Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Construction of axial chirality via asymmetric radical trapping by cobalt under visible light

Abstract

The 3d metals have been identified as economic and sustainable alternatives to palladium, the frequently used metal in transition-metal-catalysed cross-couplings. However, cobalt has long stood behind its neighbouring elements, nickel and copper, in asymmetric radical couplings owing to its high catalytic activity in the absence of ligands resulting in unfavourable un-asymmetric background reactions. Here we disclose an asymmetric metallaphotoredox catalysis (AMPC) strategy for the dynamic kinetic asymmetric transformation of racemic heterobiaryls, which represents a visible-light-induced, asymmetric radical coupling for the construction of axial chirality. This success can also be extended to the reductive cross-coupling variant featuring the use of more easily available organic halide feedstocks. The keys to these achievements are the rational design of a sustainable AMPC system that merges asymmetric cobalt catalysis with organic photoredox catalysis in combination with the identification of an efficient chiral polydentate ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design blueprint for AMPC-enabled DYKAT of racemic heterobiaryls.
Fig. 2: Probe the feasibility of the reactivity of cobalt/photoredox-catalysed radical coupling.
Fig. 3: Condition optimization for the AMPC-enabled DYKAT reaction.
Fig. 4: Substrate scope of the AMPC-enabled radical DYKAT.
Fig. 5: Substrate scope of AMPC-enabled radical DYKAT via reductive coupling.
Fig. 6: Demonstrations of the utilities of the developed methodology.
Fig. 7: Mechanistic investigations.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2124717 (3g) and 2124714 (Me-3k). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Data related to materials and methods, optimization of conditions, experimental procedures, mechanistic experiments, DFT calculations, HPLC spectra and spectra are provided in the Supplementary information. All data are available from the corresponding authors upon reasonable request.

References

  1. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  3. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition-metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).

    Article  CAS  Google Scholar 

  5. Silvil, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    Article  Google Scholar 

  6. Lipp, A., Badir, S. O. & Molander, G. A. Stereoinduction in metallaphotoredox catalysis. Angew. Chem. Int. Ed. 60, 1714–1726 (2021).

    Article  CAS  Google Scholar 

  7. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    Article  CAS  Google Scholar 

  8. Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arceo, E., Jurberg, I. D., Álvarez-Fernaández, A. & Melchiorre, P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat. Chem. 5, 750–756 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2+2] photocycloadditions using visible light. Science 344, 392–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Litman, Z. C., Wang, Y.-J., Zhao, H.-M. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article  PubMed  Google Scholar 

  20. Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Hapke, M. & Hilt, G. (eds) Cobalt Catalysis in Organic Synthesis (Wiley-VCH, 2020).

  22. Mao, J. et al. Cobalt−bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic α-bromo esters with aryl Grignard reagents. J. Am. Chem. Soc. 136, 17662–17668 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Z. et al. A cobalt-catalyzed enantioconvergent radical Negishi C(sp3)-C(sp2) cross-coupling with chiral multidentate N,N,P ligand. Organometallics 40, 2215–2219 (2021).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Cobalt-catalysed enantioselective C(sp3)-C(sp3) coupling. Nat. Catal. 4, 901–911 (2021).

    Article  CAS  Google Scholar 

  25. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  29. Kojima, M. & Matsunaga, S. The merger of photoredox and cobalt catalysis. Trends Chem. 2, 410–426 (2020).

    Article  CAS  Google Scholar 

  30. Ding, W. et al. Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoesters. J. Am. Chem. Soc. 139, 63–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Lu, F.-D. et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 141, 6167–6172 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J. et al. Photoinduced copper-catalyzed asymmetric C−O cross-coupling. J. Am. Chem. Soc. 143, 13382–13392 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Kakiuchi, F., Gendre, P. L., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition-metal-catalyzed C–H/olefin coupling. Tetrahedron Asymmetry 11, 2647–265 (2000).

    Article  CAS  Google Scholar 

  34. Ros, A. et al. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral heterobiaryls. J. Am. Chem. Soc. 135, 15730–15733 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Bhat, V., Wang, S., Stoltz, B. M. & Virgil, S. C. Asymmetric synthesis of QUINAP via dynamic kinetic resolution. J. Am. Chem. Soc. 135, 16829–16832 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Ramírez-López, P. et al. A dynamic kinetic C–P cross–coupling for the asymmetric synthesis of axially chiral P,N ligands. ACS Catal. 6, 3955–3964 (2016).

    Article  Google Scholar 

  37. Ramírez-López, P. et al. Synthesis of IAN-type N,N-ligands via dynamic kinetic asymmetric Buchwald–Hartwig amination. J. Am. Chem. Soc. 138, 12053–12056 (2016).

    Article  PubMed  Google Scholar 

  38. Hornillos, V. et al. Synthesis of axially chiral heterobiaryl alkynes via dynamic kinetic asymmetric alkynylation. Chem. Commun. 52, 14121–14124 (2016).

    Article  CAS  Google Scholar 

  39. Carmona, J. A. et al. Dynamic kinetic asymmetric Heck reaction for the simultaneous generation of central and axial chirality. J. Am. Chem. Soc. 140, 11067–11075 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Han, S.-J., Bhat, V., Stoltz, B. M. & Virgil, S. C. Atroposelective synthesis of PINAP via dynamic kinetic asymmetric transformation. Adv. Synth. Catal. 361, 441–444 (2019).

    Article  CAS  Google Scholar 

  41. Wang, Q., Cai, Z.-J., Liu, C.-X., Gu, Q. & You, S.-L. Rhodium-catalyzed atroposelective C−H arylation: efficient synthesis of axially chiral heterobiaryls. J. Am. Chem. Soc. 141, 9504–9510 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Romero-Arenas, A. et al. Ir-catalyzed atroposelective desymmetrization of heterobiaryls: hydroarylation of vinyl ethers and bicycloalkenes. J. Am. Chem. Soc. 142, 2628–2639 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Carmona, J. A., Rodríguez-Franco, C., Fernández, R., Hornillos, V. & Lassaletta, J. M. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem. Soc. Rev. 50, 2968–2983 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Jin, M.-Y. & Yoshikai, N. Cobalt-xantphos-catalyzed, LiCl-mediated preparation of arylzinc reagents from aryl iodides, bromides, and chlorides. J. Org. Chem. 76, 1972–1978 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, W. et al. Chiral sulfinamide bisphosphine catalysts: design, synthesis, and application in highly enantioselective intermolecular cross-Rauhut–Currier reactions. Angew. Chem. Int. Ed. 54, 14853–14857 (2015).

    Article  CAS  Google Scholar 

  46. Hu, M., Feng, H.-T., Yuan, Y.-X., Zheng, Y.-S. & Tang, B. Z. Chiral AIEgens–chiral recognition, CPL materials and other chiral applications. Coord. Chem. Rev. 416, 213329 (2020).

    Article  CAS  Google Scholar 

  47. Han, J. et al. Enhanced circularly polarized luminescence in emissive charge-transfer complexes. Angew. Chem. Int. Ed. 58, 7013–7019 (2019).

    Article  CAS  Google Scholar 

  48. Speckmeier, E., Fischer, T. G. & Zeitler, K. A toolbox approach to construct broadly applicable metal-free catalysts for photoredox chemistry: deliberate tuning of redox potentials and importance of halogens in donor−acceptor cyanoarenes. J. Am. Chem. Soc. 140, 15353–15365 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Gandolfo, E., Tang, X., Roy, S. R. & Melchiorre, P. Photochemical asymmetric nickel-catalyzed acyl cross-coupling. Angew. Chem. Int. Ed. 58, 16854–168587 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Zhang and Soochow Chirally-Chem Co., Ltd for providing ligands, M.-Y. Liu for determination of circularly polarized luminescence signal (|glum|) and F.-F. Pan for the X-ray single-crystal diffraction analysis, and J.-R. Chen and Y. Cheng for helpful discussions. X.Q. acknowledges the supercomputing system in the Supercomputing Center of Wuhan University. This work was supported by the National Natural Science Foundation of China (grant nos. 91956201, 21820102003 and 21772053 to W.-J.X. and 21822103 and 21772052 to L.-Q.L.), the Natural Science Foundation of Hubei Province (grant No. 2017AHB047 to W.-J.X.) and the International Joint Research Center for Intelligent Biosensing Technology and Health.

Author information

Authors and Affiliations

Authors

Contributions

L.-Q.L. and W.-J.X. directed the project and wrote the manuscript with input from all other authors. Under the guidance of L.-Q.L. and W.-J.X., X.J. and W.X. developed the methods and designed and performed the synthetic and mechanistic experiments with the help of F.-D.L, Y.J., Q.Y. and L.-Y.X. In addition, S.D. performed the DFT calculations under the guidance of X.Q. J.A.T. gave many helpful suggestions and helped to revise this manuscript. All the authors participated in the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Liang-Qiu Lu or Wen-Jing Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Dong Wang, Pedro Merino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, references, Tables 1–15 and Figs. 1–24.

Supplementary Data 1

Computational data for Cartesian coordinates of optimized structures.

Supplementary Data 2

Crystallographic data for compound 3g.

Supplementary Data 3

Crystallographic data for compound Me-3k.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Xiong, W., Deng, S. et al. Construction of axial chirality via asymmetric radical trapping by cobalt under visible light. Nat Catal 5, 788–797 (2022). https://doi.org/10.1038/s41929-022-00831-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00831-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing