Abstract
Understanding sulfur conversion chemistry is key to the development of sulfur-based high-energy-density batteries. However, unclear relationships between the electronic structure of the catalyst and its activity are the major problem. Here, we provide a direct correlation between the p electron gain of S in p-block metal sulfides and the apparent activation energies (Ea) for the sulfur reduction reaction (SRR), in particular, Li2Sn to Li2S conversion, which is the rate-determining step of the SRR. The maximum p charge occurs in bismuth sulfide and results in the lowest Ea and a high SRR rate in the cathode. Li–S batteries with the Bi2S3 catalyst work steadily at a high rate of 5.0C with a high-capacity retention of ~85% after 500 cycles. A high areal capacity of ~21.9 mAh cm−2 was obtained under a high sulfur loading of 17.6 mg cm−2 but a low electrolyte/sulfur ratio of 7.5 μl mg−1.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
Source data are provided with this paper. All other data are available from the authors on reasonable request.
References
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).
Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).
Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).
Peng, L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).
Yuan, Z. et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).
Zhang, M. et al. Adsorption–catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10, 1903008 (2020).
Sun, Z. et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017).
Xia, J. et al. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 31, 2101980 (2021).
Hua, W. et al. Selective catalysis remedies polysulfide shuttling in lithium–sulfur batteries. Adv. Mater. 33, 2101006 (2021).
Nadège, G., Tivadar, C., Pascal, R., Christophe, G. & Michel, V. Influence of H2S on the hydrogenation activity of relevant transition metal sulfides. Catal. Today 98, 61–66 (2004).
Pecoraro, T. A. & Chianelli, R. R. Hydrodesulfurization catalysis by transition metal sulfides. J. Catal. 67, 430–445 (1981).
Tan, A. & Harris, S. Electronic structure of Rh2S3 and RuS2, two very active hydrodesulfurization catalysts. Inorg. Chem. 37, 2215–2222 (1998).
Burdett, J. K. & Chung, J. T. Volcano plots, hydrodesulfurization and surface atom pair potentials. Surf. Sci. 236, L353–L357 (1990).
Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).
Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).
Lipsch, J. M. J. G. & Schuit, G. C. A. The CoO, MoO3, Al2O3 catalyst: III. Catalytic properties. J. Catal. 15, 179–189 (1969).
Chianelli, R. R., Daage, M. & Ledoux, M. J. Fundamental studies of transition-metal sulfide catalytic materials. Adv. Catal. 40, 177–232 (1994).
Nørskov, J. K., Clausen, B. S. & Topsøe, H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal. Lett. 13, 1–8 (1992).
Dickens, C. F., Montoya, J. H., Kulkarni, A. R., Bajdich, M. & Nørskov, J. K. An electronic structure descriptor for oxygen reactivity at metal and metal–oxide surfaces. Surf. Sci. 681, 122–129 (2019).
Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J. Phys. Chem. Lett. 5, 3884–3889 (2014).
Song, X. et al. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium–sulfur batteries. Energy Storage Mater. 41, 248–254 (2021).
Han, Z. et al. Engineering d–p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. 33, 2105947 (2021).
Xiao, C. et al. p-Block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667–3677 (2022).
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).
Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004).
Bag, S., Gaudette, A. F., Bussell, M. E. & Kanatzidis, M. G. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nat. Chem. 1, 217–224 (2009).
Moses, P. G. et al. Trends in hydrodesulfurization catalysis based on realistic surface models. Catal. Lett. 144, 1425–1432 (2014).
Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).
Holleman, A. F., Wiberg, E. & Wiberg, N. Holleman–Wiberg’s Inorganic Chemistry (Academic Press, 2001).
Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 5, 4759 (2014).
Zhang, L. et al. In situ optical spectroscopy characterization for optimal design of lithium–sulfur batteries. Chem. Soc. Rev. 48, 5432–5453 (2019).
Lei, T. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule 2, 2091–2104 (2018).
Fleet, M. E. XANES spectroscopy of sulfur in Earth materials. Can. Mineralogist 43, 1811–1838 (2005).
Li, D. et al. S K- and L-edge XANES and electronic structure of some copper sulfide minerals. Phys. Chem. Miner. 21, 317–324 (1994).
Szilagyi, R. K. et al. Description of the ground state wave functions of Ni dithiolenes using sulfur K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 125, 9158–9169 (2003).
Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).
Anzures, B. A., Parman, S. W., Milliken, R. E., Lanzirotti, A. & Newville, M. XANES spectroscopy of sulfides stable under reducing conditions. Am. Mineral. 105, 375–381 (2020).
Rogalev, A., Goulon, J. & Brouder, C. Sulphur K-edge X-ray absorption fine-structure studies of EuS and GdS. J. Phys. Condens. Matter 11, 1115–1121 (1999).
Mohammed, L., Saeed, M. A., Zhang, Q. & Musa, A. Core-level excitation in polymorph of As2S3 and β-In2S3. J. Comput. Sci. 28, 11–17 (2018).
Sainctavit, P., Petiau, J., Flank, A. M., Ringeissen, J. & Lewonczuk, S. XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2. Phys. B 158, 623–624 (1989).
Ohno, Y., Hirama, K., Nakai, S., Sugiura, C. & Okada, S. X-ray absorption spectroscopy of layer transition-metal disulfides. Phys. Rev. B 27, 3811–3820 (1983).
Cho, E.-J. et al. Unoccupied states and charge transfer in Cu–Pd alloys studied by bremsstrahlung isochromat spectroscopy, X-ray photoelectron spectroscopy, and LIII absorption spectroscopy. Phys. Rev. B 52, 16443–16450 (1995).
Gelatt, C. D. & Ehrenreich, H. Charge transfer in alloys: AgAu. Phys. Rev. B 10, 398–415 (1974).
Zhu, X. et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 10, 1428 (2019).
Sun, Y. et al. Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nat. Commun. 11, 4600 (2020).
Schmøkel, M. S. et al. Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem. Sci. 5, 1408–1421 (2014).
Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy (ed. Chastain, J.) (Perkin-Elmer Corporation, 1992).
Aray, Y., Rodriguez, J., Vega, D. & Rodriguez-Arias, E. N. Correlation of the topology of the electron density of pyrite-type transition metal sulfides with their catalytic activity in hydrodesulfurization. Angew. Chem. Int. Ed. 39, 3810–3813 (2000).
Omann, L., Königs, C. D. F., Klare, H. F. T. & Oestreich, M. Cooperative catalysis at metal–sulfur bonds. Acc. Chem. Res. 50, 1258–1269 (2017).
Byskov, L. S., Nørskov, J. K., Clausen, B. S. & Topsøe, H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999).
Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-forming and -breaking reactions at sulfur (IV): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 119, 8701–8780 (2019).
Goulas, K. A., Mironenko, A. V., Jenness, G. R., Mazal, T. & Vlachos, D. G. Fundamentals of C–O bond activation on metal oxide catalysts. Nat. Catal. 2, 269–276 (2019).
Mowbray, D. J. et al. Trends in metal oxide stability for nanorods, nanotubes, and surfaces. J. Phys. Chem. C 115, 2244–2252 (2011).
Queen, M. S. et al. Electronic structure of [Ni(ii)S4] complexes from S K-edge X-ray absorption spectroscopy. Coord. Chem. Rev. 257, 564–578 (2013).
Rose, K. et al. Investigation of the electronic structure of 2Fe–2S model complexes and the Rieske protein using ligand K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 121, 2353–2363 (1999).
Zhao, X. et al. Unleash electron transfer in C–H functionalization by mesoporous carbon-supported palladium interstitial catalysts. Natl Sci. Rev. 8, nwaa126 (2020).
Pan, A., Kar, T., Rakshit, A. K. & Moulik, S. P. Enthalpy–entropy compensation (EEC) effect: decisive role of free energy. J. Phys. Chem. B 120, 10531–10539 (2016).
He, J. et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 12, 344–350 (2019).
Lv, W. et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3, 3730–3736 (2009).
Chua, C. K. & Pumera, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014).
Acknowledgements
This work was supported by the National Key R&D Program of China (2022YFA1503502 and 2021YFF0500600), National Natural Science Foundation of China (22025204, 51932005, 92034301, 52102283 and 52022041) and Innovation Program of the Shanghai Municipal Education Commission (2021-01-07-00-02-E00119).
Author information
Authors and Affiliations
Contributions
Y.W. and W.L. designed the research, supervised the experiments and edited the paper. W.H., T.S., H.L. and Y.S. planned the synthesis, tested the catalysts, analysed the X-ray absorption spectra and electrochemical data and wrote the paper. H.L. contributed to the DFT calculations and discussion on the electronic properties of the selected catalysts. L.P. and Z. Han assisted with the electrochemical data and the in situ Raman measurements when the revised version was prepared. All authors discussed the results and commented on the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Catalysis thanks Jie Xiong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–43, Tables 1–3 and methods.
Source data
Source Data Fig. 1
Statistical source data.
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 5
Statistical source data.
Source Data Fig. 6
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hua, W., Shang, T., Li, H. et al. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nat Catal 6, 174–184 (2023). https://doi.org/10.1038/s41929-023-00912-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-023-00912-9