Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes

Abstract

The biggest obstacle to the commercialization of protonic ceramic fuel cells (PCFCs) is the lack of high-performance, low-cost cathode materials. Currently, the most promising cathode materials are cobalt-based perovskites; however, the unstable phases, poor thermomechanical compatibility with other PCFC components, high cost and unsatisfactory performance limit the viability of these materials. Here we combine ab initio simulations, molecular orbital insights, and A- and B-site co-substitution to develop a cobalt-free perovskite with outstanding performance. A- and B-site substitution in BaFeO3−δ, is found to promote the formation of oxygen vacancies (\({{{\mathrm{V}}}}_{{{\mathrm{O}}}}^{ \bullet \bullet }\)) and hydroxyl ions (\({{{\mathrm{OH}}}}_{{{\mathrm{O}}}}^ \bullet\)) while retaining structural stability. The best computationally identified material, Ba0.875Fe0.875Zr0.125O3−δ, showed exceptional oxygen reduction reaction electrochemical activity with a peak power density of 0.67 W cm2 at 500 °C. This rational approach provides a strategy for designing high-activity, low-cost and cobalt-free perovskites, marking a significant step towards realizing commercially viable PCFCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DFT-calculated Eform, \({{E}}_{{{{\mathrm{vac}}}}}\left( {{{{\mathrm{V}}}}_{{{\mathrm{O}}}}^{ \bullet \bullet }} \right)\) and Ehydr.
Fig. 2: Contour plot of BFO and derivative materials.
Fig. 3: Metal–oxygen bond molecular orbital interactions and PDOS analyses.
Fig. 4: Schematic illustration of the two chemical environments of \({{{\mathrm{V}}}}_{{{\mathrm{O}}}}^{ \bullet \bullet }\) and \({{{\mathrm{OH}}}}_{{{\mathrm{O}}}}^ \bullet\).
Fig. 5: DFT calculations of the ORR on D-BFZ.
Fig. 6: Structural characterization by X-ray diffraction, XPS, TEM and XANES.
Fig. 7: Hydrogen permeation test, SEM characterization and fuel cell test of D-BFZ.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request. The atomic coordinates of the optimized structures are provided in Supplementary Data 1. Source data are provided with this paper.

References

  1. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4844 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ormerod, R. M. Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Brett, D. J. L., Atkinson, A., Brandon, N. P. & Skinner, S. J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan, V. V. Recent developments in metal-supported solid oxide fuel cells. WIREs Energy Environ. 6, e246 (2017).

    Article  Google Scholar 

  5. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    Article  CAS  Google Scholar 

  6. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G. & Barnett, S. A. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016).

    Article  CAS  Google Scholar 

  7. Duan, C., Huang, J., Sullivan, N. & O’Hayre, R. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7, 011314 (2020).

    Article  CAS  Google Scholar 

  8. Zohourian, R., Merkle, R., Raimondi, G. & Maier, J. Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28, 1801241 (2018).

    Article  Google Scholar 

  9. Zhu, H. & Kee, R. J. Modeling protonic-ceramic fuel cells with porous composite electrodes in a button-cell configuration. J. Electrochem. Soc. 164, F1400–F1411 (2017).

    Article  CAS  Google Scholar 

  10. Matsuzaki, Y. et al. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells. Sci. Rep. 5, 12640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Duan, C. et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217–222 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Choi, S. et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018).

    Article  CAS  Google Scholar 

  14. An, H. et al. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C. Nat. Energy 3, 870–875 (2018).

    Article  CAS  Google Scholar 

  15. Shim, J. H. Ceramics breakthrough. Nat. Energy 3, 168–169 (2018).

    Article  CAS  Google Scholar 

  16. Zhang, Y. et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv. Mater. 29, 1700132 (2017).

    Article  Google Scholar 

  17. Kreuer, K. D. et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 145, 295–306 (2001).

    Article  CAS  Google Scholar 

  18. Duan, C., Hook, D., Chen, Y., Tong, J. & O’Hayre, R. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C. Energy Environ. Sci. 10, 176–182 (2017).

    Article  CAS  Google Scholar 

  19. Li, M. et al. Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells. J. Mater. Chem. A 4, 19019–19025 (2016).

    Article  CAS  Google Scholar 

  20. Song, Y. et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3, 2842–2853 (2019).

    Article  CAS  Google Scholar 

  21. Wang, Z. et al. A high performance cathode for proton conducting solid oxide fuel cells. J. Mater. Chem. A 3, 8405–8412 (2015).

    Article  CAS  Google Scholar 

  22. Poetzsch, D., Merkle, R. & Maier, J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 16, 16446–16453 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Fabbri, E., Markus, I., Bi, L., Pergolesi, D. & Traversa, E. Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ion. 202, 30–35 (2011).

    Article  CAS  Google Scholar 

  24. Tao, Z., Bi, L., Zhu, Z. & Liu, W. Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells. J. Power Sources 194, 801–804 (2009).

    Article  CAS  Google Scholar 

  25. Xia, Y. et al. A novel BaFe0.8Zn0.1Bi0.1O3−δ cathode for proton conducting solid oxide fuel cells. Ceram. Int. 46, 25453–25459 (2020).

    Article  CAS  Google Scholar 

  26. Xu, X. et al. Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations. J. Mater. Chem. A 7, 18792–18798 (2019).

    Article  CAS  Google Scholar 

  27. Wang, N. et al. Mixed proton–electron–oxide ion triple conducting manganite as an efficient cobalt-free cathode for protonic ceramic fuel cells. J. Mater. Chem. A 8, 11043–11055 (2020).

    Article  CAS  Google Scholar 

  28. Gu, C.-Y. et al. High performance Ca-containing La2−xCaxNiO4+δ (0 ≤ x ≤ 0.75) cathode for proton-conducting solid oxide fuel cells. Int. J. Hydrog. Energy 45, 23422–23432 (2020).

    Article  CAS  Google Scholar 

  29. Wang, Z. et al. Ba0.95La0.05Fe0.8Zn0.2O3−δ cobalt-free perovskite as a triple-conducting cathode for proton-conducting solid oxide fuel cells. Ceram. Int. 46, 18216–18223 (2020).

    Article  CAS  Google Scholar 

  30. Xia, Y. et al. A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance. J. Mater. Chem. A 7, 16136–16148 (2019).

    Article  CAS  Google Scholar 

  31. Knöchel, P. L. et al. Synthesis, structural characterisation and proton conduction of two new hydrated phases of barium ferrite BaFeO2.5−x(OH)2x. J. Mater. Chem. A 4, 3415–3430 (2016).

    Article  Google Scholar 

  32. Cheng, S. et al. A dual-phase ceramic membrane with extremely high H2 permeation flux prepared by autoseparation of a ceramic precursor. Angew. Chem. Int. Ed. 55, 10895–10898 (2016).

    Article  CAS  Google Scholar 

  33. Papac, M., Stevanović, V., Zakutayev, A. & O’Hayre, R. Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 20, 301–313 (2020).

    Article  PubMed  Google Scholar 

  34. Choi, S., Davenport, T. C. & Haile, S. M. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12, 206–215 (2019).

    Article  CAS  Google Scholar 

  35. Pei, K. et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat. Commun. 13, 2207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, H. et al. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy Environ. Sci. 15, 287–295 (2022).

    Article  CAS  Google Scholar 

  37. Hayashi, N. et al. BaFeO3: a ferromagnetic iron oxide. Angew. Chem. Int. Ed. 50, 12547–12550 (2011).

    Article  CAS  Google Scholar 

  38. Hoedl, M. F., Gryaznov, D., Merkle, R., Kotomin, E. A. & Maier, J. Interdependence of oxygenation and hydration in mixed conducting (Ba,Sr)FeO3−δ perovskites studied by density functional theory. J. Phys. Chem. C 124, 11780–11289 (2020).

    Article  CAS  Google Scholar 

  39. Muñoz-García, A. B. & Pavone, M. First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: A-site doped Sr2Fe1.5Mo0.5O6−δ perovskite. Chem. Mater. 28, 490–500 (2016).

    Article  Google Scholar 

  40. Muñoz-García, A. B., Tuccillo, M. & Pavone, M. Computational design of cobalt-free mixed proton–electron conductors for solid oxide electrochemical cells. J. Mater. Chem. A 5, 11825–11833 (2017).

    Article  Google Scholar 

  41. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    Article  CAS  Google Scholar 

  42. Madsen, G. K. H. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006).

    Article  CAS  Google Scholar 

  43. Madsen, G. K. H., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).

    Article  CAS  Google Scholar 

  44. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  45. Dong, F., Chen, D., Chen, Y., Zhao, Q. & Shao, Z. La-doped BaFeO3−δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. J. Mater. Chem. 22, 15071–15079 (2012).

    Article  CAS  Google Scholar 

  46. Wang, J. et al. The effect of A-site and B-site substitution on BaFeO3−δ: an investigation as a cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources 297, 511–518 (2015).

    Article  CAS  Google Scholar 

  47. Chen, C. & Ciucci, F. Designing Fe-based oxygen catalysts by density functional theory calculations. Chem. Mater. 28, 7058–7065 (2016).

    Article  CAS  Google Scholar 

  48. Baiyee, Z. M., Chen, C. & Ciucci, F. A DFT+U study of A-site and B-site substitution in BaFeO3−δ. Phys. Chem. Chem. Phys. 17, 23511–23520 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45, 581 (1968).

    Article  CAS  Google Scholar 

  50. Pearson, R. G. Hard and soft acids and bases, HSAB, part II: underlying theories. J. Chem. Educ. 45, 643 (1968).

    Article  CAS  Google Scholar 

  51. Liu, X. et al. Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J. Membr. Sci. 383, 235–240 (2011).

    Article  CAS  Google Scholar 

  52. Cao, Y., Gadre, M. J., Ngo, A. T., Adler, S. B. & Morgan, D. D. Factors controlling surface oxygen exchange in oxides. Nat. Commun. 10, 1346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang, Y.-L., Pellegrinelli, C. & Wachsman, E. D. Oxygen dissociation kinetics of concurrent heterogeneous reactions on metal oxides. ACS Catal. 7, 5766–5772 (2017).

    Article  CAS  Google Scholar 

  54. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  55. Jung, W. & Tuller, H. L. A new model describing solid oxide fuel cell cathode kinetics: model thin film SrTi1−xFexO3−δ mixed conducting oxides—a case study. Adv. Energy Mater. 1, 1184–1191 (2011).

    Article  CAS  Google Scholar 

  56. Raimondi, G. et al. X-ray spectroscopy of (Ba,Sr,La)(Fe,Zn,Y)O3−δ identifies structural and electronic features favoring proton uptake. Chem. Mater. 32, 8502–8511 (2020).

    Article  CAS  Google Scholar 

  57. Vračar, M. et al. Jahn-Teller distortion around Fe4+ in Sr(FexTi1−x)O3−δ from X-ray absorption spectroscopy, X-ray diffraction, and vibrational spectroscopy. Phys. Rev. B 76, 174107 (2007).

    Article  Google Scholar 

  58. Zhou, C. et al. Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3−δ membrane using a thin Pd film protection strategy. J. Membr. Sci. 596, 117709 (2020).

    Article  CAS  Google Scholar 

  59. Song, S. J., Wachsman, E. D., Rhodes, J., Dorris, S. E. & Balachandran, U. Hydrogen permeability of SrCe1−xMxO3−δ (x = 0.05, M = Eu, Sm). Solid State Ion. 167, 99–105 (2004).

    Article  CAS  Google Scholar 

  60. Chen, Y., Liu, H., Zhuang, L., Wei, Y. & Wang, H. Hydrogen permeability through Nd5.5W0.35Mo0.5Nb0.15O11.25−δ mixed protonic–electronic conducting membrane. J. Membr. Sci. 579, 33–39 (2019).

    Article  CAS  Google Scholar 

  61. Yang, Y., Zeng, Y., Amirkhiz, B. S., Luo, J.-L. & Yan, N. Promoting the ambient-condition stability of Zr-doped barium cerate: toward robust solid oxide fuel cells and hydrogen separation in syngas. J. Power Sources 378, 134–138 (2018).

    Article  CAS  Google Scholar 

  62. Zuo, C., Dorris, S. E., Balachandran, U. & Liu, M. Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni–BaCe0.8Y0.2O3−α mixed protonic–electronic conductor. Chem. Mater. 18, 4647–4650 (2006).

    Article  CAS  Google Scholar 

  63. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  64. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  67. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, W. et al. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions. Adv. Energy Mater. 6, 1502471 (2016).

    Article  Google Scholar 

  69. Yang, L. et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126–129 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Grant Council of Hong Kong for support through the projects (16201820 and 16206019, received by F.C.), the Nano & Material Technology Development Project (NRF-2021M3H4A1A01002919, received by F.C.) and the Global PhD Fellowship through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science, ICT, and Future Planning (NRF-2018H1A2A1060644, received by A.S.). This work was supported in part by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083, received by F.C.). M.J.R. and A.B. kindly recognize the support of the Hong Kong PhD Fellowship Scheme. We are grateful to the Materials Characterization and Preparation Facility (MCPF) and the Advanced Engineering Materials Facility (AEMF) of the Hong Kong University of Science and Technology for their assistance in experimental characterizations. The calculations were performed on the Tianhe-2 supercomputer system in Guangzhou.

Author information

Authors and Affiliations

Authors

Contributions

Z.W., Y.W. and F.C. conceived and designed the project. Z.W. performed theoretical calculations. Y.W. fabricated fuel cells and performed X-ray diffraction and SEM analyses. Y.S., M.Y., A.S., G.K. and Z.S. measured proton conductivity. J.W. and J.Lim performed X-ray absorption spectroscopy characterizations and contributed to data analysis. Z.Z., A.B. and J.Liu performed TEM characterizations. Z.W., Y.W., Y.S., M.J.R. and F.C. drafted the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Francesco Ciucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chuancheng Duan, Kevin Huang and Ivano Castelli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Tables 1–12, methods and references.

Supplementary Data

Contains the coordinates of the calculated species in this article.

Source data

Source Data Fig. 1

Contains the energies of calculated species.

Source Data Fig. 2

Contains the energies of calculated species.

Source Data Fig. 3

The projected density of state of Fe–O, Zr–O and Y–O bonds

Source Data Fig. 5

Contains the energies of calculated intermediates of oxygen reduction reactions for BFZ, BFZ-1Vo, BFZ-2Vo and BFZ-2Vo-2OHo

Source Data Fig. 6

The data used to plot the figures.

Source Data Fig. 7

The data used to plot the figures.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, Y., Wang, J. et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nat Catal 5, 777–787 (2022). https://doi.org/10.1038/s41929-022-00829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00829-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing