Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zeolites as equilibrium-shifting agents in shuttle catalysis

Abstract

The catalytic shuttling of functional moieties has emerged as a promising strategy to substitute and diversify traditional hydrofunctionalization technologies. However, these reactions are reversible due to their isodesmic nature, which limits their applicability to a select array of donor and acceptor molecules, and poses substantial challenges with regard to atom economy and practicality. Here we show an approach that harnesses the shape-selective and catalytic properties of zeolites to drive the shuttling equilibrium of transfer hydrocyanation and transfer hydroformylation reactions to near-completion. The zeolites irreversibly convert the transfer reaction co-products in an exergonic tandem reaction while excluding the substrates via pore size restrictions. Through fine-tuning of the zeolite’s properties, yield increases of up to 80% can be achieved, enabling diversification of nitrile donors to propionitrile and aldehyde acceptors to unactivated olefins. Mechanistic and spectroscopic studies highlight the unique synergy between the zeolites and the homogeneous transfer catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Driving the equilibrium of catalytic shuttle reactions.
Fig. 2: Effect of zeolites on reaction performance.
Fig. 3: Tandem reactions catalysed by zeolites containing acid and/or transition metal sites.
Fig. 4: Mechanistic and spectroscopic studies of H-ZSM-5-assisted transfer hydrocyanation with propionitrile.
Fig. 5: Substrate scope of the zeolite-assisted transfer hydrocyanation.
Fig. 6: Substrate scope of the zeolite-assisted transfer hydroformylation.

Similar content being viewed by others

Data availability

The findings of this study are available within the article and its supplementary information. All data are available from the authors upon reasonable request.

References

  1. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    CAS  Google Scholar 

  2. Bhawal, B. N. & Morandi, B. Catalytic transfer functionalization through shuttle catalysis. ACS Catal. 6, 7528–7535 (2016).

    CAS  Google Scholar 

  3. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    CAS  Google Scholar 

  4. Bhawal, B. N. & Morandi, B. Shuttle catalysis—new strategies in organic synthesis. Chem. A Eur. J. 23, 12004–12013 (2017).

    CAS  Google Scholar 

  5. Fang, X., Yu, P. & Morandi, B. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation. Science 351, 832–836 (2016).

    CAS  PubMed  Google Scholar 

  6. Fang, X., Cacherat, B. & Morandi, B. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nat. Chem. 9, 1105–1109 (2017).

    CAS  PubMed  Google Scholar 

  7. Murphy, S. K., Park, J. W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C-C bond cleavage by transfer hydroformylation. Science 347, 56–60 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Simonneau, A. & Oestreich, M. 3-silylated cyclohexa-1,4-dienes as precursors for gaseous hydrosilanes: the B(C6F5)3-catalyzed transfer hydrosilylation of alkenes. Angew. Chem. Int. Ed. 52, 11905–11907 (2013).

    CAS  Google Scholar 

  9. Lian, Z., Bhawal, B. N., Yu, P. & Morandi, B. Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science 356, 1059–1063 (2017).

    CAS  PubMed  Google Scholar 

  10. Mulryan, D., Rodwell, J., Phillips, N. A. & Crimmin, M. R. Au(I) Catalyzed HF transfer: tandem alkyne hydrofluorination and perfluoroarene functionalisation. ACS Catal 12, 3411–3419 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. De La Higuera Macias, M. & Arndtsen, B. A. Functional group transposition: a palladium-catalyzed metathesis of Ar-X σ-bonds and acid chloride synthesis. J. Am. Chem. Soc. 140, 10140–10144 (2018).

    PubMed  Google Scholar 

  12. Rong, Z. Q., Lim, H. N. & Dong, G. Intramolecular acetyl transfer to olefins by catalytic C-C bond activation of unstrained ketones. Angew. Chem. Int. Ed. 57, 475–479 (2018).

    CAS  Google Scholar 

  13. Tan, G., Wu, Y., Shi, Y. & You, J. Syngas-free highly regioselective rhodium-catalyzed transfer hydroformylation of alkynes to α,β-unsaturated aldehydes. Angew. Chem. Int. Ed. 58, 7440–7444 (2019).

    CAS  Google Scholar 

  14. Yu, P., Bismuto, A. & Morandi, B. Iridium-catalyzed hydrochlorination and hydrobromination of alkynes by shuttle catalysis. Angew. Chem. Int. Ed. 59, 2904–2910 (2020).

    CAS  Google Scholar 

  15. Li, Y., Bao, G. & Wu, X. F. Palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers and thioesters. Chem. Sci. 11, 2187–2192 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Delcaillau, T., Boehm, P. & Morandi, B. Nickel-catalyzed reversible functional group metathesis between aryl nitriles and aryl thioethers. J. Am. Chem. Soc. 143, 3723–3728 (2021).

    CAS  PubMed  Google Scholar 

  17. Dong, X., Roeckl, J. L., Waldvogel, S. R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).

    CAS  PubMed  Google Scholar 

  18. Veth, L., Grab, H. A., Martínez, S., Antheaume, C. & Dydio, P. Transfer C-H borylation of alkenes under Rh(I) catalysis: insight into the synthetic capacity, mechanism and selectivity control. Chem. Catal. 2, 762–778 (2022).

    CAS  Google Scholar 

  19. Bhunia, A., Bergander, K. & Studer, A. Cooperative palladium/Lewis acid-catalyzed transfer hydrocyanation of alkenes and alkynes using 1-methylcyclohexa-2,5-diene-1-carbonitrile. J. Am. Chem. Soc. 140, 16353–16359 (2018).

    CAS  PubMed  Google Scholar 

  20. Bhawal, B. N., Reisenbauer, J. C., Ehinger, C. & Morandi, B. Overcoming selectivity issues in reversible catalysis: a transfer hydrocyanation exhibiting high kinetic control. J. Am. Chem. Soc. 142, 10914–10920 (2020).

    CAS  PubMed  Google Scholar 

  21. Luo, X. et al. Mechanism of rhodium-catalyzed formyl activation: a computational study. J. Org. Chem. 81, 2320–2326 (2016).

    CAS  PubMed  Google Scholar 

  22. Fürstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Ed. 39, 3012–3043 (2000).

    Google Scholar 

  23. Allian, A. D. et al. Process safety in the pharmaceutical industry—Part I: thermal and reaction hazard evaluation processes and techniques. Org. Process Res. Dev. 24, 2529–2548 (2020).

    CAS  Google Scholar 

  24. Orecchia, P., Yuan, W. & Oestreich, M. Transfer hydrocyanation of α- and α,β-substituted styrenes catalyzed by boron Lewis acids. Angew. Chem. Int. Ed. 58, 3579–3583 (2019).

    CAS  Google Scholar 

  25. Wang, C. S., Yu, Y., Sunada, Y., Wang, C. & Yoshikai, N. Cobalt-catalyzed carbo- and hydrocyanation of alkynes via C-CN bond activation. ACS Catal 12, 4054–4066 (2022).

    CAS  Google Scholar 

  26. Landis, C. R. Construction and deconstruction of aldehydes by transfer hydroformylation. Science 347, 29–30 (2015).

    CAS  PubMed  Google Scholar 

  27. Wasilke, J. C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    CAS  PubMed  Google Scholar 

  28. Frye, N. L., Bhunia, A. & Studer, A. Nickel-catalyzed Markovnikov transfer hydrocyanation in the absence of Lewis acid. Org. Lett. 22, 4456–4460 (2020).

    CAS  PubMed  Google Scholar 

  29. Fan, C. & Zhou, Q. L. Nickel-catalyzed group transfer of radicals enables hydrocyanation of alkenes and alkynes. Chem. Catal. 1, 117–128 (2021).

    CAS  Google Scholar 

  30. Reisenbauer, J. C., Bhawal, B. N., Jelmini, N. & Morandi, B. Development of an operationally simple, scalable and HCN-free transfer hydrocyanation protocol using an air-stable Nickel precatalyst. Org. Process Res. Dev. 26, 1165–1173 (2022).

    CAS  Google Scholar 

  31. Morandi, B., Fang, Y. & Yu, P. Process for the catalytic reversible alkene-nitrile interconversion. US patent 10,597,356 B2 (2020).

  32. Ni, S. F., Yang, T. L. & Dang, L. Transfer hydrocyanation by Nickel(0)/Lewis acid cooperative catalysis, mechanism investigation and computational prediction of shuttle catalysts. Organometallics 36, 2746–2754 (2017).

    CAS  Google Scholar 

  33. Lenges, C. P. & Brookhart, M. Isomerization of aldehydes catalyzed by rhodium(I) olefin complexes. Angew. Chem. Int. Ed. 38, 3533–3537 (1999).

    CAS  Google Scholar 

  34. Corma, A. & Iborra, S. Oligomerization of alkenes. Catal. Fine Chem. Synth. 4, 125 (2006).

    CAS  Google Scholar 

  35. Sanati, M., Hörnell, C. & Järäs, S. G. The oligomerization of alkenes by heterogeneous catalysts. Catalysis 14, 236–288 (2007).

    Google Scholar 

  36. Skupińska, J. Oligomerization of α-olefins to higher oligomers. Chem. Rev. 91, 613–648 (1991).

    Google Scholar 

  37. Al-Jarallah, A. M., Anabtawi, J. A., Siddiqui, M. A. B., Aitani, A. M. & Al-Sa’doun, A. W. Ethylene dimerization and oligomerization to butene-1 and linear α-olefins. A review of catalytic systems and processes. Catal. Today 14, 1–121 (1992).

    Google Scholar 

  38. Ghosh, A. K. & Kevan, L. Catalytic and ESR studies of ethylene dimerization on palladium-exchanged Na-X and Ca-X zeolites. J. Phys. Chem. 92, 4439–4446 (1988).

    CAS  Google Scholar 

  39. Lallemand, M., Finiels, A., Fajula, F. & Hulea, V. Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Appl. Catal. A Gen. 301, 196–201 (2006).

    CAS  Google Scholar 

  40. O’connor, C. T. & Kojima, M. Alkene oligomerization. Catal. Today 6, 329–349 (1990).

    Google Scholar 

  41. Finiels, A., Fajula, F. & Hulea, V. Nickel-based solid catalysts for ethylene oligomerization—a review. Catal. Sci. Technol. 4, 2412–2426 (2014).

    CAS  Google Scholar 

  42. Wang, S. & Iglesia, E. Mechanism of isobutanal-isobutene Prins condensation reactions on solid Brønsted acids. ACS Catal. 6, 7664–7684 (2016).

    CAS  Google Scholar 

  43. Arundale, E. & Mikeska, L. A. The olefin-aldehyde condensation. The Prins reaction. Chem. Rev. 51, 505–555 (1952).

    CAS  Google Scholar 

  44. Vasiliadou, E. S., Li, S., Caratzoulas, S. & Lobo, R. F. Formaldehyde-isobutene Prins condensation over MFI-type zeolites. Catal. Sci. Technol. 8, 5794–5806 (2018).

    CAS  Google Scholar 

  45. Wilshier, K. G. Propene oligomerization over H-ZSM-5 zeolite. Stud. Surf. Sci. Catal. 36, 621–625 (1988).

    CAS  Google Scholar 

  46. Sarazen, M. L., Doskocil, E. & Iglesia, E. Effects of void environment and acid strength on alkene oligomerization selectivity. ACS Catal. 6, 7059–7070 (2016).

    CAS  Google Scholar 

  47. Kuo, T. W. & Tan, C. S. Alkylation of toluene with propylene in supercritical carbon dioxide over chemical liquid deposition HZSM-5 pellets. Ind. Eng. Chem. Res. 40, 4724–4730 (2001).

    CAS  Google Scholar 

  48. Doyle, M., Us, I. L., Anderson, S. L. & Plaines, D. Alkylation of aromatic hydrocarbons. US patent 4,469,908 (1984).

  49. Grigor’eva, N. G., Serebrennikov, D. V., Bubennov, S. V. & Kutepov, B. I. Isoamylene oligomerization over zeolite catalysts. Pet. Chem. 61, 183–189 (2021).

    Google Scholar 

  50. Hauge, K., Bergene, E., Chen, D., Fredriksen, G. R. & Holmen, A. Oligomerization of isobutene over solid acid catalysts. Catal. Today 100, 463–466 (2005).

    CAS  Google Scholar 

  51. Chang, C. D., Chu, C. T. W., Miale, J. N., Bridger, R. F. & Calvert, R. B. Aluminum insertion into high silica zeolite frameworks. 1. Reaction with aluminum halides. J. Am. Chem. Soc. 106, 8143–8146 (1984).

    CAS  Google Scholar 

  52. Batool, S. R., Sushkevich, V. L. & van Bokhoven, J. A. Correlating Lewis acid activity to extra-framework aluminum species in zeolite Y introduced by ion-exchange. J. Catal. 408, 24–35 (2022).

    CAS  Google Scholar 

  53. Lang, S. et al. Mechanisms of the AlCl3 modification of siliceous microporous and mesoporous catalysts investigated by multi-nuclear solid-state NMR. Top. Catal. 60, 1537–1553 (2017).

    CAS  Google Scholar 

  54. Marcilly, C. R. Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes. Top. Catal. 13, 357–366 (2000).

    CAS  Google Scholar 

  55. Csicsery, S. M. Catalysis by shape selective zeolites-science and technology. Pure Appl. Chem. 58, 841–856 (1986).

    CAS  Google Scholar 

  56. Teketel, S. et al. Shape selectivity in the conversion of methanol to hydrocarbons: the catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48 and EU-1. ACS Catal. 2, 26–37 (2011).

    Google Scholar 

  57. Xue, Y. et al. Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites. Microporous Mesoporous Mater. 312, 110803 (2021).

    CAS  Google Scholar 

  58. Bugaev, A. L. et al. The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catal. Today 336, 40–44 (2019).

    CAS  Google Scholar 

  59. Rodriguez-González, L. et al. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Appl. Catal. A Gen. 328, 174–182 (2007).

    Google Scholar 

  60. Wagschal, S. et al. Formation of XPhos-ligated palladium(0) complexes and reactivity in oxidative additions. Chem. Eur. J. 25, 6980–6987 (2019).

    CAS  PubMed  Google Scholar 

  61. Fang, X., Yu, P., Prina Cerai, G. & Morandi, B. Unlocking Mizoroki-Heck-type reactions of aryl cyanides using transfer hydrocyanation as a turnover-enabling step. Chem. Eur. J. 22, 15629–15633 (2016).

    CAS  PubMed  Google Scholar 

  62. Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. Pharmaceutical Substances (Thieme, 2011).

Download references

Acknowledgements

We thank J. Vercammen for insights on zeolite synthesis and manipulation, K. Lomachenko for help with XAS measurements, G. O’Rourke for assistance with TGA experiments, C. Marquez for help with ICP measurements, and C. Cheung for providing the scanning electron microscopy images. The XAS experiments were performed at beamline BM23 of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). D.D.V. and J.D. are grateful to KULeuven (C1 project) and FWO (G0781118N with ARSS, Slovenia; G0F2320N) for funding. A.K. and G.M. acknowledge financial support from the Slovenian Research Agency (research core funding no. P1-0021 and project no. N1-0079).

Author information

Authors and Affiliations

Authors

Contributions

D.D.V. and J.D. were responsible for the conception, design and interpretation of the experiments. J.D. and J.W. performed the experiments and analysed the data. J.D., N.V.V. and A.L.B. conceived the design of the XAS experiments, and A.L.B. and O.A.U. were responsible for data processing. A.K. and G.M. conceived and performed the NMR experiments. The paper was written by J.D. and D.D.V., with contributions from all authors.

Corresponding author

Correspondence to Dirk De Vos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–47, Tables 1–28 and References.

Supplementary Data 1

Computational geometry optimization data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallenes, J., Wuyts, J., Van Velthoven, N. et al. Zeolites as equilibrium-shifting agents in shuttle catalysis. Nat Catal 6, 495–505 (2023). https://doi.org/10.1038/s41929-023-00967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00967-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing