Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions

Abstract

It is of interest to extend the reach of CO2 and CO electrochemistry to the synthesis of products with molecular weights higher than the C1 and C2 seen in most prior reports carried out near ambient conditions. Here we present a cascade C1–C2–C4 system that combines electrochemical and thermochemical reactors to produce C4H10 selectively at ambient conditions. In a C2H4 dimerization reactor, we directly upgrade the gas outlet stream of the CO2 or CO electrolyser without purification. We find that CO, which is present alongside C2H4, enhances C2H4 dimerization selectivity to give C4H10 to 95%, a much higher performance than when a CO2 electrolyser is used instead. We achieve an overall two-stage CO-to-C4H10 cascade selectivity of 43%. Mechanistic investigations, complemented by density functional theory calculations reveal that increased CO coverage favours C2H4 dimerization and hydrogenation of *CxHy adsorbates, as well as destabilizes the *C4H9 intermediate, and so promotes the selective production of the target alkane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional pathway and cascade system for C4 hydrocarbon production.
Fig. 2: Mechanistic insights into highly selective C4H10 generation.
Fig. 3: Cascade systems for C4 hydrocarbon production.
Fig. 4: Performance of cascade eCO-to-C4 system.
Fig. 5: Carbon footprint and energy assessment for C4 production.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings of this study are provided with the paper and its Supplementary Information files. All the data in the study are available from the corresponding author upon reasonable request.

References

  1. Lange, J.-P. Towards circular carbo-chemicals—the metamorphosis of petrochemicals. Energy Environ. Sci. 14, 4358–4376 (2021).

    Article  CAS  Google Scholar 

  2. Zhou, Y. et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 5, 545–554 (2022).

    Article  CAS  Google Scholar 

  3. Calvinho, K. U. et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018).

    Article  CAS  Google Scholar 

  4. Choi, M., Bong, S., Kim, J. W. & Lee, J. Formation of 1-butanol from CO2 without *CO dimerization on a phosphorus-rich copper cathode. ACS Energy Lett. 6, 2090–2095 (2021).

    Article  CAS  Google Scholar 

  5. Finiels, A., Fajula, F. & Hulea, V. Nickel-based solid catalysts for ethylene oligomerization—a review. Catal. Sci. Technol. 4, 2412–2426 (2014).

    Article  CAS  Google Scholar 

  6. Xu, Z. et al. Ethylene dimerization and oligomerization to 1-butene and higher olefins with chromium-promoted cobalt on carbon catalyst. ACS Catal. 8, 2488–2497 (2018).

    Article  CAS  Google Scholar 

  7. Agirrezabal-Telleria, I. et al. Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nat. Commun. 10, 2076 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boulamanti, A. & Moya, J. A. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Chemical and Petrochemical Industry Report 9789279657344 (EU Science Hub, 2017).

  9. Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride‐induced bi‐phasic Cu2O–Cu catalyst. Angew. Chem. 127, 14914–14918 (2015).

    Article  Google Scholar 

  10. Ting, L. R. L. et al. Electrochemical reduction of carbon dioxide to 1‐butanol on oxide‐derived copper. Angew. Chem. 132, 21258–21265 (2020).

    Article  Google Scholar 

  11. 1-Butene (Korea Petrochemical Ind. Co., accessed 1 May 2022); https://www.kpic.co.kr/hp/en/product/olefin/1-butene.asp

  12. Metzger, E. D., Brozek, C. K., Comito, R. J. & Dincă, M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehrmaier, A. et al. Dimerization of linear butenes on zeolite-supported Ni2+. ACS Catal. 9, 315–324 (2018).

    Article  Google Scholar 

  14. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).

    Article  CAS  Google Scholar 

  15. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  16. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Xie, Z. et al. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 11, 1887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye, R.-P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui, M. et al. Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. Chem 7, 726–737 (2021).

    Article  CAS  Google Scholar 

  20. Gomez, E. et al. Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nat. Commun. 9, 1398 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ramirez, A. et al. Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nat. Commun. 12, 5914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui, X. et al. Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catal. 9, 3866–3876 (2019).

    Article  CAS  Google Scholar 

  23. Wei, J. et al. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catal. 8, 9958–9967 (2018).

    Article  CAS  Google Scholar 

  24. Sharma, D., Rodriguez, D. G., Gleeson, M. A., Fredriksson, H. O. & Niemantsverdriet, J. H. Mechanistic insight into carbon–carbon bond formation on cobalt under simulated Fischer–Tropsch synthesis conditions. Nat. Commun. 11, 750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kropp, T., Lu, Z., Li, Z., Chin, Y.-H. C. & Mavrikakis, M. Anionic single-atom catalysts for CO oxidation: support-independent activity at low temperatures. ACS Catal. 9, 1595–1604 (2019).

    Article  CAS  Google Scholar 

  26. Lyu, S. et al. Role of residual CO molecules in OX–ZEO relay catalysis for syngas direct conversion. ACS Catal. 11, 4278–4287 (2021).

    Article  Google Scholar 

  27. Chang, X., Malkani, A., Yang, X. & Xu, B. Mechanistic insights into electroreductive C–C coupling between CO and acetaldehyde into multicarbon products. J. Am. Chem. Soc. 142, 2975–2983 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Gomez, E., Yan, B., Kattel, S. & Chen, J. G. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat. Rev. Chem. 3, 638–649 (2019).

    Article  CAS  Google Scholar 

  29. Verma, S., Lu, S. & Kenis, P. J. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    Article  CAS  Google Scholar 

  30. Moussa, S., Concepción, P., Arribas, M. A. & Martínez, A. Nature of active nickel sites and initiation mechanism for ethylene oligomerization on heterogeneous Ni-beta catalysts. ACS Catal. 8, 3903–3912 (2018).

    Article  CAS  Google Scholar 

  31. Lin, L. et al. Heterogeneous catalysis in water. JACS Au 1, 1834–1848 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, T. et al. Styrene hydroformylation with in situ hydrogen: regioselectivity control by coupling with the low‐temperature water–gas shift reaction. Angew. Chem. Int. Ed. 132, 7500–7504 (2020).

    Article  Google Scholar 

  33. Xu, Y. et al. Direct conversion of CO and H2O into liquid fuels under mild conditions. Nat. Commun. 10, 1389 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robinson, R. Jr, McGuinness, D. S. & Yates, B. F. The mechanism of ethylene dimerization with the Ti(OR′)4/AlR3 catalytic system: DFT studies comparing metallacycle and Cossee proposals. ACS Catal. 3, 3006–3015 (2013).

    Article  CAS  Google Scholar 

  35. Metzger, E. D., Comito, R. J., Hendon, C. H. & Dincă, M. Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4l. J. Am. Chem. Soc. 139, 757–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Brogaard, R. Y. & Olsbye, U. Ethene oligomerization in Ni-containing zeolites: theoretical discrimination of reaction mechanisms. ACS Catal. 6, 1205–1214 (2016).

    Article  CAS  Google Scholar 

  37. Li, X. et al. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni–NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 32, 2003414 (2020).

    Article  CAS  Google Scholar 

  38. Roh, K. et al. Early-stage evaluation of emerging CO2 utilization technologies at low technology readiness levels. Green Chem. 22, 3842–3859 (2020).

    Article  CAS  Google Scholar 

  39. Nabil, S. K., McCoy, S. & Kibria, M. G. Comparative life cycle assessment of electrochemical upgrading of CO2 to fuels and feedstocks. Green Chem. 23, 867–880 (2021).

    Article  Google Scholar 

  40. Müller, L. J. et al. The carbon footprint of the carbon feedstock CO2. Energy Environ. Sci. 13, 2979–2992 (2020).

    Article  Google Scholar 

  41. Elgowainy, A. et al. Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries. Environ. Sci. Technol. 48, 7612–7624 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Nasir, Z., Ali, A., Shakir, M. & Wahab, R. Silica-supported NiO nanocomposites prepared via a sol–gel technique and their excellent catalytic performance for one-pot multicomponent synthesis of benzodiazepine derivatives under microwave irradiation. New J. Chem. 41, 5893–5903 (2017).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  51. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  52. Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 5, 2811–2818 (2020).

    Article  CAS  Google Scholar 

  53. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  54. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All DFT calculations were performed on the Niagara supercomputer of the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, Ontario Research Fund Research Excellence Program and the University of Toronto. M.G.L. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A03039988). J.W.Y. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A13046700).

Author information

Authors and Affiliations

Authors

Contributions

M.G.L. designed the project, performed most of the experiments on C2H4 dimerization and C1–C2–C4 cascade systems. X.-Y.L. and P.O. performed the DFT calculations. A.O. fabricated the electrodes for eCORR and analysed the energy cost. J.W. contributed the carbon footprint analysis. Y.L. and J.E.H. contributed the system design. R.D., J.L. and Y-.H.C. participated in the chemisorption analysis. J.A. performed the X-ray diffraction analysis. H.K.P. conducted the XPS and FTIR analyses. J.W.Y. participated in the scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis. B.C. participated in the transmission electron microscopy analysis. G.L. contributed to the FTIR analysis and GC measurement. T.P. contributed to the GC–MS analysis. D.S. and E.H.S. supervised the project. M.G.L., X.-Y.L., A.O. and J.W. wrote and revised the manuscript. All the authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Alexander Mitsos, Feng Jiao, Gonzalo Prieto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–10, Notes 1–9 and references.

Supplementary Data 1

DFT calculations of Fig. 2c and Supplementary Figs. 5 and 6.

Source data

Source Data Fig. 2

Data points as displayed in Fig. 2a,b.

Source Data Fig. 3

Data points as displayed in Fig. 3b,e,f.

Source Data Fig. 4

Data points as displayed in Fig. 4a–f.

Source Data Fig. 5

Data points as displayed in Fig. 5a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.G., Li, XY., Ozden, A. et al. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat Catal 6, 310–318 (2023). https://doi.org/10.1038/s41929-023-00937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00937-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing