Source data involved in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Guo, Y. & Zhu, Y. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat Catal 6, 574–584 (2023). https://doi.org/10.1038/s41929-023-00972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00972-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing